Ⅰ 无线传感器网络技术的应用有哪些
无线传感器网络所具有的众多类型的传感器,可探测包括地震、电磁、温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等周边环境中多种多样的现象。基于MEMS的微传感技术和无线联网技术为无线传感器网络赋予了广阔的应用前景。
Ⅱ 物联网无线传感器网络的应用领域有哪些
主要特点
大规模
为了获取精确信息,在监测区域通常部署大量传感器节点,可能达到成千上万,甚至更多。传感器网络的大规模性包括两方面的含义:一方面是传感器节点分布在很大的地理区域内,如在原始大森林采用传感器网络进行森林防火和环境监测,需要部署大量的传感器节点;另一方面,传感器节点部署很密集,在面积较小的空间内,密集部署了大量的传感器节点。
传感器网络的大规模性具有如下优点:通过不同空间视角获得的信息具有更大的信噪比;通过分布式处理大量的采集信息能够提高监测的精确度,降低对单个节点传感器的精度要求;大量冗余节点的存在,使得系统具有很强的容错性能;大量节点能够增大覆盖的监测区域,减少洞穴或者盲区。
自组织
在传感器网络应用中,通常情况下传感器节点被放置在没有基础结构的地方,传感器节点的位置不能预先精确设定,节点之间的相互邻居关系预先也不知道,如通过飞机播撒大量传感器节点到面积广阔的原始森林中,或随意放置到人不可到达或危险的区域。这样就要求传感器节点具有自组织的能力,能够自动进行配置和管理,通过拓扑控制机制和网络协议自动形成转发监测数据的多跳无线网络系统。
在传感器网络使用过程中,部分传感器节点由于能量耗尽或环境因素造成失效,也有一些节点为了弥补失效节点、增加监测精度而补充到网络中,这样在传感器网络中的节点个数就动态地增加或减少,从而使网络的拓扑结构随之动态地变化。传感器网络的自组织性要能够适应这种网络拓扑结构的动态变化。
动态性
传感器网络的拓扑结构可能因为下列因素而改变:①环境因素或电能耗尽造成的传感器节点故障或失效;②环境条件变化可能造成无线通信链路带宽变化,甚至时断时通;③传感器网络的传感器、感知对象和观察者这三要素都可能具有移动性;④新节点的加入。这就要求传感器网络系统要能够适应这种变化,具有动态的系统可重构性。
可靠性
WSN特别适合部署在恶劣环境或人类不宜到达的区域,节点可能工作在露天环境中,遭受日晒、风吹、雨淋,甚至遭到人或动物的破坏。传感器节点往往采用随机部署,如通过飞机撒播或发射炮弹到指定区域进行部署。这些都要求传感器节点非常坚固,不易损坏,适应各种恶劣环境条件。
Ⅲ 无线传感器网络技术与应用的目录
第1章无线传感器网络概述
1.1传感器网络的研究历史
1.1.1早期的军用传感器网络研究
1.1.2美军DARPA的分布式传感器网络研究计划
1.1.320世纪80年代和90年代的军用传感器网络
1.1.421世纪的传感器网络研究
1.2WSN基本概念
1.2.1什么是WSN
1.2.2WSN与MANET的异同
1.2.3WSN的通信体系结构
1.3WSN的主要技术
1.3.1系统体系结构
1.3.2网络与通信的控制
1.4影响WSN设计的因素
1.4.1容错
1.4.2扩展性
1.4.3价格
1.4.4硬件限制
1.4.5WSN拓扑
1.4.6WSN工作环境
1.4.7传输媒介
1.4.8功耗
参考文献
第2章无线传感器网络竞争类MAC协议
2.1传感器媒介访问控制协议(S-MAC)
2.1.1能量浪费原因分析
2.1.2S-MAC协议概述
2.1.3休眠的协调
2.1.4避免旁听与消息分片传输
2.1.5时延分析
2.1.6S-MAC协议实现
2.1.7S-MAC协议的性能
2.2超时MAC协议(T-MAC)
2.2.1T-MAC协议概述
2.2.2T-MAC基本协议
2.2.3分群与同步
2.2.4RTS操作与TA选择
2.2.5避免旁听
2.2.6不对称通信
2.2.7T-MAC的性能
2.3伯克利媒介访问控制协议(B-MAC)
2.3.1B-MAC协议的设计与实现
2.3.2寿命建模
2.3.3参数
2.3.4自适应控制
参考文献
第3章无线传感器网络分配类MAC协议
3.1流量自适应媒介访问协议(TRAMA)
3.1.1TRAMA协议概述
3.1.2TRAMA协议组成
3.1.3访问方式与相邻节点协议
3.1.4传输时间安排交换协议
3.1.5自适应选举算法
3.1.6TRAMA的性能
3.2分布式随机时隙安排协议(DRAND)
3.2.1TDMA时隙分配问题定义
3.2.2DRAND算法详述
