当前位置:首页 » 网络连接 » 连接网络物理层的方法
扩展阅读
突然间wifi无网络连接 2025-04-22 20:22:00
手机广告屏蔽软件开启 2025-04-22 20:02:01

连接网络物理层的方法

发布时间: 2022-04-14 16:26:45

网络连接中的层次问题

其实ISO的7层网络模型只是方便我们学习和理解网络而已。如果你深入理解了层次模型就很容将那个设备归入哪个层了。比如路由器和交换机,交换机的工作模式是存储转发,而他转发所依据的并不是IP地址而是数据源的MAC地址及目的MAC地址,而对MAC地址的操作就是ISO定义的数据链路层的,所以交换机属于二层设备。但路由器的主要功能是连接2个不同的网络,他对数据流的控制是根据IP帧头的信息来判断数据将要流向何方(就是从哪个口出去或进来),而对IP地址的操作方式就是ISO定义的网络层,所以路由器是三层设备。但是由于路由器一般端口数比较少,所以为了增强路由器的功能将路由器及交换做在一起就有了三层交换机。

❷ 电脑连接网络的方法

新电脑怎么连接网络:

1、鼠标移至“网上邻居”处,右键单击,选择“属性”,打开“网络连接”。

2、选择左侧“创建一个新的连接”。

3、“连接到Internet”—>“手动设置我的连接”—>“用要求用户名和密码的宽带连接来连接”—>“ISP名称”(随便取,也可直接点击下一步)—>输入“用户名”和“密码”(到营业厅开通网络时会给你提供“用户名”和“密码”)。然后点“下一步”直至完成确认。

4、然后你的桌面上会生成一个快捷方式。双击此快捷方式,点击“连接”就可以上网了。

新买的电脑如何分区硬盘

硬盘分区原则一:FAT 32最适合C盘

理由:C盘一般都是系统盘,安装主要的操作系统,我们通常有FAT32和NTFS两种选择。就笔者的使用经验来说,使用FAT32要更加方便一些。因为在C盘的操作系统损坏或者清除开机加载的病毒木马的时候,我们往往需要用启动工具盘来修复。而很多启动工具盘是Win98启动盘演变而来,大多数情况下不能辨识NTFS分区,从而无法操作C盘,笔者曾经遇到过DOS下将D盘误认为C盘,贸然格式化而丢失数据的事情。

硬盘分区原则二:C盘不宜太大

理由:C盘是系统盘,硬盘的读写比较多,产生错误和磁盘碎片的几率也较大,扫描磁盘和整理碎片是日常工作,而这两项工作的时间与磁盘的容量密切相关。C盘的容量过大,往往会使这两项工作奇慢无比,从而影响工作效率,建议C盘除了安装系统外,预留容量在10GB~20GB比较合适,软件程序尽量安装在D盘。

硬盘分区原则三:除了C盘外尽量使用NTFS分区

理由:NTFS文件系统是一个基于安全性及可靠性的文件系统,除兼容性之外,它远远优于FAT32。它不但可以支持达2TB大小的分区,而且支持对分区、文件夹和文件的压缩,可以更有效地管理磁盘空间。对局域网用户来说,在NTFS分区上可以为共享资源、文件夹以及文件设置访问许可权限,安全性要比FAT 32高得多。所以,除了在主系统分区为了兼容性而采用FAT32以外,其他分区采用NTFS比较适宜。如果在其他分区采用FAT32,我们甚至无法在硬盘上虚拟 DVD 光盘(文件大小限制)镜像,无法为文件夹和分区设置权限,自然也谈不上保存动辄数十GB大小的HDTV文件了。

