1.各层之间是独立的
2.灵活性好
3.结构上可分割开
4.易于实现和维护
5.能促进标准化工作
B. 比较计算机网络的几种主要的拓扑结构的特点和适用场合
总线型结构由一条高速公用主干电缆即总线连接若干个结点构成网络。网络中所有的结点通过总线进行信息的传输。这种结构的特点是结构简单灵活,建网容易,使用方便,性能好。其缺点是主干总线对网络起决定性作用,总线故障将影响整个网络。 总线型拓扑是使用最普遍的一种网络。
星型拓扑
星型拓扑由中央结点集线器与各个结点连接组成。这种网络各结点必须通过中央结点才能实现通信。星型结构的特点是结构简单、建网容易,便于控制和管理。其缺点是中央结点负担较重,容易形成系统的“瓶颈”,线路的利用率也不高。
环型拓扑
环型拓扑由各结点首尾相连形成一个闭合环型线路。环型网络中的信息传送是单向的,即沿一个方向从一个结点传到另一个结点;每个结点需安装中继器,以接收、放大、发送信号。这种结构的特点是结构简单,建网容易,便于管理。其缺点是当结点过多时,将影响传输效率,不利于扩充。
树型拓扑
树型拓扑是一种分级结构。在树型结构的网络中,任意两个结点之间不产生回路,每条通路都支持双向传输。这种结构的特点是扩充方便、灵活,成本低,易推广,适合于分主次或分等级的层次型管理系统。
网型拓扑
主要用于广域网,由于结点之间有多条线路相连,所以网络的可靠性较搞高。由于结构比较复杂,建设成本较高。
混合型拓扑
混合型拓扑可以是不规则型的网络,也可以是点-点相连结构的网络。
蜂窝拓扑结构
蜂窝拓扑结构是无线局域网中常用的结构。它以无线传输介质(微波、卫星、红外等)点到点和多点传输为特征,是一种无线网,适用于城市网、校园网、企业网。
编辑本段局域网的结构
局域网中常见的结构为总线型或星型。
C. 计算机网络采用层次结构模型的理由是什么有何好处
分层是为了方便理解, 便于不同层次开发不同的软件。 另外分层,分工明确,便于维护网络故障排错
。是逻辑上的层次,所以还不能直观的理解成脑子里的层次。不同厂商生产的设备都可以相互兼容
D. 网络体系结构中采用层次化结构的优点有哪些
1、各层之间是独立的。某一层并不需要知道它的下一层是如何实现的,而仅仅需要知道该层通过层间的接口所提供的服务。由于每一层只实现一种相对独立的功能,因而可将一个难以处理的复杂问题分解为若干个较容易处理的更小一些的问题。这样,整个问题的复杂程度就下降了。
2、灵活性好。当任何一层发生变化时,只要层间接口关系保持不变,则在这层以上或以下各层均不受影响。此外,对某一层提供的服务还可进行修改。
3、易于实现和维护。这种结构使得实现和调试一个庞大而又复杂的系统变得易于处理,因为整个的系统已被分解为若干个相对独立的子系统。
层次化结构的特点:
1、将一个大型复杂的系统分解成若干单向依赖的层次,即每一层都提供一组功能且这些功能只依赖该层以内的的各层。其最内部的一层为系统核,具有初级中断处理、外部设备驱动、在进程之间切换处理机以及实施进程控制和通信的功能,其目的为提供一种进程可以存在和活动的环境。
2、系统核以外依次为储存管理层、I/O处理层,文件存取层、作业调度层和资源分配层。他们具有各种资源管理功能并为用户提供各种服务。
E. 计算机网络上逻辑上划分几个层次每个层次的功能是什么
七层: 物理层 、数据链路层、网络层、传输层、会话层、表示层、应用层。
1、物理层功能 : O S I 模型的最低层或第一层,该层包括物理连网媒介,如电缆连线连接器。物理层的协议产生并检测电压以便发送和接收携带数据的信号;
2、数据链路层: O S I 模型的第二层,它控制网络层与物理层之间的通信。它的主要功能是如何在不可靠的物理线路上进行数据的可靠传递;
3、网络层: O S I 模型的第三层,其主要功能是将网络地址翻译成对应的物理地址,并决定如何将数据从发送方路由到接收方;
4、传输层: O S I 模型中最重要的一层。传输协议同时进行流量控制或是基于接收方可接收数据的快慢程度规定适当的发送速率;