3.2.3DRAND正确性
3.2.4DRAND复杂性分析
3.2.5DRAND的性能
3.3功率高效与时延意识媒介访问协议(PEDAMACS)
3.3.1PEDAMACS协议概述
3.3.2PEDAMACS分组格式
3.3.3本地拓扑建立阶段
3.3.4AP拓扑信息收集阶段
3.3.5传输时间安排阶段
3.3.6拓扑调整阶段
3.3.7传输时间安排算法
参考文献
第4章无线传感器网络混合类MAC协议
4.1斑马MAC协议(Z-MAC)
4.1.1时间同步协议(TPSN)
4.1.2Z-MAC协议概述
4.1.3相邻节点寻找与时隙分配
4.1.4本地成帧
4.1.5Z-MAC协议的传输控制
4.1.6发送规则
4.1.7直接竞争通知
4.1.8Z-MAC传输时间安排的接收
4.1.9本地时间同步
4.1.10Z-MAC协议的性能
4.1.11Z-MAC协议随机分析
4.2漏斗-MAC协议
4.2.1漏斗问题
4.2.2按需发送信标
4.2.3面向中心节点的传输时间安排
4.2.4定时与成帧
4.2.5Meta-传输时间安排的广播
4.2.6动态深度调整
4.2.7漏斗-MAC协议的测试床实验评估
参考文献
第5章无线传感器网络数据中心路由协议
5.1协商式传感器信息分发协议(SPIN)
5.1.1SPIN概述
5.1.2Meta-Data
5.1.3SPIN消息
5.1.4SPIN资源管理
5.1.5SPIN实现
5.1.6SPIN-1:3步握手协议
5.1.7SPIN-2:低能量门限的SPIN-1
5.1.8用于与SPIN比较的其他数据分发算法
5.1.9SPIN的性能评估
5.1.10SPIN小结
5.2定向扩散
5.2.1定向扩散的组成要素
5.2.2命名
5.2.3兴趣与梯度
5.2.4数据传播
5.2.5路径建立与路径裁剪的强化
5.2.6定向扩散的分析评估
5.2.7定向扩散的仿真评估
参考文献
第6章无线传感器网络分层路由协议
6.1低能量自适应分群分层(LEACH)
6.1.1LEACH协议体系结构
6.1.2群首选择算法
6.1.3分群算法
6.1.4稳定状态阶段
6.1.5LEACH-C:BS建立分群
6.1.6LEACH的分析与仿真
6.2两层数据分发协议(TTDD)
6.2.1两层数据分发
6.2.2栅格结构
6.2.3TTDD转发
6.2.4栅格维护
6.2.5TTDD开销分析
6.2.6TTDD的性能
6.2.7TTDD讨论
参考文献
第7章无线传感器网络地理位置路由协议
7.1定位技术
7.1.1距离测量与角度测量
7.1.2位置计算
7.1.3TPS网络模型
7.1.4TPS定位方案
7.1.5TPS技术性能分析
7.2贪婪地理路由算法
7.2.1概述
7.2.2基于DT的膨胀分析
7.2.3贪婪转发(GF)
7.2.4有界Voronoi贪婪转发(BVGF)
7.2.5网络膨胀分析总结
7.2.6基于概率通信模型的扩充
7.3位置辅助泛洪协议(LAF)
7.3.1LAF协议概述
7.3.2采用LAF分发信息
7.3.3LAF中的资源管理
7.3.4栅格维护开销
7.3.5数据分发规程的完备性
7.3.6LAF节能分析
7.3.7位置估计中的误差
7.3.8LAF的性能
参考文献
第8章无线传感器网络端到端可靠传输协议
8.1事件到中心节点的可靠传输协议(ESRT)
8.1.1问题定义
8.1.2评估环境
8.1.3特性区域
8.1.4ESRT协议描述
8.1.5拥塞检测
8.1.6ESRT协议对并发事件的处理
8.1.7ESRT协议的性能分析
8.1.8ESRT协议的仿真结果
8.1.9?的正确选择
8.2基于多电台虚拟中心节点的过载流量管理(SIPHON)
8.2.1拥塞检测与预防(CODA)
8.2.2虚拟中心节点寻找与可见度范围控制
8.2.3SIPHON拥塞检测
8.2.4改变流量的传输路径
8.2.5次网络中的拥塞
8.2.6虚拟中心节点开销分析
参考文献
第9章无线传感器网络逐跳可靠传输协议
9.1合成拥塞控制技术(FUSION)
9.1.1拥塞崩溃的症状
9.1.2逐跳流量控制
9.1.3速率限制
9.1.4MAC层优先级化
9.1.5应用自适应
9.2慢分发、快提取可靠传输协议(PSFQ)
9.2.1PSFQ协议概述
9.2.2PSFQ分发操作
9.2.3PSFQ提取操作
9.2.4PSFQ报告操作
9.2.5单个分组消息的交付
9.2.6PSFQ的性能
9.3下行数据可靠交付可扩展体系结构(GARUDA)
