当前位置:首页 » 无线网络 » 计算机网络中常用的无线传输
扩展阅读
微课的网站有哪些内容 2025-03-15 07:26:13
usb网络共享教程 2025-03-15 07:21:26

计算机网络中常用的无线传输

发布时间: 2023-09-17 09:51:05

① 谁能告诉我 目前计算机网络中常用的无线介质有哪些 急用

上面回答 的是有线传输介质,现在最常用的无线传输介质很单纯——电磁波。

② 常用的有线传输和无线传输介质各有哪些

1、有线传输介质主要有双绞线、同轴电缆和光纤。

2、无线传输介质分为无线电波、微波、红外线、激光等。

常用的传输介质分为有线传输介质和无线传输介质两大类。不同的传输介质,其特性也各不相同,它们不同的特性对网络中数据通信质量和通信速度有较大影响。

(2)计算机网络中常用的无线传输扩展阅读:

不同的传输介质,其特性也各不相同。

1、物理特性。说明传播介质的特征。

2、传输特性。包括信号形式、调制技术、传输速度及频带宽度等内容。

3、连通性。采用点到点连接还是多点连接。

4、地域范围。网上各点间的最大距离。

5、抗干扰性。防止噪声、电磁干扰对数据传输影响的能力。

6、相对价格。以元件、安装和维护的价格为基础。

双绞线一般用于星型网络的布线,每条双绞线通过两端安装的RJ-45连接器(握码喊俗称水晶头)将各种网络设备连接起来。双绞线的标准接法不是随便规定的,目的是保证线缆接头布局的对称性,这样就可以使接头内线缆之间的干扰相互抵消。

超五类线是网络布线最常用的网线,分屏蔽和非屏蔽两种。如果是室外模桥使用,屏蔽线要好些,在室内一般用非屏蔽五类线就够了,而由于不带屏蔽层,线缆会相对柔软些,但其连接方法都是一样的。一般的超五类线里都有四对绞在一起的细线,并用不同的颜色标明。

③ 计算机网络有哪些常用的传输介质

双绞线、同轴电缆、光纤

④ 计算机网络有哪些常用的传输介质有哪些

传输介质是通信网络中发送方和接收方之间的物理通路。常用的传输介质可分为有线,如双绞线、同轴电缆和光纤等和无线如无线电波、微波和红外线等两类。

有线传输介质中双绞线可以用于传输模拟或数字信号,常用点到点连接,也可用于多点连接。同轴电缆有基带同轴电缆和宽带同轴电缆两种基本类型。其中,基带同轴电缆用来传输数字信号,宽带同轴电缆可以传输模拟或数字信号。同轴电缆可用于点到点连接态羡或多点连接。光纤传输光信号,光信号中携带用户数据。拿返光纤具有光信号衰减小、带宽高和抗干扰能力强等优点。

常用的无线介质是无线电波帆敏拍和微波等。无线传输不需铺设网络传输线,而且网络终端移动方便。

⑤ 计算机网络中常用的有线介质和无线传输介质有哪些简述它们的特点

有线介质:早誉双绞线、同轴电缆和光导纤维。无线传输介质陆带段:微波、红外线、激光或卫星。有线介质双绞线价格低,传输速度较低;从抗干扰和价格上比较,同轴电缆介于双绞线和光导纤维之间;光导纤维具有光信号衰减小、带宽高和行腊抗干扰能力强等优点。无线传输介质是通过大气传输的电磁波。

无线网络的传输方式,要具体,详细的。每种传输的特点及作用。麻烦了~

无线传输分为:模拟微波传输和数字微波传输。

一、模拟微波传输

模拟微波传输系统原理图
模拟微波传输就是把视频信号直接调制在微波的信道上(微波发射机,HD-630),通过天线(HD-1300LXB)发射出去,监控中心通过天线接收微波信号,然后再通过微波接收机(Microsat 600AM)解调出原来的视频信号。如果需要控制云台镜头,就在监控中心加相应的指令控制发射机(HD-2050),监控前端配置相应的指令接收机(HD-2060),这种监控方式图像非常清晰,没有延时,没有压缩损耗,造价便宜,施工安装调试简单,适合一般监控点不是很多,需要中继也不多的情况下使用。其弱点是:抗干扰能力较差,易受天气、周围环境的影响,传输距离有限。目前,已逐步被数字微波、COFDM、3G、CDMA等取代。

