‘壹’ 无线网络的优点与缺点
无线网络优点:方便、灵活、在有效距离内都是可以使用的
无线网络缺点:信号受周围环境影响会导致不稳定现象,传输速度较慢
增强无线网络的信号的方法:
一、合理摆放无线路由器的位置
由于无线信号在穿越障碍物后,尤其是在穿越金属后,信号会大幅衰减。而在我们家庭的房子里,有很多钢筋混凝土墙,所以我们在摆放无线路由器的时候,应该使信号尽量少穿越墙壁。
二、修改信号频道减少干扰
我们在无线路由器的配置界面里,会看到无线信道的选项。一般来说,54M的无线信道有11个,依次是信道1到信道11。当有多个无线信号在使用同一个无线信号频道的话,就会出现信号干扰。
三、扩展天线增强信号
由于天线增益的大小直接影响到信号的发射强度和接收能力,而市场上有些路由器的天线采用的是可拆卸设计,所以给无线路由器更换一个高增益的天线是增强信号最直接的方法。
‘贰’ 在计算机网络组网方法和应用模式上,无线局域网与有线局域网有哪些差别
计算机科学与技术这一门科学深深的吸引着我们这些同学们,上计算机系已经有近三年了,自己也做了一些思考,我一直认为计算机科学与技术这门专业,在本科阶段是不可能切分成计算机科学和计算机技术的,因为计算机科学需要相当多的实践,而实践需要技术;每一个人(包括非计算机专业),掌握简单的计算机技术都很容易(包括程序设计),但计算机专业的优势就在于,我们掌握许多其他专业并不"深究"的东西,例如,算法,体系结构,等等。非计算机专业的人可以很容易地做一个芯片,写一段程序,但他们做不出计算机专业能够做出来的大型系统。今天我想专门谈一谈计算机科学,并将重点放在计算理论上。
计算机理论的一个核心问题——从数学谈起:
记得当年大一入学,每周六课时高等数学,天天作业不断(那时是六日工作制)。颇有些同学惊呼走错了门:咱们这到底念的是什么系?不错,你没走错门,这就是计算机科学与技术系。我国计算机科学系里的传统是培养做学术研究,尤其是理论研究的人(方向不见得有问题,但是做得不是那么尽如人意)。而计算机的理论研究,说到底了,如网络安全,图形图像学,视频音频处理,哪个方向都与数学有着很大的关系,虽然也许是正统数学家眼里非主流的数学。这里我还想阐明我的一个观点:我们都知道,数学是从实际生活当中抽象出来的理论,人们之所以要将实际抽象成理论,目的就在于想用抽象出来的理论去更好的指导实践,有些数学研究工作者喜欢用一些现存的理论知识去推导若干条推论,殊不知其一:问题考虑不全很可能是个错误的推论,其二:他的推论在现实生活中找不到原型,不能指导实践。严格的说,我并不是一个理想主义者,政治课上学的理论联系实际一直是指导我学习科学文化知识的航标(至少我认为搞计算机科学与技术的应当本着这个方向)。
其实我们计算机系学数学光学高等数学是不够的(典型的工科院校一般都开的是高等数学),我们应该像数学系一样学一下数学分析(清华计算机系开的好像就是数学分析),数学分析这门科学,咱们学计算机的人对它有很复杂的感情。在于它是偏向于证明型的数学课程,这对我们培养良好的分析能力极有帮助。我的软件工程学导师北工大数理学院的王仪华先生就曾经教导过我们,数学系的学生到软件企业中大多作软件设计与分析工作,而计算机系的学生做程序员的居多,原因就在于数学系的学生分析推理能力,从所受训练的角度上要远远在我们之上。当年出现的怪现象是:计算机系学生的高中数学基础在全校数一数二(希望没有冒犯其它系的同学),教学课时数也仅次于数学系,但学完之后的效果却不尽如人意。难道都是学生不努力吗,我看未见得,方向错了也说不一定,其中原因何在,发人深思。
我个人的浅见是:计算机系的学生,对数学的要求固然跟数学系不同,跟物理类差别则更大。通常非数学专业的所谓"高等数学",无非是把数学分析中较困难的理论部分删去,强调套用公式计算而已。而对计算机系来说,数学分析里用处最大的恰恰是被删去的理论部分。说得难听一点,对计算机系学生而言,追求算来算去的所谓"工程数学"已经彻底地走进了误区。记上一堆曲面积分的公式,难道就能算懂了数学?那倒不如现用现查,何必费事记呢?再不然直接用Mathematics或是Matalab好了。
我在系里最爱做的事情就是给学弟学妹们推荐参考书。中文的数学分析书,一般都认为以北大张筑生老师的"数学分析新讲"为最好。万一你的数学实在太好,那就去看菲赫金哥尔茨的"微积分学教程"好了--但我认为没什么必要,毕竟你不想转到数学系去。吉米多维奇的"数学分析习题集"也基本上是计算型的东东。书的名气很大,倒不见得适合我们,还是那句话,重要的是数学思想的建立,生活在信息社会里我们求的是高效,计算这玩意还是留给计算机吧。不过现在多用的似乎是复旦大学的《数学分析》也是很好的教材。
中国的所谓高等代数,就等于线性代数加上一点多项式理论。我以为这有好的一面,因为可以让学生较早感觉到代数是一种结构,而非一堆矩阵翻来覆去。这里不得不提南京大学林成森,盛松柏两位老师编的"高等代数",感觉相当舒服。此书相当全面地包含了关于多项式和线性代数的基本初等结果,同时还提供了一些有用的又比较深刻的内容,如Sturm序列,Shermon-Morrison公式,广义逆矩阵等等。可以说,作为本科生如能吃透此书,就可以算高手。国内较好的高等代数教材还有清华计算机系用的那本,清华出版社出版,书店里多多,一看就知道。从抽象代数的观点来看,高等代数里的结果不过是代数系统性质的一些例子而已。莫宗坚先生的《代数学》里,对此进行了深刻的讨论。然而莫先生的书实在深得很,作为本科生恐怕难以接受,不妨等到自己以后成熟了一些再读。