9.3.1面临的挑战
9.3.2可靠性语义
9.3.3GARUDA的基本原理
9.3.4单个分组或第一个分组的交付
9.3.5即时构建GARUDA核
9.3.6两阶段丢失恢复
9.3.7其他可靠性语义的支持
9.3.8GARUDA的性能
参考文献
第10章无线传感器网络数据融合技术
10.1树状结构累积
10.1.1分布式生成树算法
10.1.2E-Span树
10.2不受应用约束的自适应数据累积(AIDA)
10.2.1AIDA协议概述
10.2.2AIDA体系结构
10.2.3AIDA控制单元中的累积方案
10.2.4AIDA累积功能单元
10.2.5AIDA分组格式
10.2.6AIDA分组头开销分析
10.2.7AIDA节省分析
10.2.8AIDA的性能
10.3无结构累积法与半结构累积法
10.3.1数据意识任意组播(DAA)
10.3.2ToD上的动态转发
10.3.3性能分析
10.3.4ToD和DAA的性能
参考文献
第11章无线传感器网络安全
11.1WSN安全概述
11.1.1WSN安全威胁模型
11.1.2WSN安全面临的障碍
11.1.3WSN安全要求
11.1.4WSN安全解决方案的评估
11.2WSN中的安全攻击
11.2.1物理层安全攻击
11.2.2链路层安全攻击
11.2.3对WSN网络层(路由)的攻击
11.2.4对传输层的攻击
11.3SPINS安全解决方案
11.3.1符号
11.3.2SNEP
11.3.3μTESLA
11.3.4μTESLA详细描述
11.3.5SPINS实现
11.3.6SPINS性能评估
11.4LEAP+安全解决方案
11.4.1假设条件
11.4.2LEAP+概述
11.4.3单独密钥的建立
11.4.4成对密钥的建立
11.4.5分群密钥的建立
11.4.6全网密钥的建立
11.4.7本地广播认证
11.4.8LEAP+安全分析
11.4.9LEAP+性能评估
参考文献
第12章无线传感器网络中间件技术
12.1WSN中间件面临的挑战
12.2WSN中间件的功能要求
12.3ZebraNet系统中的中间件系统(Impala)
12.3.1ZebraNet系统简介
12.3.2ZebraNet中间件体系结构
12.3.3应用适配器
12.3.4应用更新器
12.3.5周期性操作调度
12.3.6事件处理模型
12.3.7Impala网络接口
12.3.8Impala评估
12.4传感器信息网络化体系结构(SINA)
12.4.1SINA的功能组成
12.4.2信息抽象
12.4.3传感器查询与任务分配语言(SQTL)
12.4.4传感器执行环境(SEE)
12.4.5信息收集方法
12.4.6应用举例
参考文献
第13章无线传感器网络应用及编程
13.1传感器网络的应用
13.1.1军事应用
13.1.2环境应用
13.1.3医疗卫生应用
13.1.4家庭应用
13.1.5其他商业应用
13.2WSN应用设计原理
13.2.1设计方面
13.2.2确定WSN操作坊式
13.3WSN网络编程
13.3.1编程抽象
13.3.2现有若干编程模型简介
13.4分层编程与ATaG编程架构
13.4.1WSN的分层编程
13.4.2抽象任务图编程架构(ATaG)
13.4.3采用ATaG的应用开发方法
13.4.4一个ATaG应用例子
参考文献
……
Ⅳ 无线传感器定义及其应用实例解析
无线传感器,看到这个代名词,我想大多数人是一头雾水,一脸表现出很茫然的样子。这也并不奇怪,无线传感器,目前还只运用于一些大型检测工作中,自然而然,能够接触到它的也就只是一些专业的工作人员了。比如它可以监测地震,然后将监测到的信息通过无线网络传输到检测中心的无线网卡,直接送入到计算机里边儿。既然我们对它有这么多的疑惑,那接下来我就将向大家介绍介绍什么是无线传感器定义以及它的一些应用实例。
无线传感器的组成模块封装在一个外壳内,在工作时它将由电池或振动发电机提供电源,构成无线传感器网络节点,由随机分布的集成有传感器、数据处理单元和通信模块的微型节点,通过自组织的方式构成网络。它可以采集设备的数字信号通过无线传感器网络传输到监控中心的无线网关,直接送入计算机,进行分析处理。如果需要,无线传感器也可以实时传输采集的整个时间历程信号。监控中心也可以通过网关把控制、参数设置等信息无线传输给节点。数据调理采集处理模块把传感器输出的微弱信号经过放大,滤波等调理电路后,送到模数转换器,转变为数字信号,送到主处理器进行数字信号处理,计算出传感器的有效值,位移值等。