二、数字微波传输

数字微波传输系统原理图
数字微波传输就是先把视频编码压缩(HD-6001D),然后通过数字微波(HD-9500)信道调制,再通过天线发射出去,接收端则相反,天线接收信号,微波解扩,视频解压缩,最后还原模拟的视频信号,也可微波解扩后通过电脑安装相应的解码软件,用电脑软解压视频,而且电脑还支持录像,回放,管理,云镜控制,报警控制等功能;现在随着数字存储方式的普及,接收下的来的信号可以直接通过NVR存储显示或者直接进存储服务器,配合磁盘阵列存储;这种监控方式图像有720*576、352*288或更高的的分辨率选择,通过解码的存储方式,视频有0.2-0.8秒左右的延时。数字视频监控价根据实际情况差别很大,但也有一些模拟微波不可比的优点,如监控点比较多,环境比较复杂,需要加中继的情况多,监控点比较集中它可集中传输多路视频,抗干扰能力比模拟的要好一点,等等优点,适合监控点比较多,需要中继也多的情况下使用,客观地讲,前期投资较高。
无线图像传输系统从应用层面来说分为两大类,一是固定点的图像监控传输系统,二是移动视频图像传输系统。

1.固定点的图像监控传输系统

固定点的无线图像监控传输系统,主要应用在有线闭路监控不便实现的场合,比如港口码头的监控系统、河流水利的视频和数据监控、森林防火监控系统、城市安全监控、建筑工地等。下面按频段由低到高对不同的图像传输技术进行介绍。

1.1--2.4 GHz ISM频段的多种图像传输技术

2.4 GHz的图像传输设备采用扩频技术,有跳频和直扩两种工作方式。跳频方式速率较低,吞吐速率在2 Mbit/s左右,抗干扰能力较强,还可采用不同的跳频序列实现同址复用来增加容量。直扩方式有较高的吞吐速率,但抗干扰性能较差,且多套系统同址使用受限制。

2.4 GHz图像传输可基于IEEE802.11b协议,传输速率为11 Mbit/s,去掉传输过程中的开销,实际有效速率为5.5-6 Mbit/s左右。后来制订的IEEE802.11g标准,速率上限达到54 Mbit/s,在特殊模式下可达108Mbps,该标准互通性高,点对点可传输几路MPEG-4的压缩图像。

应用在2.4 GHz频段的还有蓝牙技术、HomeRF技术、MESH、微蜂窝技术等。随着应用范围的逐渐扩大,2.4 GHZ这个频段处于满负荷工作状态,其速率问题、安全问题、干扰问题值得进一步研究。

1.2--3.5 GHz频段的无线接入系统

3.5 GHz的无线接入系统是一种点对多点微波通信技术,采用FDD双工方式,用16QAM、64QAM调制方式,基于DOCSOS协议。其工作频段相对较低,电波自由空间损耗小,传播雨衰性能好,接入速率足够高,且设备成本相对较低。该系统具有相对良好的覆盖能力,通常达到5 km~10 km,适合地县市级单位低价位、较大面积覆盖的应用场合;还可与WLAN、LMDS互为补充,形成覆盖面积大小配合、用户密度稀密配合的多层运行的有机互补模式。目前存在的问题是带宽不足,只有上下行各30 MHz,难以大规模使用。

1.3--5.8 GHz WLAN产品

5.8 GHz的WLAN产品采用OFDM正交频分复用技术,在此频段的WLAN产品基于IEEE802.11a协议,传输速率可以达到54 Mbit/s,在特殊模式下可达108Mbps。根据WLAN的传输协议,在点对点应用的时候,有效速率为20 Mbit/s;点对六点的情况下,每一路图像的有效传输速率为500 kbit/s左右,也就是说总的传输数据量为3 Mbit/s左右。对于无线图像的传输而言,基本上解决了“高清晰度数字图像在无线网络中的传输”问题,使得大范围采用5.8 GHz频段传输数字化图像成为现实,尤其适用于城市安全监控系统。

ZWD-2422无线高清传输器

图册无线传输设备(10张)
的工作频率4.9GHz-5.9GHz,当它收到其它RF设备或讯号干扰时能自动调整至适当的频率,所以一般不在5G左右频段的2.4G,3G不会干扰到ZWD-2422的无线高清传输。

WLAN传输监控图像,目前比较成熟的是采用MPEG-4图像压缩技术。这种压缩技术在500 kbit/s速率时,压缩后的图像清晰度可以达到1CIF(352×288像素)~2CIF。在2 Mbit/s的速率情况下,该技术可以传输4CIF(702×576像素,DVD清晰度)清晰度的图像。采用MPEG-4压缩以后的数字化图像,经过无线信道传输,配合相应的软件,很容易实现网络化、智能化的数字化城市安全监控系统。

2.4/5.8GHz 基于802.11n的产品,11n产品分为AN和GN分别工作于5.8GHz和2.4GHz,传输速率可达150、300、600Mbps,有效传输速率分别为60、160、300Mbps.随着高清摄像机的发展,这种高带宽的11N模式非常适合高清摄像机的传输。高清摄像机和高带宽无线传输设备的配合会逐渐成为无线视频监控的趋势。