5、会话层: 负责在网络中的两节点之间建立和维持通信。 会话层的功能包括:建立通信链接,保持会话过程通信链接的畅通,同步两个节点之间的对 话,决定通信是否被中断以及通信中断时决定从何处重新发送;
6、表示层: 应用程序和网络之间的翻译官,在表示层,数据将按照网络能理解的方案进行格式化;这种格式化也因所使用网络的类型不同而不同;
7、应用层: 负责对软件提供接口以使程序能使用网络服务。术语“应用层”并不是指运行在网络上的某个特别应用程序 ,应用层提供的服务包括文件传输、文件管理以及电子邮件的信息处理。
F. 计算机网络采用层次结构模型有什么好处
1.2互联网模型
先来说说网络的历史:网络刚面世时,通常只有同一家制造商生产的计算机才能被此通信。例如要么采用 Decnet解决方案,要么采用IBM解决方案,而不能结合使用这两种方案。20世纪70年代末,为打破这种藩篱,国际标准化组织(ISO)开发了开放系统互联(OSI)参考模型。
OSI模型旨在以协议的形式帮助厂商生产可互操作的网络设备和软件,让不同厂商的网络能够协同工作。与世界和平一样,这不可能完全实现,但不失为一个伟大的目标。
OSI模型是主要的网络架构模型,描述了数据和网络信息如何通过网络介质从一台计算机的应用程序传输到另一台计算机的应用程序。为此,OSI参考模型进行了分层.
下面阐述这种分层方法以及如何使用它来帮助排除互联网络故障.。
ISO、OSI,稍后你还会见到IOS,太乱了!你只需记住,ISO开发了OSI模型,
提示而思科开发了本书将重点介绍的IOS( Internetworking operating system,互联网络操作系统)
1.21分层方法
参考模型是描绘如何进行通信的概念蓝图。它指出了进行高效通信所需的全部步骤,并将这些步骤划分成称为层的逻辑组。以这种方式设计通信系统时,便采用了分层架构。让我们这样考虑,假设你和一些朋友打算组建一家公司。为此,首先需要做的事情之一是考虑下述问题:必须完成哪些任务,由谁完成,各项任务之间的关系以及按什么样的顺序完成这些任务。接下来,你将组建各个部门(如销售部、库存部和发货部).其中每个部门都有特定的任务,确保员工忙活起来并专注于自己的职责。
在这种情景下,部门相当于通信系统中的层。为确保业务的正常运行,每个部门的员工都必须信任并依靠其他部门的员工,这样才能完成工作。在规划过程中,你可能将整个流程记录下来,以方便讨论和澄清操作标准,而操作标准将成为业务蓝图(参考模型)。
企业开始运营后,各部门的领导都将拥有该蓝图中与其部门相关的部分,他们需要制定可行的方案,以完成分配给他们的任务。这些可行的方案《协议)需要编辑成标准操作流程手册并严格遵守。每个流程出现在手册中的原因和重要性各异。与其他公司建立合作伙伴关系或并购其他公司时,新公司的业务协议(业务蓝图)必须与公司的相容。
同样,对软件开发人员来说,模型也很重要。软件开发人员经常使用参考模型来理解计算机通信过程,从而判断各层需要实现的功能。这意味着要为某一层开发协议,他们只需考虑这一层的功能,其他功能将由其他层及其协议和软件处理。从技术上说。这种理念称为绑定:在特定层,彼此相关的通信步骤被绑定在一起
1.22参考模型的优点
OSI模型是层次型的,具有分层模型的很多优点,但正如前面指出的,OSI模型的主要用途是让不同厂商的网络能够互操作。
使用OSI分层模型的一些重要优点如下所示。
将网络通信过程划分成更小、更简单的组件,这有助于组件的开发、设计和故障排除。
通过标准化网络组件,让多家厂商能够协作开发。
定义了模型每层执行的功能,从而支持行业标准化。
让不同类型的网络硬件和软件能够彼此通信。
G. 计算机网络体系结构的概念是什么
计算机网络体系结构是指计算机网络层次结构模型,它是各层的协议以及层次之间的端口的集合。在计算机网络中实现通信必须依靠网络通信协议,目前广泛采用的是国际标准化组织(ISO)1997年提出的开放系统互联(Open System Interconnection,OSI)参考模型,习惯上称为ISO/OSI参考模型。