桥梁健康检测及监测
桥梁结构健康监测(SHM)是一种基于传感器的主动防御型方法,可以弥补目前安全性能十分重要的结构中,把传感器网络安置到桥梁、建筑和飞机中,利用传感器进行SHM是一种可靠且不昂贵的做法,可以在第一时间检测到缺陷的形成。这种网络可以提早向维修人员报告在关键结构中出现的缺陷,从而避免灾难性事故。
粮仓温湿度监测
无线传感器网络技术在粮库粮仓温度湿度监测领域应用最为普遍,这是由于粮库粮仓温度湿度的测点多,分布广,使用纵横交错的信号线会降低防火安全系数,应用无线传感器网络技术具有低功耗,低成本,布线简单,安装方便,易于组网,便于管理维护等特点。
混凝土浇灌温度监测
在混凝土施工过程中,将数字温度传感器装入导热良好的金属套管内,可保证传感器对混凝土温度变化作出迅速的反应。每个温度监测金属管接入一个无线温度节点,整个现场的无线温度节点通过无线网络传输到施工监控中心,不需要在施工现场布放长电缆,安装布放方便,能够有效解决温度测量点因为施工人员损坏电缆造成的成活率较低的问题.
地震监测
通过使用由大量互连的微型传感器节点组成的传感器网络,可以对不同环境进行不间断的高精度数据搜集。采用低功耗的无线通信模块和无线通信协议可以使传感器网络的生命期延续很长时间。保证了传感器网络的实用性。
无线传感器网络相对于传统的网络,其最明显的特色可以用六个字来概括即:“自组织,自愈合”。这些特点使得无线传感器网络能够适应复杂多变的环境,去监测人力难以到达的恶劣环境地区。BEETECH无线传感器网络节点体积小巧,不需现场拉线供电,非常方便在应急情况下进行灵活部署监测并预测地质灾害的发生情况。
建筑物振动检测
建筑物悬臂部分不会因为旁边公路及地铁交通所引发的振动而超过舒适度的要求;通过现场测量,收集数据以验证由公路及地铁交通所引发的振动与主楼悬臂振动之相互关系;同时,通过模态分析得到主楼结构在小振幅脉动振动工况下前几阶振动模态的阻尼比,为将来进行结构的小振幅动力分析提供关键数据。
以上这些看起来很“翻番复杂”的文字呢,就是对无线传感器定义以及它的一些应用实例的解析了,这些也都是我所能了解到的知识信息了,对于无线传感器还有很多与其相关的知识信息,但是在这里我也只能给大家提供这么多了。虽然在我们的日常生活中并不会亲身接触到无线传感器,但是它却一直在我们的身边,给予我们帮助,为我们“保驾护航”。
Ⅳ 无线传感器网络的理论及应用的目录
第1篇总论
第1章无线传感器网络概述
1.1无线传感器网络介绍1
1.1.1无线传感器网络的概念1
1.1.2无线传感器网络的特征2
1.1.3无线传感器网络的应用4
1.2无线传感器网络的体系结构7
1.2.1无线传感器网络的系统架构7
1.2.2传感器节点的结构7
1.2.3无线传感器网络的体系结构概述8
1.3无线传感器网络的研究进展10
1.3.1无线传感器网络的发展历程10
1.3.2无线传感器网络的关键技术14
1.3.3无线传感器网络所面临的挑战14
参考文献16
第2篇无线传感器网络的通信协议
第2章无线传感器网络的物理层
2.1无线传感器网络物理层概述19
2.1.1无线传感器网络物理层的研究内容19
2.1.2无线传感器网络物理层的研究现状20
2.1.3无线传感器网络物理层的主要技术挑战22
2.2无线传感器网络的调制与编码方法22
2.2.1Mary调制机制22
2.2.2差分脉冲位置调制机制23
2.2.3自适应编码位置调制机制24
2.3超宽带技术在无线传感器网络中的应用25
2.3.1超宽带技术概述25
2.3.2超宽带技术的基本原理26
2.3.3超宽带技术的研究现状29
2.3.4基于超宽带技术的无线传感器网络31
参考文献35
第3章无线传感器网络的数据链路层
3.1无线传感器网络数据链路层概述37
3.1.1无线传感器网络数据链路层的研究内容37
3.1.2无线传感器网络数据链路层的研究现状38
3.1.3无线传感器网络数据链路层的主要技术挑战39
3.2无线传感器网络的MAC协议40
3.2.1基于竞争机制的MAC协议40
3.2.2基于时分复用的MAC协议47
3.2.3其他类型的MAC协议54
参考文献58
第4章IEEE802.15.4标准
4.1IEEE802.15.4标准概述60
4.2IEEE802.15.4的物理层60
4.2.1物理层概述60
4.2.2物理层服务规范61
4.2.3物理层帧结构65
4.3IEEE802.15.4的MAC子层65