硬盘分区原则四:双系统乃至多系统好处多多

理由:如今木马、病毒、广告软件、流氓软件横行,系统缓慢、无法上网、系统无法启动都是很常见的事情。一旦

出现这种情况,重装、杀毒要消耗很多时间,往往耽误工作。有些顽固的开机加载的木马和病毒甚至无法在原系统中删除。而此时如果有一个备份的系统,事情就会简单得多,启动到另外一个系统,可以从容杀毒、删除木马、修复另外一个系统,乃至用镜像把原系统恢复。即使不做处理,也可以用另外一个系统展开工作,不会因为电脑问题耽误事情。所以双系统乃至多系统好处多多,分区中除了C盘外,再保留一个或两个备用的系统分区很有必要,该备份系统分区还可同时用作安装一些软件程序,容量大概20GB左右即可。

硬盘分区原则五:系统、程序、资料分离

理由:Windows有个很不好的习惯,就是把“ 我的文档 ”等一些个人数据资料都默认放到系统分区中。这样一来,一旦要格式化系统盘来彻底杀灭病毒和木马,而又没有备份资料的话,数据安全就很成问题。正确的做法是将需要在系统文件夹和 注册表 中拷贝文件和写入数据的程序都安装到系统分区里面;对那些可以绿色安装,仅仅靠安装文件夹的文件就可以运行的程序放置到程序分区之中;各种文本、表格、文档等本身不含有可执行文件,需要其他程序才能打开资料,都放置到资料分区之中。这样一来,即使系统瘫痪,不得不重装的时候,可用的程序和资料一点不缺,很快就可以恢复工作,而不必为了重新找程序恢复数据而头疼。

硬盘分区原则六:保留至少一个巨型分区

理由:应该承认,随着硬盘容量的增长,文件和程序的体积也是越来越大。以前一部压缩电影不过几百MB,而如今的一部HDTV就要接近20GB;以前一个游戏仅仅几十MB,大一点的也不过几百MB,而现在一个游戏动辄数GB。假如按照平均原则进行分区的话,当你想保存两部HDTV电影时,这些巨型文件的存储就将会遇到麻烦。因此,对于海量硬盘而言,非常有必要分出一个容量在100GB以上的分区用于巨型文件的存储。

❸ 常见网络设备的物理层故障与解决方法

物理层常见设备有:网卡光纤、CAT-5线(RJ-45接头)、集线器有整波作用、Repeater加强信号、串口、并口等。

1,通信硬件包括通信适配器(也称通信接口)和调制解调器(MODEM)以及通信线路。从原理上讲,物理层只解决DTE和DCE之间的比特流传输,尽管作为网络节点设备主要组成部分的通信控制装置,其本身内涵在物理层、数据链路层、甚至更高层,在内容上分界并不很分明,但它所包含的MODEM接口、比特的采样发送、比特的缓冲等功能是确切属于物理层范畴的。为了实现PC机与调制解调器或其它串行设备通信,首先必须使用电子线路将PC机内的并行数据转成与这些设备相兼容的比特流。除了比特流的传输之外,还必须解决一个字符由多少个比特组成及如何从比特流中提取字符等技术问题,这就需要使用通信适配。通信适配器可以认为是用于完成二进制数据的串、并转换及一其它相关功能的电路。通信适配器按通信规程来划分可分为TTY(Tele Type Writer,电传打字机)、BSC(Birary Synchronous Commuication,二进制同步通信)和HDLC(High-level Data link Control,高级数据链路控制)三种。

