Ⅰ CDM的原理注:不是清洁发展机制,是有关计算机的
码分复用
详细情况见http://ke..com/view/741506.htm
编辑本段简介
码分复用(CDM,Code Division Multiplexing)是靠不同的编码来区分各路原始信号的一种复用方式,主要和各种多址技术结合产生了各种接入技术,包括无线和有线接入。例如在多址蜂窝系统中是 码分复用
以信道来区分通信对象的,一个信道只容纳1个用户进行通话,许多同时通话的用户,互相以信道来区分,这就是多址。移动通信系统是一个多信道同时工作的系统,具有广播和大面积覆盖的特点。在移动通信环境的电波覆盖区内,建立用户之间的无线信道连接,是无线多址接入方式,属于多址接入技术。联通CDMA(Code Division Multiple Access)就是码分复用的一种方式,称为码分多址,此外还有频分多址(FDMA)、时分多址(TDMA)和同步码分多址(SCDMA)。
编辑本段特点
码分多址系统为每个用户分配了各自特定的地址码,利用公共信道来传输信息。CDMA系统的地址码相互具有准正交性,以区别地址,而在频率、时间和空间上都可能重叠。也就是说,每一个用户有自己的地址码,这个地址码用于区别每一个用户,地址码彼此之间是互相独立的,也就是互相不影响的,但是由于技术等种种原因,我们采用的地址码不可能做到完全正交,即完全独立,相互不影响,所以称为准正交,由于有地址码区分用户,所以我们对频率、时间和空间没有限制,在这些方面他们可以重叠。
编辑本段命令
利用多个掩码序列的其中一个对多个符号流的每一个进行编码,该已掩码的符号流被组合以形成码分复用(CDM)信号,并且利用另一个掩码序列该CDM信号被进一步地进行掩码,用于与一个和多个附加的信号进行码分复用,以发送到远程站。在另一个实施例中,根据经掩码的符号流形成了多个CDM信 码分复用
号,并且所述多个CDM信号在进一步进行掩码之前被时分复用(TDM)。在其它实施例中,解掩码和解复用被执行来恢复一个或多个符号流。也提出了其它不同的方面。这些方面具有的优点有:提供了对反向链路容量的有效利用,适应诸如低时延、高吞吐量或者不同服务质量这样的变化的需求,并且减小了提供这些优点的前向和反向链路开销,这样就避免了干扰过多和容量增加。
编辑本段码分多路复用
码分多路复用也是一种共享信道的方法,每个用户可在同一时间使用同样的频带进行通信,但使用的是基于码型的分割信道的方法,即每个用户分配一个地址码,各个码型互不重又叠,,通信各方之间不会相互干扰,且抗干拢能力强。 码分复用芯片
码分多路复用技术主要用于无线通信系统,特别是移动通信系统。它不仅可以提高通信的话音质量和数据传输的可靠性以及减少干扰对通信的影响,而且增大了通信系统的容量.笔记本电脑或个人数字助理(PersonalDataAssistant,PDA)以及掌上电脑(HandedPersonalCOmputer,HPC)等移动性计算机的联网通信就是使用了这种技术。
编辑本段相关技术
FDMA
FDMA频分多址采用调频的多址技术,业务信道在不同的频段分配给不同的用户。FDMA适合大量连续非突发性数据的接入,单纯采用FDMA作为多址接入方式已经很少见。目前中国联通、中 码分复用
国移动所使用的GSM移动电话网就是采用FDMA和TDMA两种方式的结合。
TDMA时分多址
TDMA时分多址采用了时分的多址技术,将业务信道在不同的时间段分配给不同的用户。TDMA的优点是频谱利用率高,适合支持多个突发性或低速率数据用户的接入。除中国联通、中国移动所使用的GSM移动电话网采用FDMA和TDMA两种方式的结合外,广电HFC网中的CM与CMTS的通信中也采用了时分多址的接入方式(基于DOCSIS1.0或1.1和Eruo DOCSIS1.0或1.1)。
CDMA码分多址
CDMA是采用数字技术的分支——扩频通信技术发展起来的一种崭新而成熟的无线通信技术,它是在FDM和TDM的基础上发展起来的。FDM的特点是信道不独占,而时间资源共享,每一子信道使用的频带互不重叠;TDM的特点是独占时隙,而信道资源共享,每一个子信道使用的时隙不重叠;CDMA的特点是所有子信道在同一时间可以使用整个信道进行数据传输,它在信道与时间资源上均为共享,因此,信道的效率高,系统的容量大。CDMA的技术原理是基于扩频技术,即将需传送的具有一定信号带宽的信息数据用一个带宽远大于信号带宽的高速伪随机码(PN)进行调制,使原数据信号的带宽被扩展,再经载波调制并发送出去;接收端使用完全相同的伪随机码,与接收的带宽信号作相关处理,把宽带信号换成原信息数据的窄带信号即解扩,以实现信息通信。CDMA码分多址技术完全适合现代移动通信网所要求的大容量、高质量、综合业务、软切换等,正受到越来越多的运营商和用户的青睐。