4.3.1MAC层概述65
4.3.2MAC层的服务规范66
4.3.3MAC帧结构69
4.3.4MAC层的功能描述70
4.4基于IEEE802.15.4标准的无线传感器网络70
4.4.1组网类型70
4.4.2数据传输机制71
参考文献72
第5章无线传感器网络的网络层
5.1无线传感器网络网络层概述73
5.1.1网络层的研究内容73
5.1.2网络层的研究现状74
5.1.3网络层的主要技术挑战75
5.2无线传感器网络的路由协议75
5.2.1以数据为中心的平面路由75
5.2.2网络分层路由77
5.2.3基于查询的路由79
5.2.4地理位置路由81
5.2.5能量感知路由84
5.2.6基于QoS的路由87
5.2.7路由协议的优化88
5.3无线传感器网络中的数据包转发策略90
5.3.1包转发策略的研究背景90
5.3.2基于价格机制的包转发博弈模型91
5.3.3自发合作的包转发博弈模型93
参考文献94
第6章无线传感器网络的传输层
6.1无线传感器网络传输层概述97
6.1.1无线传感器网络传输层的研究内容97
6.1.2无线传感器网络传输层的研究现状98
6.1.3无线传感器网络传输层的主要技术挑战99
6.2无线传感器网络的传输协议99
6.2.1PSFQ传输协议99
6.2.2ESRT传输协议101
6.3无线传感器网络与其他网络的互联103
6.3.1无线传感器网络与Internet互联103
6.3.2无线传感器网络接入到网格105
参考文献109
第7章ZigBee协议规范
7.1ZigBee概述111
7.1.1ZigBee与IEEE802.15.4111
7.1.2ZigBee协议框架112
7.1.3ZigBee的技术特点113
7.2网络层规范113
7.2.1网络层概述113
7.2.2服务规范114
7.2.3帧结构与命令帧115
7.2.4功能描述116
7.3应用层规范117
7.3.1应用层概述117
7.3.2ZigBee应用支持子层117
7.3.3ZigBee应用层框架结构118
7.3.4ZigBee设备协定(profile)119
7.3.5ZigBee目标设备(ZDO)119
7.4ZigBee系统的开发119
7.4.1开发条件和注意事项119
7.4.2软件开发120
7.4.3硬件开发121
7.5基于ZigBee规范的无线传感器网络122
7.5.1无线传感器的构建122
7.5.2无线传感器网络的构建123
7.5.3基于ZigBee的无线传感器网络与RFID技术的融合124
参考文献124
第3篇无线传感器网络的核心支撑技术
第8章无线传感器网络的拓扑控制
8.1无线传感器网络的拓扑控制技术概述125
8.1.1无线传感器网络拓扑控制的研究内容125
8.1.2无线传感器网络拓扑控制的研究现状126
8.1.3无线传感器网络拓扑控制的主要技术挑战126
8.2无线传感器网络的拓扑控制算法127
8.2.1功率控制算法127
8.2.2层次拓扑结构控制算法129
8.3无线传感器网络的密度控制135
8.3.1连通支配集构造算法135
8.3.2基于概率覆盖模型的无线传感器网络密度控制算法138
参考文献140
第9章无线传感器网络的节点定位
9.1无线传感器网络的节点定位技术概述142
9.1.1无线传感器网络节点定位的研究内容142
9.1.2无线传感器网络节点定位的研究现状143
9.1.3无线传感器网络节点定位的主要技术挑战146
9.2无线传感器网络的定位机制147
9.2.1基于测距的定位算法147
9.2.2非基于测距的定位算法151
9.3一种基于测距的协作定位策略159
9.3.1刚性图理论简介159
9.3.2基于刚性图的协作定位理论160
9.3.3LCB定位算法161
9.4节点位置估计更新策略162
9.4.1动态网络问题162
9.4.2更新策略163
参考文献164
第10章无线传感器网络的时间同步
10.1无线传感器网络的时间同步概述167
10.1.1无线传感器网络时间同步的研究内容167
10.1.2无线传感器网络时间同步的研究现状168
10.1.3无线传感器网络时间同步的主要技术挑战169
10.2无线传感器网络的时间同步机制170
参考文献180
第11章无线传感器网络的网内信息处理
11.1无线传感器网络的网内信息处理概述182
11.1.1无线传感器网络网内信息处理的研究内容182
11.1.2无线传感器网络网内信息处理的研究现状183