正如上面所论述的,计算机系的学生学习高等数学:知其然更要知其所以然。你学习的目的应该是:将抽象的理论再应用于实践,不但要掌握题目的解题方法,更要掌握解题思想,对于定理的学习:不是简单的应用,而是掌握证明过程即掌握定理的由来,训练自己的推理能力。只有这样才达到了学习这门科学的目的,同时也缩小了我们与数学系的同学之间思维上的差距。
概率论与数理统计这门课很重要,可惜大多数院校讲授这门课都会少些东西。少了的东西现在看至少有随机过程。到毕业还没有听说过Markov过程,此乃计算机系学生的耻辱。没有随机过程,你怎么分析网络和分布式系统?怎么设计随机化算法和协议?据说清华计算机系开有"随机数学",早就是必修课。另外,离散概率论对计算机系学生来说有特殊的重要性。而我们国家工程数学讲的都是连续概率。现在,美国已经有些学校开设了单纯的"离散概率论"课程,干脆把连续概率删去,把离散概率讲深些。我们不一定要这么做,但应该更加强调离散概率是没有疑问的。这个工作我看还是尽早的做为好。
计算方法学(有些学校也称为数学分析学)是最后一门由数理学院给我们开的课。一般学生对这门课的重视程度有限,以为没什么用。不就是照套公式嘛!其实,做图形图像可离不开它,密码学搞深了也离不开它。而且,在很多科学工程中的应用计算,都以数值的为主。这门课有两个极端的讲法:一个是古典的"数值分析",完全讲数学原理和算法;另一个是现在日趋流行的"科学与工程计算",干脆教学生用软件包编程。我个人认为,计算机系的学生一定要认识清楚我们计算机系的学生为什么要学这门课,我是很偏向于学好理论后用计算机实现的,最好使用C语言或C++编程实现。向这个方向努力的书籍还是挺多的,这里推荐大家高等教育出版社(CHEP)和施普林格出版社(Springer)联合出版的《计算方法(Computational Methods)》,华中理工大学数学系写的(现华中科技大学),这方面华科大做的工作在国内应算是比较多的,而个人认为以这本最好,至少程序设计方面涉及了:任意数学函数的求值,方程求根,线性方程组求解,插值方法,数值积分,场微分方程数值求解。李庆扬的那本则理论性过强,与实际应用结合得不太紧。
每个学校本系里都会开一门离散数学,涉及集合论,图论,和抽象代数,数理逻辑。不过,这么多内容挤在离散数学一门课里,是否时间太紧了点?另外,计算机系学生不懂组合和数论,也是巨大的缺陷。要做理论,不懂组合或者数论吃亏可就太大了。从理想的状态来看,最好分开六门课:集合,逻辑,图论,组合,代数,数论。这个当然不现实,因为没那么多课时。也许将来可以开三门课:集合与逻辑,图论与组合,代数与数论。(这方面我们学校已经着手开始做了)不管课怎么开,学生总一样要学。下面分别谈谈上面的三组内容。
古典集合论,北师大出过一本《基础集合论》不错。 数理逻辑,中科院软件所陆钟万教授的《面向计算机科学的数理逻辑》就不错。现在可以找到陆钟万教授的讲课录像,http://www.cas.ac.cn/html/Dir/2001/11/06/3391.htm自己去看看吧。总的来说,学集合/逻辑起手不难,普通高中生都能看懂。但越往后越感觉深不可测。
学完以上各书之后,如果你还有精力兴趣进一步深究,那么可以试一下GTM系列中的《Introction to Axiomatic Set Theory》和《A Course of Mathematical Logic》。这两本都有世界图书出版社的引进版。你如果能搞定这两本,可以说在逻辑方面真正入了门,也就不用再浪费时间听我瞎侃了。
据说全中国最多只有三十个人懂图论。此言不虚。图论这东东,技巧性太强,几乎每个问题都有一个独特的方法,让人头痛。不过这也正是它魅力所在:只要你有创造性,它就能给你成就感。我的导师说,图论里面随便揪一块东西就可以写篇论文。大家可以体会里面内容之深广了吧!国内的图论书中,王树禾老师的"图论及其算法"非常成功。一方面,其内容在国内教材里算非常全面的。另一方面,其对算法的强调非常适合计算机系(本来就是科大计算机系教材)。有了这本书为主,再参考几本翻译的,如Bondy & Murty的《图论及其应用》,人民邮电出版社翻译的《图论和电路网络》等等,就马马虎虎,对本科生足够了。再进一步,世界图书引进有GTM系列的"Modern Graph Theory"。此书确实经典!国内好象还有一家出版了个翻译版。不过,学到这个层次,还是读原版好。搞定这本书,也标志着图论入了门。
离散数学方面我们北京工业大学实验学院有个世界级的专家,叫邵学才,复旦大学概率论毕业的,教过高等数学,线性代数,概率论,最后转向离散数学,出版着作无数,论文集新加坡有一本,堪称经典,大家想学离散数学的真谛不妨找来看看。这老师的课我专门去听过,极为经典。不过你要从他的不经意的话中去挖掘精髓。在同他的交谈当中我又深刻地发现一个问题,虽说邵先生写书无数,但依他自己的说法每本都差不多,我实在觉得诧异,他说主要是有大纲的限制,不便多写。这就难怪了,很少听说国外写书还要依据个什么大纲(就算有,内容也宽泛的多),不敢越雷池半步,这样不是看谁的都一样了。外版的书好就好在这里,最新的科技成果里面都有论述,别的先不说,至少是"紧跟时代的理论知识"。