同步码分多址技术
同步码分多址(SCDMA,Synchrnous Code Division Multiplexing Access)指伪 码分复用网络
随机码之间是同步正交的,既可以无线接入也可以有线接入,应用较广泛。广电HFC网中的CM与CMTS的通信中就用到该项技术,例如美国泰立洋公司(Terayon)和北京凯视通电缆电视宽带接入,结合ATDM(高级时分多址)和SCDMA上行信道通信(基于DOCSIS2.0或Eruo DOCSIS2.0)。 中国第3代移动通信系统也采用同步码分多址技术,它意味着代表所有用户的伪随机码在到达基站时是同步的,由于伪随机码之间的同步正交性,可以有效地消除码间干扰,系统容量方面将得到极大的改善,它的系统容量是其他第3代移动通信标准的4~5倍。
编辑本段应用
码分复用光接入网络系统 在光线路终端装置与光终端装置和光终端装置之间通过光纤传输路(和光合/分路器进行基于码分复用方式的双向通信。光线路终端装置具有频带控制部和频带分配部,频带控制部 码分复用
设有与光终端装置的数量相等个数的信号转换器对,光终端装置分别具有频带控制部和频带分配部,频带控制部中分别设有各1组信号转换器对。光线路终端装置和光终端装置的频带控制部分别具有由分别具有通信频带可变控制功能的1组可变串/并转换部和可变并/串转换部构成的信号转换部。能够进行与数据包长度无关的数据包的传输,即使在其他用户暂时需要大容量频带时也能够应对。
编辑本段相关介绍
码分多址系统为每个用户分配了各自特定的地址码,利用公共信道来传输信息。CDMA系统的地址码相互具有准 正交性,以区别地址,而在频率、时间和空间上都可能重叠。也就是说,每一个用户有自己的地址码,这个地址码 用于区别每一个用户,地址码彼此之间是互相独立的,也就是互相不影响的,但是由于技术等种种原因,我们采用 的地址码不可能做到完全正交,即完全独立,相互不影响,所以称为准正交,由于有地址码区分用户,所以我们对 频率、时间和空间没有限制,在这些方面他们可以重叠。 系统的接收端必须有完全一致的本地地址码,用来对接收的信号进行相关检测。其他使用不同码型的信号因为 和接收机本地产生的码型不同而不能被解调。它们的存在类似于在信道中引入了噪声或干扰,通常称之为多址干扰。 码分复用(CDMA) 在码分多址(CDMA)蜂窝通信系统中,用户之间的信息传输也是由基站进行转发和控制的。为了实现双工通信, 正向传输和反向传输各使用一个频率,即通常所谓的频分双工。无论正向传输或反向传输,除了传输业务信息外, 还必须传送相应的控制信息。为了传送不同的信息,需要设置相应的信道。但是,CDMA通信系统既不分频道又不分 时隙,无论传送何种信息的信道都靠采用不同的码型来区分。类似的信道属于逻辑信道。这些逻辑信道无论从频域 或时域来看都是相互重叠的,或者说它们均占有相同的频段和时间。左图是CDMA通信系统的工作示意图。 CDMA数字蜂窝移动通信系统的各种信道的选择,可用正交Walsh 函数来实现。正交Walsh 函数可以构成正交Walsh 码,作为地址码实现码分多址(CDMA)。
Ⅱ 计算机网络之五层协议
一:概述
计算机网络 (网络)把许多 计算机 连接在一起,而 互联网 则把许多网络连接在一起,是 网络的网络 。因特网是世界上最大的互联网。
以小写字母i开始的internet( 互联网或互连网 )是 通用 名词,它泛指由多个计算机网络互连而成的网络。在这些网络之间的通信协议(通信规则)可以是 任意 的。
以大写字母I开始的Interent( 因特网 )是 专有 名词,它指当前全球最大的、开放的、由众多网络相互连接而成的特定计算机网络,它采用的是 TCP/IP 协议族 作为通信规则,且其前身是美国的 ARPANET 。
因特网现在采用 存储转发 的 分组交换 技术,以及三层因特网服务提供者(ISP)结构。
因特网按 工作方式 可以划分为 边缘 部分和 核心 部分,主机在网络的边缘部分,作用是进行信息处理。 路由器 是在网络的核心部分,作用是:按存储转发方式进行 分组交换 。
计算机通信是计算机的 进程 (运行着的程序)之间的通信,计算机网络采用 通信方式 :客户–服务器方式和对等连接方式(P2P方式)