11.1.3无线传感器网络网内信息处理的主要技术挑战184
11.2无线传感器网络的数据融合技术184
11.2.1与路由相结合的数据融合184
11.2.2基于反向组播树的数据融合186
11.2.3基于性能的数据融合187
11.2.4基于移动代理的数据融合189
11.3无线传感器网络的数据压缩技术191
11.3.1基于排序编码的数据压缩算法191
11.3.2分布式数据压缩算法192
11.3.3基于数据相关性的压缩算法194
11.3.4管道数据压缩算法194
11.4无线传感器网络的协作信号信息处理技术195
11.4.1网元层的CSIP技术195
11.4.2网络层的CSIP技术196
11.4.3应用层的CSIP技术196
11.4.4CSIP技术展望197
参考文献198
第12章无线传感器网络的安全技术
12.1无线传感器网络的安全问题概述201
12.1.1无线传感器网络安全技术的研究内容201
12.1.2无线传感器网络安全技术的研究现状202
12.1.3无线传感器网络安全技术的主要技术挑战205
12.2无线传感器网络的安全问题分析205
12.2.1无线传感器网络物理层的安全策略206
12.2.2无线传感器网络链路层的安全策略207
12.2.3无线传感器网络网络层的安全策略207
12.2.4无线传感器网络传输层和应用层的安全策略209
12.3无线传感器网络的密钥管理和入侵检测技术209
12.3.1无线传感器网络的密钥管理209
12.3.2无线传感器网络的入侵检测技术211
参考文献214
第4篇无线传感器网络的自组织管理技术
第13章无线传感器网络的节点管理
13.1无线传感器网络的节点管理概述216
13.1.1无线传感器网络节点管理的研究内容216
13.1.2无线传感器网络节点管理的研究现状217
13.1.3无线传感器网络节点管理的主要技术挑战218
13.2无线传感器网络的节点休眠/唤醒机制218
13.2.1PEAS算法218
13.2.2基于网格的调度算法219
13.2.3基于局部圆周覆盖的节点休眠机制220
13.2.4基于随机休眠调度的节能机制221
13.3无线传感器网络的节点功率管理222
13.3.1动态功率管理和动态电压调节222
13.3.2基于节点度的算法224
13.3.3基于邻近图的算法224
13.3.4基于二分法的功率控制224
13.3.5网络负载自适应功率管理算法226
参考文献227
第14章无线传感器网络的资源与任务管理
14.1无线传感器网络的资源与任务管理概述229
14.1.1无线传感器网络资源与任务管理的研究内容229
14.1.2无线传感器网络资源与任务管理的研究现状230
14.1.3无线传感器网络资源与任务管理的主要技术挑战230
14.2无线传感器网络的资源管理技术231
14.2.1自组织资源分配方式231
14.2.2计算资源分配232
14.2.3带宽资源分配235
14.3无线传感器网络的任务管理技术237
14.3.1任务分配237
14.3.2任务调度239
14.3.3负载均衡243
参考文献245
第15章无线传感器网络的数据管理
15.1无线传感器网络的数据管理概述248
15.1.1无线传感器网络数据管理的研究内容248
15.1.2无线传感器网络数据管理的研究现状249
15.1.3无线传感器网络数据管理的主要技术挑战249
15.2无线传感器网络的数据管理系统250
15.2.1TinyDB系统250
15.2.2Cougar系统251
15.2.3Dimensions系统252
15.3无线传感器网络数据管理的基本方法253
15.3.1数据模式253
15.3.2数据存储254
15.3.3数据索引255
15.3.4数据查询257
参考文献260
第16章无线传感器网络的部署、初始化和维护管理
16.1无线传感器网络的部署、初始化和维护管理概述261
16.1.1无线传感器网络部署、初始化和维护管理的研究内容261
16.1.2无线传感器网络部署、初始化和维护管理的研究现状262
16.1.3无线传感器网络部署、初始化和维护管理的主要技术挑战263
16.2无线传感器网络的部署技术264
16.2.1采用确定放置的部署技术264
16.2.2采用随机抛撒且节点不具移动能力的部署技术265
16.2.3采用随机抛撒且节点具有移动能力的部署技术265
16.3无线传感器网络的初始化技术266
16.3.1UDG模型266
