当前位置:首页 » 网络连接 » 计算机网络jam信号
扩展阅读
无线网络谁制造的 2024-12-14 11:49:18
882ancom换成什么网站了 2024-12-14 11:35:02

计算机网络jam信号

发布时间: 2024-12-14 08:17:00

计算机网络题求解答 谢谢

2017年12月28日,星期四,

兄弟,你这照片上的第一题中多项式的指数看不清呀,

没事,我就现在的情形,给你说一下大概的思路,你参考着,再结合题目中实际的参数,再套一遍就能把题目解出来了,

CSMA/CD(Carrier Sense Multiple Access with Collision Detection)基带冲突检测的载波监听多路访问技术(载波监听多点接入/碰撞检测)。所有的节点共享传输介质。

  • 原理,如下,

    1、所有的站点共享唯一的一条数据通道,

    2、在一个站点发送数据时,其他的站点都不能发送数据,如果要发送就会产生碰撞,就要重新发送,而且所有站点都要再等待一段随即的时间,

    3、对于每一个站而言,一旦它检测到有冲突,它就放弃它当前的传送任务。换句话说,如果两个站都检测到信道是空闲的,并且同时开始传送数据,则它们几乎立刻就会检测到有冲突发生。

    4、它们不应该再继续传送它们的帧,因为这样只会产生垃圾而已;相反一旦检测到冲突之后,它们应该立即停止传送数据。快速地终止被损坏的帧可以节省时间和带宽。

    5、它的工作原理是: 发送数据前 先侦听信道是否空闲 ,若空闲,则立即发送数据。若信道忙碌,则等待一段时间至信道中的信息传输结束后再发送数据;若在上一段信息发送结束后,同时有两个或两个以上的节点都提出发送请求,则判定为冲突。若侦听到冲突,则立即停止发送数据,等待一段随机时间,再重新尝试。

    6、原理简单总结为:先听后发,边发边听,冲突停发,随机延迟后重发。

    7、Carrier Sense Multiple Access就是,要发送和发送中都要进行监听,

    8、有人将CSMA/CD的工作过程形象的比喻成很多人在一间黑屋子中举行讨论会,参加会议的人都是只能听到其他人的声音。每个人在说话前必须先倾听,只有等会场安静下来后,他才能够发言。人们将发言前监听以确定是否已有人在发言的动作称为"载波监听";将在会场安静的情况下每人都有平等机会讲话成为“多路访问”;如果有两人或两人以上同时说话,大家就无法听清其中任何一人的发言,这种情况称为发生“冲突”。发言人在发言过程中要及时发现是否发生冲突,这个动作称为“冲突检测”。如果发言人发现冲突已经发生,这时他需要停止讲话,然后随机后退延迟,再次重复上述过程,直至讲话成功。如果失败次数太多,他也许就放弃这次发言的想法。通常尝试16次后放弃。

    9、核心问题:解决在公共通道上以广播方式传送数据中可能出现的问题(主要是数据碰撞问题)

    包含四个处理内容:监听、发送、检测、冲突处理

监听:

通过专门的检测机构,在站点准备发送前先侦听一下总线上是否有数据正在传送(线路是否忙)?

若“忙”则进入后述的“退避”处理程序,进而进一步反复进行侦听工作。

发送:

当确定要发送后,通过发送机构,向总线发送数据。

检测:

数据发送后,也可能发生数据碰撞。因而,要对数据边发送,边检测,以判断是否冲突了。

冲突处理:

当确认发生冲突后,进入冲突处理程序。有两种冲突情况:

① 侦听中发现线路忙

② 发送过程中发现数据碰撞

① 若在侦听中发现线路忙,则等待一个延时后再次侦听,若仍然忙,则继续延迟等待,一直到可以发送为止。每次延时的时间不一致,由退避算法确定延时值。

② 若发送过程中发现数据碰撞,先发送阻塞信息,强化冲突,再进行监听工作,以待下次重新发送

10、

先听后说,边听边说,边说边听;

一旦冲突,立即停说;

等待时机,然后再说;