计算机网络体系结构的标准
由国际化标准组织ISO制定的网络体系结构国际标准是 OSI七层模型,但实际中应用最广泛的是 TCP/IP体系结构。换句话说,OSI七层模型只是理论上的、官方制定的国际标准,而TCP/IP体系结构才是事实上的国际标准。这看起来是不可理喻的,但这却是实际存在的,是一些历史原因造成的,无疑这些原因又是复杂的。
OSI标准的制定者以专家、学者为主,他们缺乏实际经验和商业驱动力,并且OSI标准自身运行效率也不怎么好。与此同时,由于Inernet在全世界覆盖了相当大的范围,并且占领市场的标准是TCP/IP体系结构,因此导致OSI标准没有市场背景,也就只是理论上的成果,并没有过多地应用于实践。
H. 简述计算机网络技术中层次结构模型内容
tcp/ip协议
TCP/IP是“transmission Control Protocol/Internet Protocol”的简写,中文译名为传输控制协议/互联网络协议)协议, TCP/IP(传输控制协议/网间协议)是一种网络通信协议,它规范了网络上的所有通信设备,尤其是一个主机与另一个主机之间的数据往来格式以及传送方式。TCP/IP是INTERNET的基础协议,也是一种电脑数据打包和寻址的标准方法。在数据传送中,可以形象地理解为有两个信封,TCP和IP就像是信封,要传递的信息被划分成若干段,每一段塞入一个TCP信封,并在该信封面上记录有分段号的信息,再将TCP信封塞入IP大信封,发送上网。在接受端,一个TCP软件包收集信封,抽出数据,按发送前的顺序还原,并加以校验,若发现差错,TCP将会要求重发。因此,TCP/IP在INTERNET中几乎可以无差错地传送数据。 对普通用户来说,并不需要了解网络协议的整个结构,仅需了解IP的地址格式,即可与世界各地进行网络通信。
服务器交换机路由器是网络的重要组成部分
I. 6什么是计算机网络的体系结构为什么要采用分层次的结构
计算机网络体系结构是指计算机网络层次结构模型,它是各层的协议以及层次之间的端口的集合。
目前广泛采用的是国际标准化组织(ISO)1997年提出的开放系统互联(Open
System Interconnection,OSI)参考模型,习惯上称为ISO/OSI参考模型。
在OSI七层参考模型的体系结构中,由低层至高层分别称为物理层、数据链路层、网络层、运输层、会话层、表示层和应用层
原因:为把在一个网络结构下开发的系统与在另一个网络结构下开发的系统互联起来,以实现更高一级的应用,使异种机之间的通信成为可能,便于网络结构标准化;
并且由于全球经济的发展使得处在不同网络体系结构的用户迫切要求能够互相交换信息;
为此,国际标准化组织ISO成立了专门的机构研究该问题,并于1977年提出了一个试图使各种计算机在世界范围内互联成网的标准框架,即着名的开放系统互连基本参考模型OSI/RM (Open System Interconnection Reference Model)。
(9)计算机网络层次结构模型的应用场景扩展阅读:
OSI模型体系结构:
物理层(Physical,PH)物理层的任务就是为上层提供一个物理的连接,以及该物理连接表现出来的机械、电气、功能和过程特性,实现透明的比特流传输。
数据链路层(Data-link,D)实现的主要功能有:帧的同步、差错控制、流量控制、寻址、帧内定界、透明比特组合传输等。
网络层(Network,N)网络层的主要任务是为要传输的分组选择一条合适的路径,使发送分组能够正确无误地按照给定的目的地址找到目的主机,交付给目的主机的传输层。
传输层(Transport,T)传输层向上一层提供一个可靠的端到端的服务,使会话层不知道传输层以下的数据通信的细节
会话层(Session,S)提供包括访问验证和会话管理在内的建立以及维护应用之间的通信机制。如服务器验证用户登录便是由会话层完成的。
表示层(Presentation,P)数据的压缩和解压缩、加密和解密等工作都由表示层负责。