16.3.2基于MIS的初始化算法266
16.3.3基于MDS的初始化算法268
16.4无线传感器网络的维护管理技术270
16.4.1覆盖与连接维护技术270
16.4.2性能监测技术271
参考文献272
第5篇无线传感器网络的开发与应用
第17章无线传感器网络的仿真技术
17.1无线传感器网络的仿真技术概述275
17.1.1网络仿真概述275
17.1.2无线传感器网络仿真研究概述275
17.2常用网络仿真软件276
17.2.1OPNET简介276
17.2.2NS279
17.2.3TOSSIM280
17.3OMNeT++仿真软件281
17.3.1OMNeT++概述281
17.3.2NED语言282
17.3.3简单模块/复合模块287
17.3.4消息290
17.3.5类库291
17.4仿真示例296
参考文献303
第18章无线传感器网络的硬件开发
18.1无线传感器网络的硬件开发概述304
18.1.1硬件系统的设计特点与要求304
18.1.2硬件系统的设计内容304
18.1.3硬件系统设计的主要挑战305
18.2传感器节点的开发305
18.2.1数据处理模块设计305
18.2.2换能器模块设计307
18.2.3无线通信模块设计307
18.2.4电源模块设计309
18.2.5外围模块设计309
18.3传感器节点原型的开发实例Mica310
18.3.1Mica系列节点简介310
18.3.2Mica系列处理器/射频板设计分析313
18.3.3Mica系列传感板设计分析315
18.3.4编程调试接口板介绍317
参考文献318
第19章无线传感器网络的操作系统
19.1无线传感器网络操作系统概述320
19.1.1无线传感器网络操作系统的设计要求320
19.1.2几种典型的无线传感器网络操作系统介绍321
19.1.3无线传感器网络操作系统设计的主要技术挑战321
19.2TinyOS操作系统322
19.2.1TinyOS的设计思路322
19.2.2TinyOS的组件模型322
19.2.3TinyOS的通信模型324
19.3基于TinyOS的应用程序运行过程解析324
19.3.1Blink程序的配件分析325
19.3.2BlinkM模块分析327
19.3.3ncc编译nesC程序的过程329
19.3.4Blink程序的运行跟踪解析329
19.3.5TinyOS的任务调度机制的实现338
19.3.6TinyOS的事件驱动机制的实现342
19.4TinyOS的使用346
19.4.1TinyOS的安装346
19.4.2创建应用程序348
19.4.3使用TOSSIM仿真调试应用程序348
19.4.4使用TinyViz进行可视化调试349
19.4.5将应用程序导入节点运行350
参考文献351
第20章无线传感器网络的软件开发
20.1无线传感器网络软件开发概述353
20.1.1无线传感器网络软件开发的特点与设计要求353
20.1.2无线传感器网络软件开发的内容354
20.1.3无线传感器网络软件开发的主要技术挑战355
20.2nesC编程语言355
20.2.1nesC语言介绍355
20.2.2nesC的语法规范356
20.2.3nesC应用程序开发364
20.3无线传感器网络的应用软件开发367
20.3.1无线传感器网络的编程模式367
20.3.2无线传感器网络的中间件设计370
20.3.3无线传感器网络的服务发现372
参考文献373
第21章无线传感器网络应用于环境监测
21.1环境监测应用概述375
21.1.1环境监测应用的场景描述375
21.1.2环境监测应用中无线传感器网络的体系架构375
21.2关键技术377
21.2.1节点部署377
21.2.2能量管理377
21.2.3通信机制378
21.2.4任务的分配与控制379
21.2.5数据采样与收集379
21.3无线传感器网络用于环境监测的实例380
21.3.1公路交通监测380
21.3.2建筑物健康状况监测384
21.3.3“狼群计划”385
参考文献387
第22章无线传感器网络应用于目标追踪
22.1目标追踪应用概述388
22.1.1目标追踪应用的场景描述388
22.1.2目标追踪应用的特点与技术挑战388
22.1.3目标追踪应用中的无线传感器网络系统架构389
22.2无线传感器网络用于目标追踪的关键技术390
22.2.1追踪步骤390
22.2.2追踪算法392