2,IBM PC 异步通信适配器:使用TTY规程的异步通信适配采用RS-232C接口标准。这种通信适配器除可用于PC机联机通信外,还可以连接各种采用RS-232C接口的外部设备。例如,可连接采用RS-232C接口的鼠标器、数字化仪等输入设备;可连接采用RS-232C接口的打印机、绘图仪及CRT显示器等各种输出设备。可见,异步通信适配器的用途是很广泛的。异步通信规程将每个字符看成一个独立的信息,字符可顺序出现在比特流中,字符与字符间的间隔时间是任意的(即字符间采用异步定时),但字符中的各个比特用固定的时钟频率传输。字符间的异步定时和字符中比特之间的同步定时,是异步传输规程的特征。 异步传输规程中的每个字符均由四个部分组成: 1位起始位:以逻辑“0”表示,通信中称“空号”(SPACE)。 5~8位数据位:即要传输的内容。 1位奇/偶检验位:用于检错。 1~2位停止位:以逻辑“1”表示,用以作字符间的间隔。这种传输方式中,每个字符以起始位和停止位加以分隔,故也称“起--止”式传输。串行口将要发送的数据中的每个并行字符,先转换成串行比特串,并在串前加上起始位,串后加上检验位和停止位,然后发送出去。接收端通过检测起始位,检验位和停止位来保证接收字符中比特串的完整性,最后再转换成并行的字符。串行异步通信适配器本身就象一个微型计算机,上述功能均由它透明地完成,不须用户介入。早期的异步通信适配器被做成单独的插件板形成,可直接插在PC机的系统扩充槽内供使用,后来大多将异步通信适配器与其他适配器(如打印机、磁盘驱动器等的适配器)做在一块称作多功能板的插件板上。也有一些高档微机,已将异步通信适配器做在系统主板上,作为微机系统的一个常规部件。

这些是最简单的,还没查找故障方面的资料,建议你先把这个采纳了,再到“网络经验”、“网络”、“网络知道”搜索相关资料,比你这样问来得快!

如果需要咨询如何查找更精确,请在采纳后再追问,我会密你的!

❹ 网络物理层

绞线,光缆等所传输的的bit流!!

❺ 常见的网络互连方式

10.1 网络互连概述

网络互连是指将不同的网络连接起来,以构成更大规模的网络系统,实现网络间的数据通信、资源共享和协同工作。

10.1.1 网络互连的必要性

ISO/OSI虽然问世多年,但实际运行中各种现有的特定网络并不一定都采用OSI七层模型。OSI所采用的通信子网和现有的多种网络产品,它本身就决定了各种类型的通信子网一直共存下去。

网络互连可以改善网络性能,主要体现在提高系统的可靠性、改进系统的性能、增加系统保密性、建网方便、增加地理覆盖范围等几方面。

随着商业需求的推动,特别是Internet的深入人心,网络互连技术已成为实现如Internet这样的大规模网络通信和资源共享的关键技术。

10.1.2 网络互连的基本原理

1. 网络互连的要求

由于不同的网络间可能存在各种差异,因此对网络互连有如下要求:

(1)在网络之间提供一条链路,至少需要一条物理和链路控制的链路。若不存在链路,一个网络的信息就不可能传输到另一个网络中去。

(2)提供不同网络结点的路由选择和数据传送。

(3)提供网络记账服务,记录网络资源使用情况,提供各用户使用网络的记录及有关状态信息。

(4)在提供网络互连时,应尽量避免由于互连而降低网络的通信性能。

(5)不修改互连在一起的各网络原有的结构和协议。这就要求网络互连设备应能进行协议转换,协调各个网络的不同性能,这些性能包括:

① 不同的编址方式:每个网络有不同的端点名字、编址方法、寻址方式和目录保持方案,需要提供全网编址方法和目录服务。

② 不同的最大分组长度:在互连网络中,分组从一个网络送到另一网络时,往往需要分成几部分,称为分段。不同的网络存在着不同的分组大小。

③ 不同的传输速率:在互连网络中,不同网络的传输速率可能不同。

④ 不同的时限:对连接的传送服务总要等待回答响应,如超时后仍没有接到响应,则需要重传。但在互连网络中,数据传送有时需要经过多个网络,这需要更长时间,应该设定合适的超时值,以防不必要的重传。