应用层(Application,A)应用层确定进程之间通信的性质以满足用户的需求,以及提供网络与用户软件之间的接口服务。
J. 阐述计算机网络体系结构分层的优缺点,以及这种层次划分的体系结构思想在工作生活中的应用。
计算机网络系统是独立的计算机通过已有通信系统连接形成的,其功能是实现计算机的远程访问和资源共享。因此,计算机网络的问题主要是解决异地独立工作的计算机之间如何实现正确、可靠的通信,计算机网络分层体系结构模型正是为解决计算机网络的这一关键问题而设计的。
分层的原则
计算机网络体系结构的分层思想主要遵循以下几点原则:
1.功能分工的原则:即每一层的划分都应有它自己明确的与其他层不同的基本 [被屏蔽广告]功能。
2.隔离稳定的原则:即层与层的结构要相对独立和相互隔离,从而使某一层内容或结构的变化对其他层的影响小,各层的功能、结构相对稳定。
3.分支扩张的原则:即公共部分与可分支部分划分在不同层,这样有利于分支部分的灵活扩充和公共部分的相对稳定,减少结构上的重复。
4.方便实现的原则:即方便标准化的技术实现。
层次的划分
计算机网络是计算机的互连,它的基本功能是网络通信。网络通信根据网络系统不同的拓扑结构可归纳为两种基本方式:第一种为相邻结点之间通过直达通路的通信,称为点到点通信;第二种为不相邻结点之间通过中间结点链接起来形成间接可达通路的通信,称为端到端通信。很显然,点到点通信是端到端通信的基础,端到端通信是点到点通信的延伸。
点到点通信时,在两台计算机上必须要有相应的通信软件。这种通信软件除了与各自操作管理系统接口外,还应有两个接口界面:一个向上,也就是向用户应用的界面;一个向下,也就是向通信的界面。这样通信软件的设计就自然划分为两个相对独立的模块,形成用户服务层US和通信服务层CS两个基本层次体系。
端到端通信链路是把若干点到点的通信线路通过中间结点链接起来而形成的,因此,要实现端到端的通信,除了要依靠各自相邻结点间点到点通信联接的正确可靠外,还要解决两个问题:第一,在中间结点上要具有路由转接功能,即源结点的报文可通过中间结点的路由转发,形成一条到达目标结点的端到端的链路;第二,在端结点上要具有启动、建立和维护这条端到端链路的功能。启动和建立链路是指发送端结点与接收端结点在正式通信前双方进行的通信,以建立端到端链路的过程。维护链路是指在端到端链路通信过程中对差错或流量控制等问题的处理。
因此在网络端到端通信的环境中,需要在通信服务层与应用服务层之间增加一个新的层次来专门处理网络端到端的正确可靠的通信问题,称为网络服务层NS。
对于通信服务层,它的基本功能是实现相邻计算机结点之间的点到点通信,它一般要经过两个步骤:第一步,发送端把帧大小的数据块从内存发送到网卡上去;第二步,由网卡将数据以位串形式发送到物理通信线路上去。在接收端执行相反的过程。对应这两步不同的操作过程,通信服务层进一步划分为数据链路层和物理层。
对于网络服务层,它的功能也由两部分组成:一是建立、维护和管理端到端链路的功能;二是进行路由选择的功能。端到端通信链路的建立、维护和管理功能又可分为两个侧面,一是与它下面网络层有关的链路建立管理功能,另一是与它上面端用户启动链路并建立与使用链路通信的有关管理功能。对应这三部分功能,网络服务层划分为三个层次:会晤层、传输层和网络层,分别处理端到端链路中与高层用户有关的问题,端到端链路通信中网络层以下实际链路联接过程有关的问题,以及路由选择的问题。
对于用户服务层,它的功能主要是处理网络用户接口的应用请求和服务。考虑到高层用户接口要求支持多用户、多种应用功能,以及可能是异种机、异种OS应用环境的实际情况,分出一层作为支持不同网络具体应用的用户服务,取名为应用层。分出另一层用以实现为所有应用或多种应用都需要解决的某些共同的用户服务要求,取名为表示层。
结论
综上所述,计算机网络体系结构分为相对独立的七层:应用层、表示层、会晤层、传输层、网络层、链路层、物理层。这样,一个复杂而庞大的问题就简化为了几个易研究、处理的相对独立的局部问题。