22.2.3面向目标追踪的网络布局优化400
22.3基于无线传感器网络的车辆追踪系统实例402
22.3.1系统架构402
22.3.2关键问题403
22.3.3关键技术404
参考文献407
附录英汉缩略语对照表410
Ⅵ 无线传感器有哪些应用实例
随着物联网无线传感器技术不断提高,越来越得到广泛应用,主要用于石油化工,电力,工业制造,医药,农业,养殖,市政等领域,不仅提高了工作效率,还降低了生产成本。这里,小编结合用户实际需求盘点了联网无线传感器技术的十大典型应用实例。
一、EMS能源数据无线监控
针对美的集团的一个总厂,下面有7个分厂(总装一分厂、总装二分厂、总装三分厂、轻商分厂、注塑分厂、电子分厂、部装分厂)的监控和信息分析。
1、实现对各分厂的各线体现场电能表、各种流量计量表(如压缩空气流量、石油气流量、氧气流量、氮气流量等)的实时数据采集及监控
2、实现各分厂的各线体的用电量、用压缩空气量、用石油气量、用氮气量、用氧气量等的计算、统计、分析
3、实现统计报表功能、实时数据和状态显示功能、历史和实时曲线功能、远程控制功能、管理功能、冗余功能
4、要求系统具有良好的开放性,可以与其它信息系统等进行数据交换
二、地下管沟水位监测
为了确保上海迪斯尼乐园整个园区后期的安全运营,需要对供排水管道网络进行科学周到的监控管理。
1、一共有六个点需要监测地下管沟的水位。
2、当水位超标时,将信号上传至电脑或手机上。
三、电厂管网压力、流量、温度无线监控
广东罗定电厂管网压力、流量、温度无线监测主要监测管网的压力、流量、温度,以及阀门开度等等参数,并在需要时对阀门进行开、关操作。该系统由监控中心、通信网路、测控终端等组成。
各个管网监测点的数据采集终端可监视和采集温度、压力、流量等等参数,同时具备远程控制功能,可进行管网阀门的开关调度及显示。数据存入数据库供控制中心及有关部门分析和决策取用,并能保存至少两年以上,提高工作效率。
Ⅶ 什么是无线传感器网络
无线传感器的无线传输功能,常见的无线传输网络有RFID、ZigBee、红外、蓝牙、GPRS、4G、2G、Wi-Fi、NB-IoT。
与传统有线网络相比,无线传感器网络技术具有很明显的优势特点,主要的要求有: 低能耗、低成本、通用性、网络拓扑、安全、实时性、以数据为中心等。
Ⅷ 无线传感器的应用实例
桥梁健康检测及监测桥梁结构健康监测(SHM)是一种基于传感器的主动防御型方法,可以弥补目前安全性能十分重要的结构中,把传感器网络安置到桥梁、建筑和飞机中,利用传感器进行SHM是一种可靠且不昂贵的做法,可以在第一时间检测到缺陷的形成。这种网络可以提早向维修人员报告在关键结构中出现的缺陷,从而避免灾难性事故。粮仓温湿度监测无线传感器网络技术在粮库粮仓温度湿度监测领域应用最为普遍,这是由于粮库粮仓温度湿度的测点多,分布广,使用纵横交错的信号线会降低防火安全系数,应用无线传感器网络技术具有低功耗,低成本,布线简单,安装方便,易于组网,便于管理维护等特点。混凝土浇灌温度监测在混凝土施工过程中,将数字温度传感器装入导热良好的金属套管内,可保证传感器对混凝土温度变化作出迅速的反应。每个温度监测金属管接入一个无线温度节点,整个现场的无线温度节点通过无线网络传输到施工监控中心,不需要在施工现场布放长电缆,安装布放方便,能够有效解决温度测量点因为施工人员损坏电缆造成的成活率较低的问题.地震监测通过使用由大量互连的微型传感器节点组成的传感器网络,可以对不同环境进行不间断的高精度数据搜集。采用低功耗的无线通信模块和无线通信协议可以使传感器网络的生命期延续很长时间。保证了传感器网络的实用性。无线传感器网络相对于传统的网络,其最明显的特色可以用六个字来概括即:“自组织,自愈合”。这些特点使得无线传感器网络能够适应复杂多变的环境,去监测人力难以到达的恶劣环境地区。BEETECH无线传感器网络节点体积小巧,不需现场拉线供电,非常方便在应急情况下进行灵活部署监测并预测地质灾害的发生情况。建筑物振动检测建筑物悬臂部分不会因为旁边公路及地铁交通所引发的振动而超过舒适度的要求;通过现场测量,收集数据以验证由公路及地铁交通所引发的振动与主楼悬臂振动之相互关系; 同时,通过模态分析得到主楼结构在小振幅脉动振动工况下前几阶振动模态的阻尼比,为将来进行结构的小振幅动力分析提供关键数据。本次应用采用高精度加速度传感器,捕捉大型结构微弱振动,同样适用于风载,车辆等引起的脉动测量。
Ⅸ 无线传感器网络在智能家居里主要有什么应用
对家用电器的控制、窗户、窗帘等控制