1.4--26 GHz频段的宽带固定无线接入系统

LMDS系统是典型的26 GHz无线接入系统,采用64QAM、16QAM和QPSK三种调制方式。LMDS具有更大的带宽以及双向数据传输能力,可提供多种宽带交互式数据以及多媒体业务,解决了传统本地环路的瓶颈问题,能够满足高速宽带数据、图像通信以及宽带internet业务的需求。LMDS系统覆盖范围3公里~5公里,适用于城域网。由于世界各国对LMDS的工作频段规划不同,所以其兼容性较差、雨衰性能差,成本也较高。

2.移动视频图像传输系统

除了对固定点的图像监控的需求外,移动图像传输的需求也相当旺盛。移动视频图像传输,广泛用于公安指挥车、交通事故勘探车、消防武警现场指挥车和海关、油田、矿山、水利、电力、金融、海事,以及其它的紧急、应急指挥系统,主要作用是将现场的实时图像传输回指挥中心,使指挥中心的指挥决策人员如身临其境,提高决策的准确性和及时性,提高工作效率。富士达就移动视频图像传输采用公网和专用技术两种情况作相关介绍。

2.1 利用CDMA、GPRS、3G公众移动网络传输图像

CDMA无线网络的移动传输技术具有很多优点:保密性好、抗干扰能力强、抗多径衰落、系统容量的配置灵活、建网成本低等。CDMA采用MPEG-4压缩方式,用MPEG-4的CIF格式压缩图像,可以达到每秒2帧左右的速率;如果将图像调整到QCIF格式,则可以达到每秒10帧以上。但是,对于安全防范系统来说,一般采用低传输帧率而保证传输的清晰度,因为只有CIF以上的图像清晰度才可以满足调查取证的需要。如果希望进一步提高现场图像的实时传输速率,一个简单的方案是采用多个CDMA网卡捆绑使用的方式,用来提高无线信道的传输速率。目前市场上有2~3个网卡捆绑方式的路由器,增加网卡的代价是增加设备成本和使用成本。随着视频压缩技术的不断发展,单个网卡上3~4帧/秒图像传输速率是可以实现的,如果每秒钟可以传输3~4帧CIF格式的图像,可以满足一般移动公共交通设施的安全监控的要求。

GPRS是一种基于GSM系统的无线分组交换技术,支持特定的点对点和点对多点服务,以“分组”的形式传送数据。GPRS峰值速率超过100 kbit/s,网络容量只在所需时分配,这种发送方式称为统计复用。GPRS最主要的优势在于永远在线和按流量计费,不用拨号即可随时接入互联网,随时与网络保持联系,资源利用率高。

3G技术目前已经取代GPRS和CDMA逐渐,目前可以实现的有效速率达384 kbit/s,在网络部署的城区,可以实时传输一路CIF图像,每秒可达到20帧。但需要注意的是,即使速率提高了很多,也不要认为所有的移动交通设施可以同时将图像传输回监控中心,因为同时概念对于公网图像传输来说几乎是不可能的。

2.2 用于应急突发事件的专用图像传输技术

对于一些应急指挥中心的图像传输系统,往往要求将突发事件现场的图像传输回指挥中心。例如遇到重大自然灾害,水灾、火灾现场,群众的大型集会和重要安全保卫任务现场等。这类应急图像传输系统不宜使用公众网络传输,最好采用专业的移动图像传输设备。但目前我国对此尚未专门规划频率。可用于移动视频图像传输的技术有以下几种。

2.2.1 WiMAX

WiMAX是点对多点的宽带无线接入技术,WiMAX采取了动态自适应调制、灵活的系统资源参数及多载波调制等一系列新技术,并兼具较高速率传输能力(可达70 Mbit/s~100 Mbit/s)及较好的QoS与安全控制。WiMAX802.16e覆盖范围可以达到1~3英里,主要定位在移动无线城域网环境。然而802.16e获得足够的全球统一频率存在一定难度,且建设成本和设备价格较高。

2.2.2无线网格(MESH)技术

无线“网格(MESH)”技术,可以实现较近范围内的高速数据通信。利用2.4 GHz频段,有效带宽可以达到6 Mbit/s,这种技术链路设计简单、组网灵活、维护方便。支持MeshController集中方式管理,终端数据无需配置,自动生成解决方案。支持MeshController热备份链路、自动漫游切换等功能。支持MeshController用户终端集中管理、多种验证方式使系统更安全。支持MeshController用户流量控制功能,可根据用户类型自由分配流量,支持限速,限流量,限制上网时间等功能。

对于固定无线图像传输可以采用成本较低的WLAN技术产品;对于移动视频图像传输可以采用公众移动网络或专用无线图像传输技术。希望有更多的同行能再进一步关注无线图像传输问题,以促进该行业的发展。