⑤ 不同的网络访问机制:对不同网络上的多个结点,结点和网络之间的访问机制可以是相同的,也可能是不同的。

⑥ 差错恢复:各个网络有不同的差错恢复功能。互连网络的服务既不要依赖也不要影响各个网络原来的差错恢复能力。

⑦ 状态报告:不同的网络有不同的状态报告,对互连网络还应该提供网络互连的活动信息。

⑧ 路由选择技术:网内的路径选择一般依靠各个网特有的故障检测和拥挤控制技术。而互连网络应提供不同网络之间进行路径选择的能力。

⑨ 用户访问控制:不同的网络有不同的用户访问控制方法,用于管理用户对网络的访问权限。互连网络需要具有对不同的用户访问权限的控制能力。

⑩ 连接和无连接服务:不同的网络可能提供面向连接的服务,也可能提供无连接的数据报服务。互连网络的服务不应该依赖于原来各个网络所提供的服务类型。

当源网络发送分组到目的网络要跨越一个或多个外部网络时,这些性能差异会使得数据包在穿过不同网络时产生很多问题。网络互连的目的就在于提供不依赖于原来各个网络特性的互连网络服务。

2. 网络互连的层次

不同目的的网络互连可以在不同的网络分层中实现。由于网络间存在不同的差异,也就需要用不同的网络互连设备将各个网络连接起来。根据网络互连设备工作的层次及其所支持的协议,可以将网间设备分为中继器、网桥、路由器和网关,如图10.1所示。

(1)物理层

用于不同地理范围内的网段的互连。通过互连,在不同的通信介质中传送比特流,要求连接的各网络的数据传输率和链路协议必须相同。

工作在物理层的网间设备是中继器、集线器。

用于扩展网络传输的长度,实现两个相同的局域网段间的电气连接。它仅仅是将比特流从一个物理网段复制到另一个物理网段,而与网络所采用的网络协议(如TCP/IP、IPX/SPX、NETBIOS等)无关。物理层的互连协议最简单,互连标准主要由EIA、ITU-T、IEEE等机构制定。集线器就是多端口的中继器。

(2)数据链路层

用于互连两个或多个同一类型的局域网,传输帧。工作在数据链路层的网间设备是桥接器(或桥)、交换机。

桥可以将两个或多个网段互连,如果信息不是发向桥所连接的网段,则桥可以过滤掉,避免了网络的瓶颈。局域网的连接实际上是MAC子层的互连,MAC桥的标准由IEEE802的各个分委员会开发。

(3)网络层

主要用于广域网的互连中。网络层互连解决路由选择、阻塞控制、差错处理、分段等问题。

工作在网络层的网间设备是路由器、第三层交换机。

路由器提供各种网络间的网络层接口。路由器是主动的、智能的网络结点,它们参与网络管理,提供网间数据的路由选择,并对网络的资源进行动态控制等。路由器是依赖于协议的,它必须对某一种协议提供支持,如IP、IPX等。路由器及路由协议种类繁多,其标准主要由ANSI任务组X3S3.3和ISO/IEC工作组TC1/SC6/WG2制定。

(4)高层

用于在高层之间进行不同协议的转换,它也为最复杂。工作在第三层以上的网间设备称为网关,它的作用是连接两个或多个不同的网络,使之能相互通信。这种“不同”常常是物理网络和高层协议都不一样,网关必须提供不同网络间协议的相互转换。最常见的如将某一特定种类的局域网或广域网与某个专用的网络体系结构相互连接起来。

10.1.3 网络互连的类型

网络互连可分为LAN-LAN、LAN-WAN、LAN-WAN-LAN、WAN-WAN四种类型。

1. LAN-LAN

LAN互连又分为同种LAN互连和异种LAN互连。同构网络互连是指符合相同协议局域网的互连,主要采用的设备有中继器、集线器、网桥、交换机等。而异构网的互连是指两种不同协议局域网的互连,主要采用的设备为网桥、路由器等设备。LAN互连如图10.2所示。