按作用 范围 不同,计算机网络分为:广域网WAN,城域网MAN,局域网LAN和个人区域网PAN。
五层协议 的体系结构由:应用层,运输层,网络层,数据链路层和物理层。
<1>:应用层 : 是体系结构中的最高层,应用层的任务是 通过应用进程间的交互来完成特定网络应用 。应用层协议定义的是 应用进程间通信和交互的规则 。
<2>:运输层 :任务是负责向 两个主机中的进程之间的通信提供可靠的端到端服务 ,应用层利用该服务传送应用层报文。
TCP :提供面向连接的,可靠的数据传输服务,其数据传输的单位是报文段。
UDP :提供无连接的,尽最大努力的数据传输服务,不保证数据传输的可靠性。
<3>网络层: 网络层的任务就是要选择合适的路由,在发送数据时, 网络层把运输层产生的报文段或者用户数据报 封装 成分组或包进行交付给目的站的运输层。
<4>数据链路层: 数据链路层的任务是在两个相邻结点间的线路上无差错地传送以帧(frame)为单位的数据。每一帧包括数据和必要的控制信息。
<5>:物理层: 物理层的任务就是 透明 地传送比特流,物理层还要确定连接电缆插头的 定义 及 连接法 。
运输层最重要的协议是:传输控制协议 TCP 和用户数据报协议 UDP ,而网络层最重要的协议是网络协议 IP 。
分组交换的优点:高效、灵活、迅速、可靠。
网络协议主要由三个要素组成: (1)语法:即数据和控制信息的结构或者格式; (2)语义:即需要发出何种控制信息,完成何种动作以及做出何种响应。 (3)同步:即事件实现顺序的详细说明。
二:物理层
物理层的主要任务:描述为确定与 传输媒体 的 接口 有关的一些特性。
机械特性 :接口所用接线器的形状和尺寸,引脚数目和排列,固定和锁定装置等,平时常见的各种规格的插件都有严格的 标准化的规定 。
电气特性 :接口电缆上的各条线上出现的电压 范围 。
功能特性 :某条线上出现的某一电平的点电压表示何种 意义 ;
过程特性 :指明对不同功能的各种可能事件的出现 顺序 。
通信的目的 是: 传送消息 , 数据 是运送消息的 实体 。 信号 是数据的电气或电磁的表现。
根据信号中代表 参数 的取值方式不同。 信号分为 : 模拟信号 (连续无限)+ 数字信号 (离散有限)。代表数字信号不同的离散数值的基本波形称为 码元 。
通信 的双方信息交互的方式来看,有三中 基本方式 :
单向 通信(广播)
双向交替 通信(**半双工**_对讲机)
双向同时 通信( 全双工 _电话)
调制 :来自信源的信号常称为基带信号。其包含较多低频成分,较多信道不能传输低频分量或直流分量,需要对其进行调制。
调制分为 两大类 : 基带调制 (仅对波形转换,又称 编码 ,D2D)+ 带通调制 (基带信号频率范围搬移到较高频段, 载波 调制,D2M)。
编码方式 :
不归零制 (正电平1/负0)
归零制度 (正脉冲1/负0)
曼彻斯特编码 (位周期中心的向上跳变为0/下1)
差分曼彻斯特编码 (每一位中心处有跳变,开始辩解有跳变为0,无跳变1)
带通调制方法 : 调 幅 ( AM ):(0, f1) 。调 频 ( FM ):(f1, f2) 。调 相 ( PM ):(0 , 180度) 。
正交振幅调制(QAM)物理层 下面 的 传输媒体 (介质): 不属于任何一层 。包括有: 引导性传输媒体 :双绞、同轴电缆、光缆 、 非引导性传输媒体 :短波、微波、红外线。
信道复用技术 : 频分复用 :(一样的时间占有不不同资源) ; 时分复用 :(不同时间使用同样资源) ;统计时分复用、波分复用(WDM)、码分复用(CDM)。
宽带接入技术 : 非对称数字用户线 ADSL (Asymmetric Digital Subcriber Line)(用数字技术对现有的模拟电话用户线进行改造)
三:数据链路层
数据链路层使用的 信道 有 两种类型: * 点对点(PPP) 信道+ 广播*信道
点对点信道的数据链路层的协议数据单元- -帧
数据链路层协议有许多, 三个基本问题 是共同的
封装成桢
透明传输
差错检测
局域网的数据链路层拆成两个子层,即 逻辑链路层(LLC) 子层+ 媒体接入控制(MAC) 子层;
适配器的作用:
计算机与外界局域网的连接是通过通信适配器,适配器本来是主机箱内插入的一块网络接口板,又称网络接口卡,简称( 网卡 )。
以太网采用 无连接 的工作方式,对发送的数据帧 不进行编号 ,也不要求对方发回确认,目的站收到差错帧就丢掉。