传输方式

视频基带传输

是最为传统的电视监控传输方式,对0~6MHz视频基带信号不作任何处理,通过同轴电缆(非平衡)直接传输模拟信号。其优点是:短距离传输图像信号损失小,造价低廉,系统稳定。缺点:传输距离短,300米以上高频分量衰减较大,无法保证图像质量;一路视频信号需布一根电缆,传输控制信号需另布电缆;其结构为星形结构,布线量大、维护困难、可扩展性差,适合小系统。

光纤传输

常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的最佳解决方式,通过把视频及控制信号转换为激光信号在光纤中传输。其优点是:传输距离远、衰减小,抗干扰性能好,适合远距离传输。其缺点是:对于几公里内监控信号传输不够经济;光熔接及维护需专业技术人员及设备操作处理,维护技术要求高,不易升级扩容。

网络传输

是解决城域间远距离、点位极其分散的监控传输方式,采用MPEG2/4、H.264音视频压缩格式传输监控信号。其优点是:采用网络视频服务器作为监控信号上传设备,只要有Internet网络的地方,安装上远程监控软件就可监看和控制。其缺点是:受网络带宽和速度的限制,目前的ADSL只能传输小画面、低画质的图像;每秒只能传输几到十几帧图像,动画效果十分明显并有延时,无法做到实时监控。

微波传输

是解决几公里甚至几十公里不易布线场所监控传输的解决方式之一。采用调频调制或调幅调制的办法,将图像搭载到高频载波上,转换为高频电磁波在空中传输。其优点是:综合成本低,性能更稳定,省去布线及线缆维护费用;可动态实时传输广播级图像,图像传输清晰度不错,而且完全实时;组网灵活,可扩展性好,即插即用;维护费用低。其缺点是:由于采用微波传输,频段在1GHz以上,常用的有L波段(1.0~2.0GHz)、S波段(2.0~3.0GHz)、Ku波段(10~12GHz),传输环境是开放的空间,如果在大城市使用,无线电波比较复杂,相对容易受外界电磁干扰;微波信号为直线传输,中间不能有山体、建筑物遮挡;如果有障碍物,需要加中继加以解决,Ku波段受天气影响较为严重,尤其是雨雪天气会有比较严重的雨衰现象。不过现在也有数字微波视频传输产品,抗干扰能力和可扩展性都提高不少。

双绞线传输

(平衡传输):也是视频基带传输的一种,将75Ω的非平衡模式转换为平衡模式来传输的。是解决监控图像1Km内传输,电磁环境相对复杂、场合比较好的解决方式,将监控图像信号处理通过平衡对称方式传输。其优点是:布线简易、成本低廉、抗共模干忧性能强。其缺点是:只能解决1Km以内监控图像传输,而且一根双绞线只能传输一路图像,不适合应用在大中型监控中;双绞线质地脆弱抗老化能力差,不适于野外传输;双绞线传输高频分量衰减较大,图像颜色会受到很大损失。

宽频共缆传输

视频采用调幅调制、伴音调频搭载、FSK数据信号调制等技术,将数十路监控图像、伴音、控制及报警信号集成到“一根”同轴电缆中双向传输。其优点是:充分利用了同轴电缆的资源空间,三十路音视频及控制信号在同一根电缆中双向传输、实现 “一线通”;施工简单、维护方便,大量节省材料成本及施工费用;频分复用技术解决远距传输点位分散,布线困难监控传输问题;射频传输方式只衰减载波信号,图像信号衰减比较小,亮度、色度传输同步嵌套,保证图像质量达到4级左右;采用75Ω同轴非平衡方式传输使其具有很强抗干扰能力,电磁环境复杂场合仍能保证图像质量。其缺点是:采用弱信号传输,系统调试技术要求高,必须使用专业仪器,如果干线线路有一台设备有问题,可能导致整个系统没图像,另外宽频调制端需外加AC220V交流电源供电(但目前大多监控点都具备AC220V交流电源这个条件)。

无线SmartAir传输

SmartAir技术是目前通信业界唯一的单天线模式千兆级无线高速传输技术。其采用多频带OFDM空口技术,TDMA的低延时调度技术,以及低密度奇偶校验码LDPC,自适应调制编码AMC和混合自动重传HARQ等高级无线通信技术,实现到达1Gbps的传输速率

优势

1、 综合成本低,性能更稳定。只需一次性投资,无须挖沟埋管,特别适合室外距离较远及已装修好的场合;在许多情况下,用户往往由于受到地理环境和工作内容的限制,例如山地、港口和开阔地等特殊地理环境,对有线网络、有线传输的布线工程带来极大的不便,采用有线的施工周期将很长,甚至根本无法实现。这时,采用无线监控可以摆脱线缆的束缚,有安装周期短、维护方便、扩容能力强,迅速收回成本的优点。