组合感觉没有太适合的国产书。还是读Graham和Knuth等人合着的经典"具体数学"吧,西安电子科技大学出版社有翻译版。 抽象代数,国内经典为莫宗坚先生的"代数学"。此书是北大数学系教材,深得好评。然而对本科生来说,此书未免太深。可以先学习一些其它的教材,然后再回头来看"代数学"。国际上的经典可就多了,GTM系列里就有一大堆。推荐一本谈不上经典,但却最简
单的,最容易学的:http://www.math.miami.e/~ec/book/这本"Introction to Linear and Abstract Algebra"非常通俗易懂,而且把抽象代数和线性代数结合起来,对初学者来说非常理想,我校比较牛的同学都有收藏。
数论方面,国内有经典而且以困难着称的"初等数论"(潘氏兄弟着,北大版)。再追溯一点,还有更加经典(可以算世界级)并且更加困难的"数论导引"(华罗庚先生的名着,科学版,九章书店重印,繁体的看起来可能比较困难)。把基础的几章搞定一个大概,对本科生来讲足够了。但这只是初等数论。本科毕业后要学计算数论,你必须看英文的书,如Bach的"Introction to Algorithmic Number Theory"。
计算机科学理论的根本,在于算法。现在很多系里给本科生开设算法设计与分析,确实非常正确。环顾西方世界,大约没有一个三流以上计算机系不把算法作为必修的。算法教材目前公认以Corman等着的"Introction to Algorithms"为最优。对入门而言,这一本已经足够,不需要再参考其它书。
再说说形式语言与自动机。我看过北邮的教材,应该说写的还清楚。但是,有一点要强调:形式语言和自动机的作用主要在作为计算模型,而不是用来做编译。事实上,编译前端已经是死领域,没有任何open problems,北科大的班晓娟博士也曾经说过,编译的技术已相当成熟。如果为了这个,我们完全没必要去学形式语言--用用yacc什么的就完了。北邮的那本在国内还算比较好,但是在深度上,在跟可计算性的联系上都有较大的局限,现代感也不足。所以建议有兴趣的同学去读英文书,不过国内似乎没引进这方面的教材。可以去互动出版网上看一看。入门以后,把形式语言与自动机中定义的模型,和数理逻辑中用递归函数定义的模型比较一番,可以说非常有趣。现在才知道,什么叫"宫室之美,百官之富"!
计算机科学和数学的关系有点奇怪。二三十年以前,计算机科学基本上还是数学的一个分支。而现在,计算机科学拥有广泛的研究领域和众多的研究人员,在很多方面反过来推动数学发展,从某种意义上可以说是孩子长得比妈妈还高了。但不管怎么样,这个孩子身上始终流着母亲的血液。这血液是the mathematical underpinning of computer science(计算机科学的数学基础),也就是理论计算机科学。原来在东方大学城图书馆中曾经看过一本七十年代的译本(书皮都没了,可我就爱关注这种书),大概就叫《计算机数学》。那本书若是放在当时来讲决是一本好书,但现在看来,涵盖的范围还算广,深度则差了许多,不过推荐大一的学生倒可以看一看,至少可以使你的计算数学入入门。
最常和理论计算机科学放在一起的一个词是什么?答:离散数学。这两者的关系是如此密切,以至于它们在不少场合下成为同义词。(这一点在前面的那本书中也有体现)传统上,数学是以分析为中心的。数学系的同学要学习三四个学期的数学分析,然后是复变函数,实变函数,泛函数等等。实变和泛函被很多人认为是现代数学的入门。在物理,化学,工程上应用的,也以分析为主。
随着计算机科学的出现,一些以前不太受到重视的数学分支突然重要起来。人们发现,这些分支处理的数学对象与传统的分析有明显的区别:分析研究的问题解决方案是连续的,因而微分,积分成为基本的运算;而这些分支研究的对象是离散的,因而很少有机会进行此类的计算。人们从而称这些分支为"离散数学"。"离散数学"的名字越来越响亮,最后导致以分析为中心的传统数学分支被相对称为"连续数学"。
离散数学经过几十年发展,基本上稳定下来。一般认为,离散数学包含以下学科:
1) 集合论,数理逻辑与元数学。这是整个数学的基础,也是计算机科学的基础。
2) 图论,算法图论;组合数学,组合算法。计算机科学,尤其是理论计算机科学的核心是
算法,而大量的算法建立在图和组合的基础上。
3) 抽象代数。代数是无所不在的,本来在数学中就非常重要。在计算机科学中,人们惊讶地发现代数竟然有如此之多的应用。
但是,理论计算机科学仅仅就是在数学的上面加上"离散"的帽子这么简单吗?一直到大约十几年前,终于有一位大师告诉我们:不是。D.E.Knuth(他有多伟大,我想不用我废话了)在Stanford开设了一门全新的课程Concrete Mathematics。 Concrete这个词在这里有两层含义:
首先:对abstract而言。Knuth认为,传统数学研究的对象过于抽象,导致对具体的问题关心不够。他抱怨说,在研究中他需要的数学往往并不存在,所以他只能自己去创造一些数学。为了直接面向应用的需要,他要提倡"具体"的数学。在这里我做一点简单的解释。例如在集合论中,数学家关心的都是最根本的问题--公理系统的各种性质之类。而一些具体集合的性质,各种常见集合,关系,映射都是什么样的,数学家觉得并不重要。然而,在计算机科学中应用的,恰恰就是这些具体的东西。Knuth能够首先看到这一点,不愧为当世计算机第一人。其次,Concrete是Continuous(连续)加上discrete(离散)。不管连续数学还是离散数学,都是有用的数学!
