Ⅰ 网络传输介质分类有哪两种
网络传输介质分类有线传输介质和无线传输介质两大类。
无线传输介质是指周围的自由空间,利用无线电波在自由空间的传播可以实现多种无线通信。
有线传输介质是指在两个通信设备之间实现的物理连接部分,它能将信号从一方传输到另一方,有线传输介质主要有双绞线、同轴电缆和光纤。双绞线和同轴电缆传输电信号,光纤传输光信号。
(1)无线电网络传播技术使用的载体扩展阅读:
特性
1、物理特性。说明传播介质的特征。
2、连通性。采用点到点连接还是多点连接。
3、传输特性。包括信号形式、调制技术、传输速度及频带宽度等内容。
4、相对价格。以元件、安装和维护的价格为基础。
5、抗干扰性。防止噪声、电磁干扰对数据传输影响的能力。
6、地域范围。网上各点间的最大距离。
Ⅱ 无线上网是通过什么传递信号的
无线传输是利用电磁波。分发射部分和接收部分。发射部分由产生高频信号的振荡器,将音频信号加到电磁波上的调制器和高频功率放大器,最后由天线发射到空间去。接收部分由接收天线,高频放大,变频器,中频放大器,检波器和音频功率放大器等组成,最后由喇叭还原出声音。 现在无线传输已经超出了广播通信的范围。如无线电导航,无线电定位等许多领域。还有人进行无线电力传输。但前景不太好。
无线局域网的传输原理和普通有线网络一样,也是采用了ISO/RM七层网络模型,只是在模型的最低两层“物理层”和“数据链路层”中,使用了无线的传输方式。尽管目前各类无线网络的标准和规范并不统一,但是就其传输方式来看肯定是以下两种之一:无线电波方式和红外线方式。其中红外线传输方式是目前应用最为广泛的一种无线网技术,现在家用电器中使用频繁的家电遥控器几乎都是采用红外线传输技术。作为无线局域网的传输方式,红外线传输的最大优点是不受无线电波的干扰,而且红外线的使用也不会被国家无线电管理委员会加以限制。但是,红外线传输方式的传输质量受距离的影响非常大,并且红外线对非透明物体的穿透性也非常差,这就直接导致了红外线传输技术很难成为计算机无线网络中的主角。相比之下,无线电波传输方式的应用则广泛得多。采用无线电波进行传输,不仅覆盖范围大、发射功率强,而且还具有隐蔽性、保密性等特点,不会干扰同频的系统,具有很高的可用性。
Ⅲ 常用的传输媒体的作用是什么
作用是将发信设备所发出的信息传输至收信设备。常用的传输媒体有双绞线、同轴电缆、光纤和电磁波。(双绞线的特点:1. 抗电磁干扰2. 模拟传输和数字传输都可以使用双绞线;;同轴电缆的特点:同轴电缆具有很好的抗干扰特性 ;;光纤的特点:1. 传输损耗小,中继距离长,对远距离传输特别经济;2. 抗雷电和电磁干扰性能好;3. 无串音干扰,保密性好,也不易被窃听或截取数据;4. 体积小,重量轻。
拓展资料
一,传输媒体也称传输介质或传输媒介,它就是数据传输系统中在发送器和接收器之间的物理通路。它可分为两大类,即导向传输媒体和非导向传输媒体。在导向传输媒体中,电磁波被导向沿着固体媒体(铜线或光纤)传播,而非导向传输媒体就是指自由空间,在非导向传输媒体中电磁波的传输常称为无线传播。网络传输媒介的质量的好坏会影响数据传输的质量,包括速率、数据丢包等。
二,传输媒体是通信网络中发送方和接收方之间的物理通路。计算机网络中采用的传输媒体可分为有线和无线两大类。有线传输媒介主要有同轴电缆、双绞线及光缆;无线传输媒介主要有微波、无线电、激光和红外线等。卫星通信、无线通信、红外通信、激光通信以及微波通信的信息载体都属于无线传输媒体。传输媒体的特性对网络数据通信质量有很大影响。
三,其特性有: 1、物理特性 说明传输媒体的特征。 2、传输特性 包括是使用模拟信号发送还是数字信号发送,调制技术、传输量及传输的频率范围。 3、连通性 点到点或多点连接。 4、地理范围 网上各点间的最大距离,能用在建筑物内、建筑物之间或扩展到整个城市。 5、抗干扰性 防止噪音、干扰对数据传输影响的能力。 6、相对价格 以元件、安装和维护的价格为基础。
Ⅳ 计算机网络中常用的有线介质和无线传输介质有哪些简述它们的特点
一、有线传输介质
1、双绞线
由两条互相绝缘的铜线组成,其典型直径为1mm。这两条铜线拧在一起,就可以减少邻近线对电气的干扰。
特点:双绞线即能用于传输模拟信号,也能用于传输数字信号;性能较好且价格便宜。
2、同轴电
特点:比双绞线的屏蔽性更好,在更高速度上可以传输得更远;具有更高的带宽和极好的噪声抑制特性。
3、光纤
特点:由纯石英玻璃制成;通常被扎成束,外面有外壳保护。光纤的传输速率可达100Gbit/s。
二、无线传输介质
1、微波传输
特点:微波可以沿直线传播,因此可以集中于一点;可以防止他人窃取信号和减少其他信号对它的干扰,但是发射天线和接收天线必须精确地对准。由于微波沿直线传播,所以如果微波塔相距太远,地表就会挡住去路。因此,隔一段距离就需要一个中继站,微波塔越高,传的距离越远。
2、红外线
特点:广泛用于短距离通信;不能穿透坚实的物体。但正是由于这个原因,一间房屋里的红外系统不会对其他房间里的系统产生串扰,所以红外系统防窃听的安全性要比无线电系统好。