2、组网灵活,可扩展性好,即插即用。管理人员可以迅速将新的无线监控点加入到现有网络中,不需要为新建传输铺设网络、增加设备,轻而易举地实现远程无线监控。

3、 维护费用低。无线监控维护由网络提供商维护,前端设备是即插即用、免维护系统。

4、无线监控系统是监控和无线传输技术的结合,它可以将不同地点的现场信息实时通过无线通讯手段传送到无线监控中心,并且自动形成视频数据库便于日后的检索。

5、 在无线监控系统中,无线监控中心实时得到被监控点的视频信息,并且该视频信息是连续、清晰的。在无线监控点,通常使用摄像头对现场情况进行实时采集,摄像头通过无线视频传输设备相连,并通过由无线电波将数据信号发送到监控中心。

⑦ 计算机网络常用的传输介质有哪些

常用的传输介质分为有线传输介质和无线传输介质两大类。

有线传输介质主要有双绞线、同轴电缆和光纤。双绞线和同轴电缆传输电信号,光纤传输光信号。

无线传输介质 根据频谱可将其分为无线电波、微波、红外线、激光等,信息被加载在电磁波上进行传输。

⑧ 计算机网络中常用的有线介质和无线传输介质有哪些简述它们的特点

一、有线传输介质

1、双绞线

由两条互相绝缘的铜线组成,其典型直径为1mm。这两条铜线拧在一起,就可以减少邻近线对电气的干扰。

特点:双绞线即能用于传输模拟信号,也能用于传输数字信号;性能较好且价格便宜。

2、同轴电

特点:比双绞线的屏蔽性更好,在更高速度上可以传输得更远;具有更高的带宽和极好的噪声抑制特性。

3、光纤

特点:由纯石英玻璃制成;通常被扎成束,外面有外壳保护。光纤的传输速率可达100Gbit/s。

二、无线传输介质

1、微波传输

特点:微波可以沿直线传播,因此可以集中于一点;可以防止他人窃取信号和减少其他信号对它的干扰,但是发射天线和接收天线必须精确地对准。由于微波沿直线传播,所以如果微波塔相距太远,地表就会挡住去路。因此,隔一段距离就需要一个中继站,微波塔越高,传的距离越远。

2、红外线

特点:广泛用于短距离通信;不能穿透坚实的物体。但正是由于这个原因,一间房屋里的红外系统不会对其他房间里的系统产生串扰,所以红外系统防窃听的安全性要比无线电系统好。

3、激光传输

特点:通过装在楼顶的激光装置来连接两栋建筑物里的LAN;由于激光信号是单向传输,因此每栋楼房都得有自己的激光以及测光的装置;不能穿透雨和浓雾,但是在晴天里可以工作的很好。

⑨ 常用的无线介质有哪几种什么情况下应当使用无线传输介质

常用的无线介质有哪几种?什么情况下应当使用无线传输介质?

无线没有什么介质可言,只有使用何种频率,一般使用802.1a、b.....等协议群,频率一般为24G、54g等等。装置有无线AP,无线路由、无线网桥等。使用无线方式的原则是不方便实施布线的情况下或者临时搭建网路环境.......

什么时候应当使用无线传输介质?

1.不愿意忍受有线的牵绊纠缠,
2.有线端口损坏或接触不良,
3.资料线损坏,
4.使用有线连线布线麻烦或不美观,
5.近距离内两个终端无法使用有线连线,
6.隐蔽传输
以上情况都可以选择无线传输.

无线传输介质的优点,有哪些无线传输介质?

无线传输介质
可以在自由空间利用电磁波传送和接收讯号进行通讯就是无线传输。地球上的大气层为大部分无线传输提供了物理通道,就是常说的无线传输介质。无线传输所使用的频段很广,人们现在已经利用了好几个波段进行通讯。紫外线和更高的波段目前还不能用于通讯。无线通讯的方法有无线电波、微波、蓝芽和红外线。
无线电波
无线电波是指在自由空间(包括空气和真空)传播的射频频段的电磁波。无线电技术是通过无线电波传播档友声音或其他讯号的技术。
无线电技术的原理在于,导体中电流强弱的改变会产生无线电波。利用这一现象,通过调制可将资讯加载于无线电波之上。当电波通过空间传播到达收信端,电波引起的电磁场变化又会在导体中产生电流。 通过解调将资讯从电流变化中提取出来,就达到了资讯传递的目的。
微波
微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
红外线
红外线是太阳光线中众多不可见光线中的一种,由德国科学家霍胥尔于1800年发现,又称为红外热辐射,他将太阳光用三棱镜分解开,在各种不同颜色的色带位置上放置了温度计,试图测量各种颜色的光的加热效应。结果发现,位于红光外侧的那支温度计升温最快。因此得到结论:太阳光谱中,红光的外侧必定存在看不见的光线,这就是红外线。也可以当作传输之媒界。 太阳光谱上红外线的波长大于可见光线,波长为0.75~1000μm。红外线可分为三部分,即近红外线,波长为0.75~1.50μm之间;中红外线,波长为1.50~6.0μm之间;远红外线,波长为6.0~l000μm 之间
红外线通讯有两个最突出的优点:
1、不易被人发现和截获,保密性强;
2、几乎不会受到电气、天电、人为干扰,抗干扰性强。此外,红外线通讯机体积小,重量轻,结构简单,价格低廉。但是它必须在直视距离内通讯,且传播受天气的影响。在不能架设有线线路,而使用无线电又怕暴露自己的情况下,使用红外线通讯是比较好的。

1.无线传输介质的优点,有哪些无线传输介质?