理论与实际的结合——计算机科学研究的范畴
前面主要是从数学角度来看的。从计算机角度来看,理论计算机科学目前主要的研究领域包括:可计算性理论,算法设计与复杂性分析,密码学与信息安全,分布式计算理论,并行计算理论,网络理论,生物信息计算,计算几何学,程序语言理论等等。这些领域互相交叉,而且新的课题在不断提出,所以很难理出一个头绪来。想搞搞这方面的工作,推荐看中国计算机学会的一系列书籍,至少代表了我国的权威。下面随便举一些例子。
由于应用需求的推动,密码学现在成为研究的热点。密码学建立在数论(尤其是计算数论),代数,信息论,概率论和随机过程的基础上,有时也用到图论和组合学等。很多人以为密码学就是加密解密,而加密就是用一个函数把数据打乱。这样的理解太浅显了。
现代密码学至少包含以下层次的内容:
第一,密码学的基础。例如,分解一个大数真的很困难吗?能否有一般的工具证明协议正确?
第二,密码学的基本课题。例如,比以前更好的单向函数,签名协议等。
第三,密码学的高级问题。例如,零知识证明的长度,秘密分享的方法。
第四,密码学的新应用。例如,数字现金,叛徒追踪等。
在分布式系统中,也有很多重要的理论问题。例如,进程之间的同步,互斥协议。一个经典的结果是:在通信信道不可靠时,没有确定型算法能实现进程间协同。所以,改进TCP三次握手几乎没有意义。例如时序问题。常用的一种序是因果序,但因果序直到不久前才有一个理论上的结果....例如,死锁没有实用的方法能完美地对付。例如,......操作系统研究过就自己去举吧!
如果计算机只有理论,那么它不过是数学的一个分支,而不成为一门独立的科学。事实上,在理论之外,计算机科学还有更广阔的天空。
我一直认为,4年根本不够学习计算机的基础知识,因为面太宽了......
这方面我想先说说我们系在各校普遍开设的《计算机基础》。在高等学校开设《计算机基础课程》是我国高教司明文规定的各专业必修课程要求。主要内容是使学生初步掌握计算机的发展历史,学会简单的使用操作系统,文字处理,表格处理功能和初步的网络应用功能。但是在计算机科学系教授此门课程的目标决不能与此一致。在计算机系课程中目标应是:让学生较为全面的了解计算机学科的发展,清晰的把握计算机学科研究的方向,发展的前沿即每一个课程在整个学科体系中所处的地位。搞清各学科的学习目的,学习内容,应用领域。使学生在学科学习初期就对整个学科有一个整体的认识,以做到在今后的学习中清楚要学什么,怎么学。计算机基本应用技能的位置应当放在第二位或更靠后,因为这一点对于本系的学生应当有这个摸索能力。这一点很重要。推荐给大家一本书:机械工业出版社的《计算机文化》(New Perspective of Computer Science),看了这本书我才深刻的体会到自己还是个计算机科学初学者,才比较透彻的了解了什么是计算机科学。另外在厦门大学赵致琢老师的着作《计算科学导论》当中的很多经典理论都是在同类书籍中很难找到的。看看他也许你才会明白一个最基本的问题:为什么计算机科学叫计算科学更为准确。这本书在世界上也可成为精品级的着作。
一个一流计算机系的优秀学生决不该仅仅是一个编程高手,但他一定首先是一个编程高手。我上大学的时候,第一门专业课是C语言程序设计,念计算机的人从某种角度讲相当一部分人是靠写程序吃饭的。在我们北京工业大学实验学院计算机系里一直有这样的争论(时至今日CSDN上也有),关于第一程序设计语言该用哪一种。我个人认为,用哪种语言属于末节,关键在养成良好的编程习惯。当年老师对我们说,打好基础后学一门新语言只要一个星期。现在我觉得根本不用一个星期,前提是先把基础打好。不要再犹豫了,学了再说,等你抉择好了,别人已经会了几门语言了。
汇编语言和微机原理是两门特烦人的课。你的数学/理论基础再好,也占不到什么便宜。这两门课之间的次序也好比先有鸡还是先有蛋,无论你先学哪门,都会牵扯另一门课里的东西。所以,只能静下来慢慢琢磨。这就是典型的工程课,不需要太多的聪明和顿悟,却需要水滴石穿的渐悟。有关这两门课的书,计算机书店里不难找到。弄几本最新的,对照着看吧。组成原理推荐《计算机组成与结构》清华大学王爱英教授写的。汇编语言大家拿8086/8088入个门,之后一定要学80x86汇编语言。实用价值大,不落后,结构又好,写写高效病毒,高级语言里嵌一点汇编,进行底层开发,总也离不开他,推荐清华大学沈美明的《IBM—PC汇编语言程序设计》。有些人说不想了解计算机体系结构,也不想制造计算机,所以诸如计算机原理,汇编语言,接口之类的课觉得没必要学,这样合理吗?显然不合理,这些东西迟早得掌握,肯定得接触,而且,这是计算机专业与其他专业学生相比的少有的几项优势。做项目的时候,了解这些是非常重要的,不可能说,仅仅为了技术而技术,只懂技术的人最多做一个编码工人,而永远不可能全面地了解整个系统的设计,而编码工人是越老越不值钱。关于组成原理还有个讲授的问题,在我学这门课程时老师讲授时把CPU工作原理誉微程序设计这一块略掉了,理由是我们国家搞CPU技术不如别的国家,搞了这么长时间好不容易出了个龙芯比Intel的还差个十万八千里,所以建议我们不要学了。我看这在各校也未见得不是个问题吧!若真是如他所说,那中国的计算机科学哪个方向都可以停了,软硬件,应用,有几项搞得过美国,搞不过别人就不搞了,那我们坐在这里干什么?教学的观念需要转变的。
模拟电路这东东,如今不仅计算机系学生搞不定,电子系学生也多半害怕。如果你真想软硬件通吃,那么建议你先看看邱关源的"电路原理",也许此后再看模拟电路底气会足些。教材:康华光的"电子技术基础"(高等教育出版社)还是不错的(我校电子系在用)。有兴趣也可以参考童诗白的书。