2. LAN-WAN

是目前常见的方式之一,用来连接的设备是路由器或网关,具体如图10.3所示。

3. LAN-WAN-LAN

这是将两个分布在不同地理位置的LAN通过WAN实现互连,连接设备主要有路由器和网关。

4. WAN-WAN

通过路由器和网关将两个或多个广域网互连起来,可以使分别连入各个广域网的主机资源能够实现共享。

10.1.4 网络互连解决方案

网络互连是网络层需要解决的问题。网络互连可以采用面向连接的和面向非连接的两种解决方案。

1. 面向连接的解决方案

面向连接的解决方案要求两个节点在通信时建立一条逻辑通道,所有的信息单元沿着这条逻辑通道传送。路由器将一个网络中的逻辑通道连接到另一个网络中的逻辑通道,最终形成一条从源节点至目的节点的完整通道。

如图10.4所示,主机A和主机B通信时形成了一条逻辑通道。该通道经过网络1、网络2和网络4,并利用中间系统I和中间系统M连接起来。一旦通道建立起来,主机A和主机B之间的信息传输就会沿着该通道进行。面向连接的解决方案要求互联网中的每一个物理网络(如图10.4中的网络1、网络2、网络3和网络4)都能够提供面向连接的服务,但这样的要求在实际中是不现实的。

2. 面向非连接的解决方案

在面向非连接的解决方案中主机A和主机B之间通信时并不需要建立逻辑通道。网络中的数据单元独立对待,这些数据单元经过一系列的网络和路由器,最终到达目的节点。

如图10.5所示为一个面向非连接的解决方案示意图。当主机A需要发送一个数据单元D1到主机B时,主机A首先进行路由选择,判断D1到达主机B的最佳路径。如果它认为D1经过路由器I到达主机B是一条最佳路径,那么主机A就将数据单元D1投递给路由器I。路由器I收到主机A发送的数据单元D1后,根据自己掌握的路由信息为D1选择一条到达主机B的最佳路径,从而决定将D1传递给路由器M还是K。这样,D1经过多个路由器的中继和转发,最终到达目的主机B。如果主机A需要发送另外一个数据单元D2到达主机B,那么主机A同样需要对D2进行路由选择。由于网络设备对每一个数据单元的路由选择是独立进行的,所以,数据单元D2到达目的主机B可能经过了一条与D1完全不同的路径。

目前流行的互联网就是采用了面向非连接的解决方案。

IP协议是面向非连接的互联网解决方案中最常用的协议。支持IP协议的路由器称为IP路由器,IP协议处理的数据单元叫做IP数据报

❻ 连接网络有几种方法

要连接网络,先要在计算机上正确安装硬件。包括网络适配器(网卡和其他设备)和电缆。 除了附加的硬件之外,还必须有与网络通讯的软件组件。连接计算机和网络的软件有: 连接计算机和服务器的客户机软件。 协议,它是网上通讯的基本语言。可用的协议很多。两台计算机必须用同一种协议来通讯。 服务软件,它用来实现诸如文件和打印机共享等功能。 在连接网络之前,必须知道使用哪一种软件。向网络管理员询问客户机软件及其配置的情况。windows 98 也会自动检测并安装其他连接网络所需的组件。windows 98 在安装期间也会自动检测并安装 tcp/ip 网络。 如果您正在连接另一种类型的网络,或者在 windows 98 安装期间没有连接网络,则请执行下列步骤。下列步骤假定您的计算机已在物理上用电缆连好了网络。还可以用串行和并行电缆连接计算机。 关于连接的更详细信息,请参阅“windows 帮助”中“索引”选项卡上的“直接电缆连接”。 连接计算机和网络 单击“开始”,指向“设置”,单击“控制面板”,然后双击“网络”。 在“网络”对话框中单击“添加”。 单击“客户机”,然后单击“添加”。 出现客户机软件列表。 在“厂商”列表中单击网络软件厂商的名称。 在“网络客户机”列表中选择使用的客户机软件,然后单击“确定”。 客户机软件被添加到计算机中。 在“配置”选项卡上选择您的计算机,然后单击“属性”。 输入网络配置选项,然后单击“确定”。 如果您不知道网络选项,请与网络管理员联系。 单击“确定”,然后再次单击“确定”。 这时客户机软件安装成功,计算机重新启动。