注:“听”,即监听、检测之意;“说”,即发送数据之意。

11、在发送数据前,先监听总线是否空闲。若总线忙,则不发送。若总线空闲,则把准备好的数据发送到总线上。在发送数据的过程中,工作站边发送边检测总线,是否自己发送的数据有冲突。若无冲突则继续发送直到发完全部数据;若有冲突,则立即停止发送数据,但是要发送一个加强冲突的JAM信号,以便使网络上所有工作站都知道网上发生了冲突,然后,等待一个预定的随机时间,且在总线为空闲时,再重新发送未发完的数据。

12、

CSMA/CD网络上进行传输时,必须按下列五个步骤来进行

(1)传输前监听

(2)如果忙则等待

(3)如果空闲则传输并检测冲突

(4)如果冲突发生,重传前等待

(5)重传或夭折

补充一个重要的知识点:

要使CSMA/CA 正常工作,我们必须要限制帧的长度。如果某次传输发生了碰撞,那么正在发送数据的站必须在发送该帧的最后一比特之前放弃此次传输,因为一旦整个帧都被发送出去,那么该站将不会保留帧的复本,同时也不会继续监视是否发生了碰撞。所以,一旦检测出有冲突,就要立即停止发送,

  • 举例说明,

    A站点发送数据给B站点,当A站通过监听确认线路空闲后,开始发送数据给B站点,同时对线路进行监听,即边发送边监听,边监听边发送,直到数据传送完毕,那么如果想要正确发送数据,就需要确定最小帧长度和最小发送间隙(冲突时槽)。

  • CSMA/CD冲突避免的方法:先听后发、边听边发、随机延迟后重发。一旦发生冲突,必须让每台主机都能检测到。关于最小发送间隙和最小帧长的规定也是为了避免冲突。

  • 考虑如下的情况,主机发送的帧很小,而两台冲突主机相距很远。在主机A发送的帧传输到B的前一刻,B开始发送帧。这样,当A的帧到达B时,B检测到冲突,于是发送冲突信号,假如在B的冲突信号传输到A之前,A的帧已经发送完毕,那么A将检测不到冲突而误认为已发送成功。由于信号传播是有时延的,因此检测冲突也需要一定的时间。这也是为什么必须有个最小帧长的限制。

  • 按照标准,10Mbps以太网采用中继器时,连接的最大长度是2500米,最多经过4个中继器,因此规定对10Mbps以太网一帧的最小发送时间为51.2微秒。这段时间所能传输的数据为512位,因此也称该时间为512位时。这个时间定义为以太网时隙,或冲突时槽。512位=64字节,这就是以太网帧最小64字节的原因。

  • 以上信息的简单理解是:A发送一个帧的信息(大小不限制),B收到此帧,发现有冲突,马上发送包含检测到了冲突的信息给A,这个冲突信息到达A也是需要时间的,所以,要想A成功发送一个帧(并知道这个帧发送的是否成功,冲没冲突)是需要这个帧从A到B,再从B到A,这一个来回的时间,

    也就是说,当一个站点决定是否要发送信息之前,一定要先进行线路的检测,那么隔多长时间检测一次合适呢(在没有检测的期间是不进行数据的发送的,因此也就不存在冲突),这就要看, 一个电子信号在这两个站点之间跑一个来回的时间了,试想一下,如果这个信号还没有跑到地方,你就开始检测,显然是浪费检测信号的设备资源,然后,A站点发送一个电子信号给B站点,信号经过一段时间到达了B站点,然后假设B发现了冲突,马上告诉A,那么这个电子信号再跑回A也需要一段时间,如果当这个信号在路上的时候,A就开始检测是不是有冲突,显然是不合适的,因为,B发送的冲突信号还在路上,如果A在这个时间段就检测,一定不会发现有冲突,那么,A就会继续发送信号,但这是错误,因为已经有冲突被检测出来,因此,A这么做是错误的,所以,A要想正确发送一个电子信号给B,并且被B正确接收,就需要,A发送一个电子信号,并等待它跑一个来回的时间那么长,才能确认是没有冲突,然后再继续发送下一个信号,

  • 这个电子信号跑一个来回的时间,是由站点间的距离s、帧在媒体上的传播速度为v(光速)以及网络的传输率为r(bps)共同决定的,

  • 那么,假设电子信号跑一个来回的时间是t,则有如下式子,

    t=2s/v;