数字电路比模拟电路要好懂得多。推荐大家看一看我们北工大刘英娴教授写的《数字逻辑》业绩人士都说这本书很有参考价值(机械工业出版社的)。原因很明了,实用价值高,能听听她讲授的课程更是有一种"享受科学"的感觉。清华大学阎石的书也算一本好教材,遗憾的一点是集成电路讲少了些。真有兴趣,看一看大规模数字系统设计吧(北航那本用的还比较多)。
计算机系统结构该怎么教,国际上还在争论。国内能找到的较好教材为Stallings的"Computer Organization and Architectureesigning for Performance"(清华影印
本)。国际上最流行的则是"Computer architecture: aquantitative approach", by Patterson & Hennessy。
操作系统可以随便选用《操作系统的内核设计与实现》和《现代操作系统》两书之一。这两部都可以算经典,唯一缺点就是理论上不够严格。不过这领域属于Hardcore System,所以在理论上马虎一点也情有可原。想看理论方面的就推荐清华大学出版社《操作系统》吧,高教司司长张尧学写的,我们教材用的是那本。 另外推荐一本《Windows操作系统原理》机械工业出版社的,这本书是我国操作系统专家在微软零距离考察半年,写作历时一年多写成的,教操作系统的专家除了清华大学的张尧学(现高教司司长)几乎所有人都参加了。Bill Gates亲自写序。里面不但结合windows2000,xp详述操作系统的内核,而且后面讲了一些windows编程基础,有外版书的味道,而且上面一些内容可以说在国内外只有那本书才有对windows内核细致入微的介绍,
如果先把形式语言学好了,则编译原理中的前端我看只要学四个算法:最容易实现的递归下降;最好的自顶向下算法LL(k);最好的自底向上算法LR(k);LR(1)的简化SLR(也许还有另一简化LALR)。后端完全属于工程性质,自然又是another story。
推荐教材:Kenneth C.Louden写的"Compiler Construction Principles and Practice"即是《编译原理及实践》(机械工业出版社的译本)
学数据库要提醒大家的是,会用VFP,VB, Power builder不等于懂数据库。(这世界上自以为懂数据库的人太多了!)数据库设计既是科学又是艺术,数据库实现则是典型的工程。所以从某种意义上讲,数据库是最典型的一门计算机课程——理工结合,互相渗透。另外推荐大家学完软件工程学后再翻过来看看数据库技术,又会是一番新感觉。推荐教材:Abraham Silberschatz等着的 "Database System Concepts".作为知识的完整性,还推荐大家看一看机械工业出版社的《数据仓库》译本。
计算机网络的标准教材还是来自Tanenbaum的《Computer Networks》(清华大学有译本)。还有就是推荐谢希仁的《计算机网络教程》(人民邮电出版社)问题讲得比较清楚,参考文献也比较权威。不过,网络也属于Hardcore System,所以光看书是不够的。建议多读RFC,http://www.ietf.org/rfc.htm里可以按编号下载RFC文档。从IP的读起。等到能掌握10种左右常用协议,就没有几个人敢小看你了。再做的工作我看放在网络设计上就比较好了。
‘叁’ 简述无线网的优缺点
1.组网成本的较量:组建家庭网络,一些网络设备如路由器,交换机,网卡之类的是必不可少的,不同的组网方式在产品购买上有所不同,因而其组网成本也是有所差异的。有线接入方式的硬件设备成本相对于无线接入方式的来说比较便宜,就拿路由器来说,无线路由器就明显比同档次的一般路由器贵,有些产品差价还相当大。一般家用的路由器在100~200元的价格就可以买到比较好的了,而无线路由器的价格一般都是有线路由器的翻倍。还有,如果走无线网络路线的话,则每部计算机都要装一个无线网卡,无线网卡跟普通网卡的价钱一般都相差十倍以上。虽然无线网络省却了布线的费用,但是总体比较起来,其组网成本还是比较高的。从组网成本的早期投入来看,对于需要构建一个经济实惠型网络的家庭用户来说,有线接入方式是一个比较合适的选择。
2.稳定性:有线网络有一个最大的优点是目前的无线网络所无法比拟的,这就是快且稳定。就我国的网络环境来说,由于房屋基本都是钢筋混凝土结构,并且格局复杂多样,环境对无线信号的衰减严重,因而无线网络的不稳定性是不可避免的。对于一个网络来说,无论是企业网络还是家庭网络,稳定性是最重要的,因为时断时续的网络,是没有人可以忍受的。当然,也并不是说,无线网络的稳定性一点保障都没有,只是有线网络胜它一筹而已。虽然家庭用户对网络的稳定性没有企业要求的高,不过对于一些急性子用户来说,这点就相当重要了。
3.速度:根据相关资料显示,有线网络的传输速率较快,而且也比较稳定,一般为100M、1000M,而无线的速率相对来说就稍微慢一些,衰减现象还比较严重,一般为11M、54M、108M。由此可见,有线技术在速度上提供了目前无线技术所不能支持的专用的网络带宽,尤其是对于那些数据密集型的应用或者是大量数据的同时传输来说,无线网络的表现与有线网络相比起来确实是有点逊色。虽然说一般的家庭用户对网络速度的要求不会太苛刻,然而,更快更爽的网上冲浪是每一位网络用户的想要的,从这个角度上来看,孰优孰次就有自有分晓了。
用星卡享流量倍增;流量越用越多,刷视频、玩全网,更轻松、更自由,详情可登录广西电信网上营业厅查看,客服196号为你解答。