优点是省去了布线的麻烦,传输分WIFI,微波,3G,非视距

常见的瞎蔽传输介质是如何分类的?有哪几种?无线传输介质是否没有传输介质?

1、视讯基带传输:是最为传统的电视监控传输方式,对0~6MHz视讯基带讯号不作任何处理,通过同轴电缆(非平衡)直接传输模拟讯号。其优点是:短距离传输影象讯号损失小,造价低廉,系统稳定。缺点:传输距离短,300米以上高频分量衰减较大,无法保证影象质量;一路视讯讯号需布一根电缆,传输控制讯号需另布电缆;其结构为星形结构,布线量大、维护困难、可扩充套件性差,适合小系统。
2、光纤传输:常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的最佳解决方式,通过把视讯及控制讯号转换为镭射讯号行神槐在光纤中传输。其优点是:传输距离远、衰减小,抗干扰性能最好,适合远距离传输。其缺点是:对于几公里内监控讯号传输不够经济;光熔接及维护需专业技术人员及装置操作处理,维护技术要求高,不易升级扩容。
3、网路传输:是解决城域间远距离、点位极其分散的监控传输方式,采用MPEG2/4、H.264音视讯压缩格式传输监控讯号。其优点是:采用网路视讯服务器作为监控讯号上传装置,有Inter网路安装上远端监控软体就可监看和控制。其缺点是:受网路频宽和速度的限制,只能传输小画面、低画质的影象;每秒只能传输几到十几帧影象,动画效果十分明显并有延时,无法做到实时监控。
4、微波传输:是解决几公里甚至几十公里不易布线场所监控传输的解决方式之一。采用调频调制或调幅调制的办法,将影象搭载到高频载波上,转换为高频电磁波在空中传输。其优点是:省去布线及线缆维护费用,可动态实时传输广播级影象。其缺点是:由于采用微波传输,频段在1GHz以上,常用的有L波段(1.0~2.0GHz)、S波段(2.0~3.0GHz)、Ku波段(10~12GHz),传输环境是开放的空间很容易受外界电磁干扰;微波讯号为直线传输,中间不能有山体、建筑物遮挡;Ku波段受天气影响较为严重,尤其是雨雪天气会有严重雨衰想象。
5、双绞线传输(平衡传输):也是视讯基带传输的一种,将75Ω的非平衡模式转换为平衡模式来传输的。是解决监控影象1Km内传输,电磁环境复杂场合的解决方式之一,将监控影象讯号处理通过平衡对称方式传输。其优点是:布线简易、成本低廉、抗共模干忧效能强。其缺点是:只能解决1Km以内监控影象传输,而且一根双绞线只能传输一路影象,不适合应用在大中型监控中;双绞线质地脆弱抗老化能力差,不适于野外传输;双绞线传输高频分量衰减较大,影象颜色会受到很大损失。
6、宽频共缆传输:视讯采用调幅调制、伴音调频搭载、FSK资料讯号调制等技术,将数十路监控影象、伴音、控制及报警讯号整合到“一根”同轴电缆中双向传输。其优点是:充分利用了同轴电缆的资源空间,四十路音视讯及控制讯号在同一根电缆中双向传输、实现 “一线通”;施工简单、维护方便,大量节省材料成本及施工费用;频分复用技术解决远距传输点位分散,布线困难监控传输问题;射频传输方式只衰减载波讯号,影象讯号衰减很小,亮度、色度传输同步巢状,保证影象质量达到4.5级以上国家标准;采用75Ω同轴非平衡方式传输使其具有非常强抗干扰能力,电磁环境复杂场合仍能保证影象质量。其缺点是:采用弱讯号传输,系统除错技术要求高,必须使用专业仪器。宽频调制端需外加AC220V交流电源,但目前大多监控点都具备这个条件
无线也是有传输介质的,2g,3g,微波,WIFI,WIMAX,非视距等

无线介质有哪几种

无线传输介质是指在两个通讯装置之间不使用任何物理连线,而是通过空间传输的一种技术。无线传输介质主要有微波、红外线和镭射等
光纤 用于500米以上的装置间传输
同轴电缆 用于网内摄像机或投影机的传输
超五类、 六类 用于网内近距离的装置传输联通用的线。
希望可以帮助到你

手机用的无线传输介质是什么,笔记本用的无线传输介质是什么

大家都是用WIFI,其实都一样。没什么不同,只可能电脑的传输比手机的快一点点吧。

常用的传输介质有哪几种?