3、激光传输
特点:通过装在楼顶的激光装置来连接两栋建筑物里的LAN;由于激光信号是单向传输,因此每栋楼房都得有自己的激光以及测光的装置;不能穿透雨和浓雾,但是在晴天里可以工作的很好。
Ⅳ 无线传输介质是指什么
在计算机网络中,无线传输可以突破有线网的限制,利用空间电磁波实现站点之间的通信,可以为广大用户提供移动通信。最常用的无线传输介质有:无线电波、微波和红外线。
无线通信的方法有无线电波、微波、蓝牙和红外线。
无线电波
无线电波是指在自由空间(包括空气和真空)传播的射频频段的电磁波。无线电技术是通过无线电波传播声音或其他信号的技术。
无线电技术的原理在于,导体中电流强弱的改变会产生无线电波。利用这一现象,通过调制可将信息加载于无线电波之上。当电波通过空间传播到达收信端,电波引起的电磁场变化又会在导体中产生电流。 通过解调将信息从电流变化中提取出来,就达到了信息传递的目的。
微波
微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
红外线
红外线是太阳光线中众多不可见光线中的一种,由德国科学家霍胥尔于1800年发现,又称为红外热辐射,他将太阳光用三棱镜分解开,在各种不同颜色的色带位置上放置了温度计,试图测量各种颜色的光的加热效应。结果发现,位于红光外侧的那支温度计升温最快。因此得到结论:太阳光谱中,红光的外侧必定存在看不见的光线,这就是红外线。也可以当作传输之媒界。 太阳光谱上红外线的波长大于可见光线,波长为0.75~1000μm。红外线可分为三部分,即近红外线,波长为0.75~1.50μm之间;中红外线,波长为1.50~6.0μm之间;远红外线,波长为6.0~l000μm 之间
红外线通信有两个最突出的优点:
1、不易被人发现和截获,保密性强;
2、几乎不会受到电气、天电、人为干扰,抗干扰性强。此外,红外线通信机体积小,重量轻,结构简单,价格低廉。但是它必须在直视距离内通信,且传播受天气的影响。在不能架设有线线路,而使用无线电又怕暴露自己的情况下,使用红外线通信是比较好的。
Ⅵ 无线网数据传输
无线电波是指在自由空间(包括空气和真空)传播的电磁波,其频率一般在3GHz到30GHz之间。无线电技术是通过无线电波传播信号的技术。
无线电技术的原理在于,导体中电流强弱的改变会产生无线电波。利用这一现象,通过调制可将信息加载于无线电波之上。当电波通过空间传播到达收信端,电波引起的电磁场变化又会在导体中产生电流。 通过解调将信息从电流变化中提取出来,就达到了信息传递的目的。
真空是可以传播的
Ⅶ lan常用的传输介质有哪几种各有什么特点
网络传输介质是指在网络中传输信息的载体,常用的传输介质分为有线传输介质和无线传输介质两大类。
(1)有线传输介质是指在两个通信设备之间实现的物理连接部分,它能将信号从一方传输到另一方,有线传输介质只要有双绞线、同轴电缆和光纤。
(2)无线传输介质是指在两个通信设备之间不使用任何物理连接,而是通过空间传输的一种技术。无线传输介质主要有微波、红外线和激光等。
不同的传输介质,其特性也各不相同。他们不同的特性对网络中数据通信质量和通信速度有较大影响!这些特性是:
1、物理特性。说明传播介质的特征。
2、传输特性。包括信号形式、调制技术、传输速度及频带宽度等内容。
3、连通性。采用点到点连接还是多点连接。
4、地域范围。网上各点间的最大距离。
5、抗干扰性。防止噪声、电磁干扰对数据传输影响的能力。
6、相对价格。以元件、安装和维护的价格为基础。
Ⅷ 什么是无线电它给人类带来了什么
在1946年2月13日,联合国电台成立。纽约联合国总部的联合国电台隶属于联合国新闻部, 它拥有大约60名工作人员,他们秉持着新闻工作者客观,如实,公正的原则,报道着世界各地的事件。
2011年11月3日,联合国教科文组织把每年的 2 月 13 日定为 " 世界无线电日 "。
便利了我们的日常生活,我们日常使用的无线网络以及地图的导航都与无线电有关,使我们的出行更加便利。
Ⅸ 无线网络传输关键技术是什么
基本上可以说是:【无线电】
所谓无线网络,既包括允许用户建立远距离无线连接的全球语音和数据网络,也包括为近距离无线连接进行优化的红外线技术及射频技术,与有线网络的用途十分类似,最大的不同在于传输媒介的不同,利用无线电技术取代网线,可以和有线网络互为备份。
常见标准有以下几种:
IEEE 802.11a :使用5GHz频段,传输速度54Mbps,与802.11b不兼容
IEEE 802.11b :使用2.4GHz频段,传输速度11Mbps
IEEE 802.11g :使用2.4GHz频段,传输速度主要有54Mbps、108Mbps,可向下兼容802.11b
IEEE 802.11n草案:使用2.4GHz频段,传输速度可达300Mbps,目前标准尚为草案,但产品已层出不穷
目前IEEE 802.11b最常用,但IEEE 802.11g更具下一代标准的实力,802.11n也在快速发展中。