‘肆’ 网络的优缺点
网络的优点和缺点:
优点:
1、方便资料共享。通过多媒体技术,可以及时封信各种各样的信息供网友们共享,丰富网民们的信息量,如查资料、看新闻和看视频等。
2、提供交流平台。能提供虚拟的人际交往平台,让远距离的人也能实现互动,加强感情交流。
3、提高办事效率。比如网络新闻的制作,只需将电子文字剪切下来,然后通过粘贴制成网页,放在网站上,一篇网络新闻就诞生了,短则数秒钟,长则不会超过几十分钟。而对比报纸新闻则需要经过采访、编辑、排版、印刷等步骤,至少也要几个小时。
4、为网民提供展示自己的平台。有些网民可能在日常生活中能力没能得到很好的体现,而在网络中则可以充分的展示自己,如主播行业、网络小说写手等。
5、起休闲娱乐的作用。网络上有很多音乐、电影和游戏等休闲方式,在如今快生活的世界里,给人们带来了休闲娱乐的方式。
缺点:
1、易导致网民沉迷网络,影响个人的精神气质。网络上有各种各样的游戏,有一些制止力不强的网民则容易沉迷游戏,特别是青少年,家人不让玩,他们就跑到网吧去玩,甚至整天泡在网上不吃饭,很容易影响个人的身体健康。
2、网络信息的可信度相对较低。由于参与网络传播的人数众多,传播者的目的隐蔽,传播者的素质良莠不齐,因此,网络上信息的可靠性、准备性相对较低,特别是新闻报道,人们还是更倾向于相信权威的报纸和电视台。
3、网络缩小了人的交际圈,拉大了你与周围人的距离。经常上网的人会拉远与生活中朋友的距离,由于人的精力是有限的,你花过多的时间在网络上便会没有精力参与各类活动,你拉近了网上朋友的距离,就会拉远生活中朋友的距离。
(4)比较无线局域网和计算机网络的优缺点扩展阅读:
网络是由节点和连线构成,表示诸多对象及其相互联系。在数学上,网络是一种图,一般认为专指加权图。
网络除了数学定义外,还有具体的物理含义,即网络是从某种相同类型的实际问题中抽象出来的模型。在计算机领域中,网络是信息传输、接收、共享的虚拟平台,通过它把各个点、面、体的信息联系到一起,从而实现这些资源的共享。
网络是人类发展史来最重要的发明,提高了科技和人类社会的发展。
在1999年之前,人们一般认为网络的结构都是随机的。但随着Barabasi和Watts在1999年分别发现了网络的无标度和小世界特性并分别在世界着名的《科学》和《自然》杂志上发表了他们的发现之后,人们才认识到网络的复杂性。
网络会借助文字阅读、图片查看、影音播放、下载传输、游戏、聊天等软件工具从文字、图片、声音、视频等方面给人们带来极其丰富的生活和美好的享受。
‘伍’ 无线局域网有哪些优缺点
无线局域网是无线通信技术与网络技术相结合的产物。从专业角度讲,无线局域网就是通过无线信道来实现网络设备之间的通信,并实现通信的移动化、个性化和宽带化。通俗地讲,无线局域网就是在不采用网线的情况下,提供以太网互联功能。
无线局域网概述
无线网络的历史起源可以追溯到50年前第二次世界大战期间。当时,美国陆军研发出了一套无线电传输技术,采用无线电信号进行资料的传输。这项技术令许多学者产生了灵感。1971年,夏威夷大学的研究员创建了第一个无线电通讯网络,称作ALOHNET。这个网络包含7台计算机,采用双向星型拓扑连接,横跨夏威夷的四座岛屿,中心计算机放置在瓦胡岛上。从此,无线网络正式诞生。
1.无线局域网的优点
(1)灵活性和移动性。在有线网络中,网络设备的安放位置受网络位置的限制,而无线局域网在无线信号覆盖区域内的任何一个位置都可以接入网络。无线局域网另一个最大的优点在于其移动性,连接到无线局域网的用户可以移动且能同时与网络保持连接。
(2)安装便捷。无线局域网可以免去或最大程度地减少网络布线的工作量,一般只要安装一个或多个接入点设备,就可建立覆盖整个区域的局域网络。
(3)易于进行网络规划和调整。对于有线网络来说,办公地点或网络拓扑的改变通常意味着重新建网。重新布线是一个昂贵、费时、浪费和琐碎的过程,无线局域网可以避免或减少以上情况的发生。
(4)故障定位容易。有线网络一旦出现物理故障,尤其是由于线路连接不良而造成的网络中断,往往很难查明,而且检修线路需要付出很大的代价。无线网络则很容易定位故障,只需更换故障设备即可恢复网络连接。
(5)易于扩展。无线局域网有多种配置方式,可以很快从只有几个用户的小型局域网扩展到上千用户的大型网络,并且能够提供节点间"漫游"等有线网络无法实现的特性。
由于无线局域网有以上诸多优点,因此其发展十分迅速。最近几年,无线局域网已经在企业、医院、商店、工厂和学校等场合得到了广泛的应用。
2.无线局域网的理论基础
目前,无线局域网采用的传输媒体主要有两种,即红外线和无线电波。按照不同的调制方式,采用无线电波作为传输媒体的无线局域网又可分为扩频方式与窄带调制方式。
(1)红外线(Infrared Rays,IR)局域网
采用红外线通信方式与无线电波方式相比,可以提供极高的数据速率,有较高的安全性,且设备相对便宜而且简单。但由于红外线对障碍物的透射和绕射能力很差,使得传输距离和覆盖范围都受到很大限制,通常IR局域网的覆盖范围只限制在一间房屋内。
(2)扩频(Spread Spectrum,SS)局域网
如果使用扩频技术,网络可以在ISM(工业、科学和医疗)频段内运行。其理论依据是,通过扩频方式以宽带传输信息来换取信噪比的提高。扩频通信具有抗干扰能力和隐蔽性强、保密性好、多址通信能力强的特点。扩频技术主要分为跳频技术(FHSS)和直接序列扩频(DSSS)两种方式。