1.双绞线
1.1非遮蔽双绞线(UTP)和遮蔽双绞线(STP)
双绞线是综合布线工程中最常用的一种传输介质。双绞线最外层由绝缘材料包裹,为了降低讯号干扰,内部每两根绝缘铜导线相互缠绕,名符其实。双绞线又可分为非遮蔽双绞线(UTP)和遮蔽双绞线(STP)两大类。
非遮蔽双绞线只有线缆外皮作为遮蔽层,而遮蔽式双绞线则具有一个金属甲套(sheath),对电磁干扰EMI(Electromagic Interference)具有较强的抵抗能力。目前广泛使用的是非遮蔽双绞线,因为价格便宜,容易安装,价效比较高。细心的读者可能会发现图中的五类遮蔽双绞线多了根导线,这是一条金属铜导线,是接地用的,可以加强双绞线的资料传输和抗干扰能力。
1.2非遮蔽双绞线的标准
双绞线既可用于传输模拟讯号,又可用于传输数字讯号。美国的电气工业协会/电信工业协会(EIA/TIA)制定标准来评估非遮蔽双绞线,分为多个等级,每个等级的传输速率和应用环境不同,标准如下:
第一类线:主要用于传输语音(一类标准主要用于八十年代初之前的电话线缆),不用于资料传输。其资料传输速率可达4Mbps。
第二类线:传输频率为1MHz,用于语音传输和最高传输速率4Mbps的资料传输,常见于使用4Mbps规范令牌传递协议的旧的令牌网。
第三类线:指目前在ANSI和EIA/TIA568标准中指定的电缆。该电缆的传输频率为16MHz,用于语音传输及最高传输速率为10Mbps的资料传输,主要用于10base-T。
第四类线:该类电缆的传输频率为20MHz,用于语音传输和最高传输速率16Mbps的资料传输,主要用于基于令牌的区域网和10base-T/100base-T。
第五类线:该类电缆增加了绕线密度,外套一种高质量的绝缘材料,传输频率为100MHz,用于语音传输和最高传输速率为100Mbps的资料传输,主要用于100base-T和10base-T网路,这就是我们最常用的双绞线。
超五类线:超5类具有衰减小,串扰少,并且具有更高的衰减与串扰的比值(ACR)和信噪比(Structural Return Loss)、更小的时延误差,效能得到很大提高。超5类线主要用于千兆位乙太网(1000Mbps)。
六类线:该类电缆的传输频率为1MHz~250MHz,六类布线系统在200MHz时综合衰减串扰比(PS-ACR)应该有较大的余量,它提供2倍于超五类的频宽,最大速度可达到1 000 Mbps,能满足千兆位乙太网需求。
另外,由欧州提出的标准七类线,为ISO7类/F级标准中最新的一种双绞线,它主要为了适应万兆位乙太网技术的应用和发展。但它不再是一种非遮蔽双绞线了,而是一种遮蔽双绞线,所以它的传输频率至少可达500 MHz,是六类线和超六类线的2倍以上,传输速率可达10 Gbps。
2同轴电缆(Coaxial Cable)
2.1同轴电缆结构
同轴电缆以单根铜导线为内芯(电缆铜芯),外裹一层绝缘材料(绝缘层),外覆密集网状导体(铜网),最外面是一层保护性塑料(外绝缘层)。金属遮蔽层能将磁场反射回中心导体,同时也使中心导体免受外界干扰,故同轴电缆比双绞线具有更高的频宽和更好的噪声抑制特性。
2.2基带同轴电缆
广泛使用的同轴电缆有两种:一种为50Ω(指沿电缆导体各点的电磁电压对电流之比) 同轴电缆,用于数字讯号的传输,即基带同轴电缆;另一种为75Ω同轴电缆,用于宽频模拟讯号的传输,即宽带同轴电缆。而基带同轴电缆的主要型别有粗缆(RG-8)和细缆(RG-58)。
2.3同轴电缆应用
现在计算机区域网中一般都使用细缆组网。细缆一般用于汇流排型网路布线连线。利用T型BNC接口联结器连线BNC接口网络卡,同轴电缆的两端需安装50Ω终端电阻器。细缆网路每段干线长度最大为185米,每段干线最多可接入30个使用者。如要拓宽网路范围,则需要使用中继器,如采用4个中继器连线5个网段,使网路最大距离达到925米。细缆安装较容易,而且造价较低,但因受网路布线结构的限制,其日常维护不是很方便,一旦一个使用者出故障,便会影响其他使用者的正常工作
粗缆适用于较大区域网的网路干线,布线距离较长,可靠性较好。使用者通常采用外部收发器与网路干线连线。粗缆区域网中每段长度可达500米,采用4个中继器连线5个网段后最大可达2500米。用粗缆组网如果直接与网络卡相连,网络卡必须带有AUI接口(15针D型接口)。用粗缆组建的区域网虽然各项效能较高,具有较大的传输距离,但是网路安装、维护等方面比较困难,且造价较高。
目前,同轴电缆大量被光纤取代,但仍广泛应用于有线电视和某些区域网。
3光纤(Fiber)
3.1光缆结构
光纤一般都是使用石英玻璃制成,横截面积非常小,利用内部全反射原理来传导光束。光纤在使用前必须由几层保护结构包覆,包覆后的缆线即被称为“光缆”。光缆(optical fiber cable)由光导纤维纤芯(光纤核心)、玻璃网层(内部敷层)和坚强的外壳组成(外部保护层)。
3.2光纤分类
目前有两种光纤:单模光纤和多模光纤(模即Mode,这里指入射角)。单模光纤的纤芯直径很小,约为8~10μm,在给定的工作波长上只能以单一模式传输,传输频频宽,传输容量大,距离远,一般由镭射作光源,多用于远端通讯。多模光纤是在给定的工作波长上,能以多个模式同时传输的光纤,一般由二极体发光,多用于网路布线系统。与单模光纤相比,多模光纤的传输效能较差。
3.3光纤传输
光纤的资料传输:由光传送机产生光束,将电讯号转变为光讯号,再把光讯号汇入光纤,在光纤的另一端由光接收机接收光纤上传输来的光讯号,并将它转变成电讯号,经解码后再处理。光纤的传输距离远、传输速度快,是区域网中传输介质的姣姣者。不过光纤的安装和连线需由专业技术人员完成。
光纤中传输的是光束,由于光束不受外界电磁干扰与影响,而且本身也不向外辐射讯号,加上提供极宽的频带且功率损耗小,所以光纤具有传输距离长(多模光纤有2公里以上,单模光纤则有上百公里,如我们熟知的海底通讯光缆)、传输率高(可达数千Mbps)、保密性强(不会受到电子监听)等优点,适用于高速区域网,远距离的资讯传输以及主干网连线。
虽然目前光纤费用昂贵,但是光纤到户(FTTH:Fiber To The Home)作为宽频接入的最终发展方向已是不可逆转,据报导,2007第一季度日本宽频使用者数达2644万户,其中光纤宽频使用者880万户,市场占有率挺进33%。香港特区 *** 有关部门2007年月11月公布的资料显示,香港光纤到户及光纤到楼加区域网的普及率已达到21.2%,超越韩国和日本,成为全球之冠。笔者跟大家一样,期待着有一天可以用上光纤。