❼ 请列举工作在物理层,数据链路层和网络层的各种网络连接和互连设备

物理层的主要设备:中继器、集线器。
数据链路层主要设备:二层交换机、网桥
网络层主要设备:路由器

传统交换机从网桥发展而来,属于OSI第二层即数据链路层设备。它根据MAC 地址寻址,通过站表选择路由,站表的建立和维护由交换机自动进行。路由器属于OSI第三层即网络层设备,它根据 IP 地址进行寻址,通过路由表路由协议产生。交换机最大的好处是快速,由于交换机只须识别帧中MAC 地址,直接根据MAC 地址产生选择转发端口算法简单,便于ASIC实现,因此转发速度极高。但交换机的工作机制也带来一些问题。

从过滤网络流量的角度来看,路由器(在网络层实现互连的设备)的作用与交换机和网桥非常相似。但是与工作在网络物理层、从物理上划分网段的交换机不同,路由器使用专门的软件协议从逻辑上对整个网络进行划分。

网桥工作在数据链路层,将两个 LAN 连起来,根据 MAC 地址来转发帧,可以看作一个“低层的路由器”(路由器工作在网络层,根据网络地址如IP 地址进行转发)。远程网桥通过一个通常较慢的链路(如电话线)连接两个远程LAN,对本地网桥而言,性能比较重要,而对远程网桥而言,在长距离上可正常运行是更重要的。

网桥与路由器的比较:网桥并不了解其转发帧中高层协议的信息,这使它可以同时以同种方式处理 IP、IPX等协议,它还提供了将无路由协议的网络(如NetBEUI)分段的功能。由于路由器处理网络层的数据,因此它们更容易互连不同的数据链路层,如令牌环网段和以太网段。网桥通常比路由器难控制。像IP等协议有复杂的路由协议,使网管易于管理路由;IP等协议还提供了较多的网络如何分段的信息(即使其地址也提供了此类信息)。而网桥则只用 MAC 地址和物理拓扑进行工作。因此网桥一般适于小型较简单的网络。

网桥不同于中继器和集线器:网桥是通过逻辑判断而确定如何传输帧。这个逻辑是基于以太网的协议的,符合 OSI的第二层规范。所以网桥可以被看作是第二层的设备。

中继器(Repeater )是连接网络线路的一种装置,常用于两个网络节点之间物理信号的双向转发工作。中继器工作于OSI的物理层,是最简单的网络互联设备,主要完成物理层的功能,负责在两个节点的物理层上按位传递信息,完成信号的复制、调整和放大功能,以此来延长网络的长度。由于存在损耗,在线路上传输的信号功率会逐渐衰减,衰减到一定程度时将造成信号失真,因此会导致接收错误。中继器就是为解决这一问题而设计的。它完成物理线路的连接,对衰减的信号进行放大,保持与原数据相同。一般情况下,中继器用于完全相同的两类网络的互连。

集线器(HUB)属于数据通信系统中的基础设备,它和双绞线等传输介质一样,是一种不需任何软件支持或只需很少管理软件管理的硬件设备。它被广泛应用到各种场合。集线器工作在局域网(LAN)环境,像网卡一样,应用于OSI参考模型第一层,因此又被称为物理层设备。集线器内部采用了电器互联,当维护LAN 的环境是逻辑总线或环型结构时,完全可以用集线器建立一个物理上的星型或树型网络结构。在这方面,集线器所起的作用相当于多端口的中继器。其实,集线器实际上就是中继器的一种,其区别仅在于集线器能够提供更多的端口服务,所以集线器又叫多口中继器。

自己整理的,希望能对你有点帮助:)

❽ 现场总线网络物理层连接

物理地址是与CPU相关的。在CPU的地址信号线上产生的就是物理地址。在程序指令中的虚拟地址经过段映射和页面映射后,就生成了物理地址,这个物理地址被放到CPU的地址线上。(从CPU端看)