所谓直接序列扩频,就是用高速率的扩频序列在发射端扩展信号的频谱,而在接收端用相同的扩频码序列进行解扩,把展开的扩频信号还原成原来的信号。而跳频技术与直序扩频技术不同,跳频的载频受一个伪随机码的控制,其频率按随机规律不断改变。接收端的频率也按随机规律变化,并保持与发射端的变化规律一致。跳频的高低直接反映跳频系统的性能,跳频越高,抗干扰性能越好,军用的跳频系统可达到每秒上万跳。
(3)窄带微波局域网
这种局域网使用微波无线电频带来传输数据,其带宽刚好能容纳信号。但这种网络产品通常需要申请无线电频谱执照,其它方式则可使用无需执照的ISM频带。
3.无线局域网的不足之处
无线局域网在能够给网络用户带来便捷和实用的同时,也存在着一些缺陷。无线局域网的不足之处体现在以下几个方面:
(1)性能。无线局域网是依靠无线电波进行传输的。这些电波通过无线发射装置进行发射,而建筑物、车辆、树木和其它障碍物都可能阻碍电磁波的传输,所以会影响网络的性能。
(2)速率。无线信道的传输速率与有线信道相比要低得多。目前,无线局域网的最大传输速率为54Mbit/s,只适合于个人终端和小规模网络应用。
(3)安全性。本质上无线电波不要求建立物理的连接通道,无线信号是发散的。从理论上讲,很容易监听到无线电波广播范围内的任何信号,造成通信信息泄漏。
三、无线局域网协议标准
无线局域网技术(包括IEEE802.11、蓝牙技术和HomeRF等)将是新世纪无线通信领域最有发展前景的重大技术之一。以IEEE(电气和电子工程师协会)为代表的多个研究机构针对不同的应用场合,制定了一系列协议标准,推动了无线局域网的实用化。
1.IEEE802.11系列协议
作为全球公认的局域网权威,IEEE 802工作组建立的标准在局域网领域内得到了广泛应用。这些协议包括802.3以太网协议、802.5令牌环协议和802.3z100BASE-T快速以太网协议等。IEEE于1997年发布了无线局域网领域第一个在国际上被认可的协议——802.11协议。1999年9月,IEEE提出802.11b协议,用于对802.11协议进行补充,之后又推出了802.11a、802.11g等一系列协议,从而进一步完善了无线局域网规范。IEEE802.11工作组制订的具体协议如下:
(1)802.11a
802.11a采用正交频分(OFDM)技术调制数据,使用5GHz的频带。OFDM技术将无线信道分成以低数据速率并行传输的分频率,然后再将这些频率一起放回接收端,可提供25Mbit/s的无线ATM接口和10Mbit/s的以太网无线帧结构接口,以及TDD/TDMA的空中接口。在很大程度上可提高传输速度,改进信号质量,克服干扰。物理层速率可达54Mbit/s,传输层可达25Mbit/s,能满足室内及室外的应用。
(2)802.11b
802.11b也被称为Wi-Fi技术,采用补码键控(CCK)调制方式,使用2.4GHz频带,其对无线局域网通信的最大贡献是可以支持两种速率--5.5Mbit/s和11Mbit/s。多速率机制的介质访问控制可确保当工作站之间距离过长或干扰太大、信噪比低于某个门限值时,传输速率能够从11Mbit/s自动降到5.5Mbit/s,或根据直序扩频技术调整到2Mbit/s和1Mbit/s。在不违反FCC规定的前提下,采用跳频技术无法支持更高的速率,因此需要选择DSSS作为该标准的惟一物理层技术。
(3)802.11g
2001年11月,在802.11 IEEE会议上形成了802.11g标准草案,目的是在2.4GHz频段实现802.11a的速率要求。该标准将于2003年初获得批准。802.11g采用PBCC或CCK/OFDM调制方式,使用2.4GHz频段,对现有的802.11b系统向下兼容。它既能适应传统的802.11b标准(在2.4GHz频率下提供的数据传输率为11Mbit/s),也符合802.11a标准(在5GHz频率下提供的数据传输率56Mbit/s),从而解决了对已有的802.11b设备的兼容。用户还可以配置与802.11a、802.11b以及802.11g均相互兼容的多方式无线局域网,有利于促进无线网络市场的发展。
(4)其他相关协议
IEEE802工作组今后将继续对802.11系列协议进行探讨,并计划推出一系列用于完善无线局域网应用的协议,其中主要包括802.11e(定义服务质量和服务类型)、802.11f(AP间协议)、802.11h(欧洲5GHz规范)、802.11i(增强的安全性&认证)、802.11j(日本的4.9GHz规范)、802.11k(高层无线/网络测量规范)以及高吞吐量研究工作组的相关协议。
2.蓝牙规范(Bluetooth)
蓝牙规范是由SIG(特别兴趣小组)制定的一个公共的、无需许可证的规范,其目的是实现短距离无线语音和数据通信。蓝牙技术工作于2.4GHz的ISM频段,基带部分的数据速率为1Mbit/s,有效无线通信距离为10~100m,采用时分双工传输方案实现全双工传输。蓝牙技术采用自动寻道技术和快速跳频技术保证传输的可靠性,具有全向传输能力,但不需对连接设备进行定向。其是一种改进的无线局域网技术,但其设备尺寸更小,成本更低。在任意时间,只要蓝牙技术产品进入彼此有效范围之内,它们就会立即传输地址信息并组建成网,这一切工作都是设备自动完成的,无需用户参与。
3.HomeRF标准
在美国联邦通信委员会(FCC)正式批准HomeRF标准之前,HomeRF工作组于1998年为在家庭范围内实现语音和数据的无线通信制订出一个规范,即共享无线访问协议(SWAP)。该协议主要针对家庭无线局域网,其数据通信采用简化的IEEE802.11协议标准。之后,HomeRF工作组又制定了HomeRF标准,用于实现PC机和用户电子设备之间的无线数字通信,是IEEE802.11与泛欧数字无绳电话标准(DECT)相结合的一种开放标准。HomeRF标准采用扩频技术,工作在2.4GHz频带,可同步支持4条高质量语音信道并且具有低功耗的优点,适合用于笔记本电脑。