以太网采用的协议是:具有 冲突检测 的 载波监听多点接入 ( CSMA/CD )。协议的要点是: 发送前先监听,边发送边监听,一旦发现总线出现了碰撞,就立即停止发送。
以太网的硬件地址 , MAC 地址实际上就是适配器地址或者适配器标识符。 48位长 , 以太网最短帧长:64字节。争用期51.2微秒。
以太网适配器有 过滤 功能:只接收 单播帧,广播帧,多播帧 。
使用 集线器 可以在 物理层 扩展以太网(半双工),使用 网桥 可以在 数据链路层 扩展以太网(半双工),网桥转发帧时, 不改变帧 的源地址。网桥 优点 :对帧进行转发过滤,增大 吞吐量 。扩大网络物理范围,提高 可靠 性,可 互连 不同物理层,不同MAC子层和不同速率的以太网。 网桥 缺点 :增加时延,可能产生广播风暴。
透明网桥 : 自学习 办法处理接收到的帧。
四:网络层
TCP/IP 体系中的网络层向上只提供简单灵活的、无连接,尽最大努力交付的数据报服务。网络层不提供服务质量的承诺,不保证分组交付的时限, 进程 之间的通信的 可靠性 由 运输层 负责。
一个IP地址在整个因特网范围内是唯一的,分类的 IP地址 包括A类( 1~126 )、B类( 128~191 )、C类( 192~223 单播地址)、D类( 多播 地址)。
分类的IP地址由 网络号字段 和 主机号字段 组成。
物理地址(硬件地址)是数据链路层和物理层使用的地址,而 IP 地址是网络层和以上各层使用的地址,是一种 逻辑地址 ,数据链路层看不见数据报的IP地址。
IP首部中的 生存时间 段给出了IP数据报在因特网中经过的 最大路由器数 ,可防止IP数据报在互联网中无限制的 兜圈 子。
地址解析协议 ARP(Address Resolution Protocol) 把IP地址解析为 硬件地址 ,它解决 同一个局域网的主机或路由器的IP地址和硬件地址的映射问题 ,是一种解决地址问题的协议。以目标IP地址为线索,用来定位一个下一个应该接收数据分包的网络设备对应的MAC地址。如果目标主机不再同一链路上时,可以通过ARP查找下一跳路由器的MAC地址,不过ARP只适用于IPV4,不能用于IPV6,IPV6中可以用ICMPV6替代ARP发送邻居搜索消息。
路由选择协议有两大类: 内部网关 协议(RIP和OSPE)和 外部网关 协议(BGP-4)。
网际控制报文协议 ICMP (Internet Control Message Protocol )控制报文协议。是IP层协议,ICMP报文作为IP数据报的数据,加上首部后组成IP数据报发送出去,使用ICMP并不是实现了可靠传输。ICMP允许主机或者路由器 报告差错 情况和 提供有关异常 的情况报告。
ICMP是一个重要应用是分组网间探测 PING
与单播相比,在一对多的通信中,IP多播可大大节约网络资源, IP多播使用D类地址,IP多播需要使用 网际组管理协议IGMP 和多播路由选择协议。
五: 运输层
网络层为主机之间提供逻辑通信,运输层为应用进程之间提供端到端的逻辑通信。
运输层有两个协议 TCP和UDP
运输层用一个 16位 端口号来标志一个端口。
UDP特点 :无连接、尽最大努力交付、面向报文、无拥塞控制、支持一对一,多对一,一对多,多对多的交互通信。首部开销小。
TCP特点: 面向连接,每一条TCP连接只能是点对点、提供可靠的交付服务,提供全双工通信、面向字节流。
TCP用主机的IP地址加上主机上的端口号作为TCP连接的端点,这样的端点就叫 套接字 。
流量控制 是一个 端到端 的问题,是接收端抑制发送端发送数据的速率,以方便接收端来得及接收。 拥塞控制 是一个全局性过程,涉及到所有的主机,所有的路由器,以及与降低网络传输性能有关的所有因素。
TCP拥塞控制采用四种算法: 慢开始、拥塞避免、快重传、快恢复 。
传输有 三个连接 :连接建立、数据传送、连接释放。
TCP连接建立采用三次握手机制,连接释放采用四次握手机制。
六:应用层
文件传送协议FTP 使用 TCP 可靠传输服务。FTP使用客户服务器方式,一个FTP服务器进程可同时为多个客户进程提供服务。在进行文件传输时,FTP的客户和服务器之间要建立两个并行的TCP连接,控制连接和数据连接,实际用于传输文件的是 数据连接 。
万维网 WWW 是一个大规模,联机式的信息储藏所,可以方便从因特网上一个站点链接到另一个站点。
万维网使用 统一资源定位符URL 来标志万维网上的各种文档,并使每一个文档在整个因特网的范围内具有唯一的标识符 URL 。