无线传输介质有哪几种,每种传输方式主要用途是什么

我来回答你!

所谓传输介质就是通讯网路中资料传输的物质基础,传输介质的特性对网路资料通讯有决定性的影响。传输介质包括有线传输介质和无线传输介质。
常用的有线传输介质有双绞线、同轴电缆、光缆等
常用的无线传输介质有微波、红外线、无线电波。
微波
微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
特点是:
只能进行可视范围内的通讯;
大气对微波讯号的吸收与散射影响较大;
微波通讯主要用于几公里范围内,不适合铺设有线传输介质的情况,而且只能用于点到点的通讯,速率也不高,一般为几百Kbps。
红外线
红外线是太阳光线中众多不可见光线中的一种,由德国科学家霍胥尔于1800年发现,又称为红外热辐射,他将太阳光用三棱镜分解开,在各种不同颜色的色带位置上放置了温度计,试图测量各种颜色的光的加热效应。结果发现,位于红光外侧的那支温度计升温最快。因此得到结论:太阳光谱中,红光的外侧必定存在看不见的光线,这就是红外线。也可以当作传输之媒界。 太阳光谱上红外线的波长大于可见光线,波长为0.75~1000μm。红外线可分为三部分,即近红外线,波长为0.75~1.50μm之间;中红外线,波长为1.50~6.0μm之间;远红外线,波长为6.0~l000μm 之间
红外线通讯有两个最突出的优点:
1、不易被人发现和截获,保密性强;
2、几乎不会受到电气、天电、人为干扰,抗干扰性强。此外,红外线通讯机体积小,重量轻,结构简单,价格低廉。但是它必须在直视距离内通讯,且传播受天气的影响。在不能架设有线线路,而使用无线电又怕暴露自己的情况下,使用红外线通讯是比较好的。
无线电波
无线电波是指在自由空间(包括空气和真空)传播的射频频段的电磁波。无线电技术是通过无线电波传播声音或其他讯号的技术。
无线电技术的原理在于,导体中电流强弱的改变会产生无线电波。利用这一现象,通过调制可将资讯加载于无线电波之上。当电波通过空间传播到达收信端,电波引起的电磁场变化又会在导体中产生电流。 通过解调将资讯从电流变化中提取出来,就达到了资讯传递的目的。