4.HyperLAN/2标准
2002年2月,ETI的宽带无线接入网络(Broadband Radio Access Networks,BRAN)小组公布了HiperLAN/2标准。HiperLAN/2标准由全球论坛(H2GF)开发并制定,在5GHz的频段上运行,并采用OFDM调制方式,物理层最高速率可达54Mbit/s,是一种高性能的局域网标准。HyperLAN/2标准定义了动态频率选择、无线小区切换、链路适配、多波束天线和功率控制等多种信令和测量方法,用来支持无线网络的功能。基于HyperRF标准的网络有其特定的应用,可以用于企业局域网的最后一部分网段,支持用户在子网之间的IP移动性。在热点地区,为商业人士提供远端高速接入因特网的服务,以及作为W-CDMA系统的补充,用于3G的接入技术,使用户可以在两种网络之间移动或进行业务的自动切换,而不影响通信。
5.无线局域网标准的比较
802.11系列协议是由IEEE制定的,目前居于主导地位的无线局域网标准。HomeRF主要是为家庭网络设计的,是802.11与DECT的结合。HomeRF和蓝牙都工作在2.4GHz ISM频段,并且都采用跳频扩频(FHSS)技术。因此,HomeRF产品和蓝牙产品之间几乎没有相互干扰。蓝牙技术适用于松散型的网络,可以让设备为一个单独的数据建立一个连接,而HomeRF技术则不像蓝牙技术那样随意。组建HomeRF网络前,必须为各网络成员事先确定一个惟一的识别代码,因而比蓝牙技术更安全。802.11使用的是TCP/IP协议,适用于功率更大的网络,有效工作距离比蓝牙技术和HomeRF要长得多。
四、无线局域网的体系架构
1.无线局域网的主要组件
(1)无线网卡。提供与有线网卡一样丰富的系统接口,包括PCMCIA、Cardbus、PCI和USB等。在有线局域网中,网卡是网络操作系统与网线之间的接口。在无线局域网中,它们是操作系统与天线之间的接口,用来创建透明的网络连接。
(2)接入点。接入点的作用相当于局域网集线器。它在无线局域网和有线网络之间接收、缓冲存储和传输数据,以支持一组无线用户设备。接入点通常是通过标准以太网线连接到有线网络上,并通过天线与无线设备进行通信。在有多个接入点时,用户可以在接入点之间漫游切换。接入点的有效范围是20~500m。根据技术、配置和使用情况,一个接入点可以支持15~250个用户,通过添加更多的接入点,可以比较轻松地扩充无线局域网,从而减少网络拥塞并扩大网络的覆盖范围。
2.无线局域网的配置方式
(1)对等模式。Ad-hoc模式。这种应用包含多个无线终端和一个服务器,均配有无线网卡,但不连接到接入点和有线网络,而是通过无线网卡进行相互通信。它主要用来在没有基础设施的地方快速而轻松地建无线局域网。
(2)基础结构模式。Infrastructure模式。该模式是目前最常见的一种架构,这种架构包含一个接入点和多个无线终端,接入点通过电缆连线与有线网络连接,通过无线电波与无线终端连接,可以实现无线终端之间的通信,以及无线终端与有线网络之间的通信。通过对这种模式进行复制,可以实现多个接入点相互连接的更大的无线网络。
‘陆’ 在计算机网络组网方法和应用模式上,无线局域网与有线局域网有哪些差别简述怎样将
无线局域网与有线网络相比较,无线网络的灵活性和可扩展性以及后期维护费用都有明显优势,一般在局域网组建中应用于施工难度较大的地方或者应用于普通上网,用于玩网络游戏当然不行咯。组网无线只要有无线路由器,和接收信号的无线网卡,没有布线的麻烦,有线网络就没有那么简单了,要施工布线,但是网速相对于有线网还是占优势咯。希望能给你帮助。。。
‘柒’ 无线局域网和有线局域网的优缺点
我先说说各自的优点吧。
有线:网速相对无线来说较为稳定。
无线:相对有线来说地域性要求较低,使用范围较大。
缺点和不足:无线网络虽说可移动性较大,但是其存在的辐射也不可小看。
‘捌’ 在计算机网络组网方法和应用模式上,无线局域网与有线局域网有哪些差别
传输方式不同:
有线网使用电传输或光传输。
无线网使用微波传输,是由发射端发出2.4g的微波信号形成的激磁场与接收端构成共振回路,实现的通信。
再有传输速度也不一样。有线的电传播速度分为10M 100M 1000M,光纤传播可达1000M 10000M 100000M 的速度。无线网络一般为54M 最新的802.11N MIMO技术的网络可达150M和300M的速度。802.11X技术的局限性很大,传输距离在50米到200米左右,只适合在家里和办公室使用。最高端的无线技术是802.16技术,在欧美一些国家做城域网拭点使用中。传输距离可高达50英里。
打字好累呀。再不有懂的直接问我吧。
‘玖’ 无线局域网的不足和缺点
无线局域网在能够给网络用户带来便捷和实用的同时,也存在着一些缺陷。无线局域网的不足之处体现在以下几个方面:
(1)性能。无线局域网是依靠无线电波进行传输的。这些电波通过无线发射装置进行发射,而建筑物、车辆、树木和其它障碍物都可能阻碍电磁波的传输,所以会影响网络的性能。
(2)速率。无线信道的传输速率与有线信道相比要低得多。目前,无线局域网的最大传输速率为54Mbit/s,只适合于个人终端和小规模网络应用。
(3)安全性。本质上无线电波不要求建立物理的连接通道,无线信号是发散的。从理论上讲,很容易监听到无线电波广播范围内的任何信号,造成通信信息泄漏。