    又有,假设在时间t内可以传送的数据量(最小帧)为L,则有如下式子,

    L=t*r;解释:这个就是说,一个电子信号从A跑到B需要t这么长时间,又因为电子信号几乎接近光速,因此,即使在t这么短的时间内,我仍然可以不停的发送很多个电子信号,这样就形成了一串二进制数列在t这个很小的时间段内被从A发送出去,那么我在t这个时间段内究竟能发送出去多少的电子信号,就要看我的传输率r是多少了,因为有这种关系,所以就形成了最小帧的概念,

  • 将 L=t*r 变形为 t=L/r,并将 t=L/r 带入 t2s/v,得到式子:L/r=2s/v,

  • 再将,题目中给出的数据带入上式,得到

    2500字节/(1G bps)=2s/200000(Km);将单位统一后,有下式:

    (2500*8)/(1024*1024*1024)=2s/200000(Km);继续计算,得:

    s=1.86Km,

  • 若1Gbps取值为1000*1000*1000,则s=2Km;

兄弟,我这个利用工作空隙给你写答案,你别着急啊,现在是12:48,第三题,我抓紧时间帮你算。


⑵ 网络硬件基本组成是哪些

网络硬件基本组成的是:网卡、网线、集线器(HUB)和交换机、2台以上主机

一 网卡

网络接口卡(NETWORK INTERFACK CARD,NIC)我们通常称之为"网卡",在局域网中的每一台计算机都必须通过传输介质(双绞线、同轴电缆或光纤)与网卡相连,才能在相互之间进行信息交流。由于网络技术的不同。网卡的分类也有所不同,如读者所熟知的ATM网卡,令牌环网卡和以太网网卡等。
目前约有80%的局域网采用以太网网卡,目前就以太网网卡而言,已有10Mb/s 100Mb/s 10/100Mb/s以及千兆以太网网卡。网卡插在pc机或服务器的扩展槽内,配合网络操作系统来控制网络信息的交流。网卡的选择恰当与否,将直接影响整个完国的数据传输率。基本选择原则是使网卡与工作站总线类型兼容。一般来说,工作站可配16位网卡,而为保证服务器的数据传输能力,服务器最好配上32位的网卡。与不同类型的网络介质相对应,网卡通常有以下三种端口的类型:
(1) RJ-45端口,为双绞线接口。如果你的网络采用10BaseT架设,UTP双绞线的两端应各接一个RJ-45接头,一端查在电脑,另一端则插在10BaseTHUB端口内。
(2)BNC端口,为细同轴电缆接口。
(3)AUI端口,为粗同轴电缆接口。目前也有些网卡在一块网卡上同时提供2种、甚至3种端口,用户应依据自己所选的传输介质选用相应的网卡
注意:如果网卡有两种或两种以上的接口一般为10M网卡
无线网卡,通过无线电波传输信号,速度不及有线得快,但是省去了网络布线的麻烦,并且传输距离比较大。

二 集线器(HUB)和交换机

集线器(HUB)与网卡、网线等传输介质一样,属于局域网中的基础设备。集线器实际上就是中继器的一种,其区别仅在于集线器能够提供更多的端口服务,所以集线器又叫多口中继器。集线器主要以优化网络布线结构,简化网络管理为目标而设计的。
集线器的分类
集线器的种类很多,集线器分类并没有特定的标准,为了便于大家认识集线器,我们还是给它分分类吧。
按照集线器所支持的带宽不同,可分为10Mbps、100Mbps、10/100Mbps三种。一般来说传输的内容不涉及语音、图像、传输量相对较小,10M的带宽就足够用了。如果传输量较大,且上联设备支持IEEE802.3U时应当选择100Mbps的集线器。现在有的厂商提供了一种新的解决方案10/100Mbps双速集线器,它已经内置10Mbps和100Mbps两条内部总线。双速集线器分为手动10/100Mbps切换和自动10/100Mbps切换,手动切换为每集线器10/100Mbps转换,自动切换为每端口切换。
按照配置的形式不同,可分为独立型集线器、模块化集线器和堆栈式集线器。独立型集线器是带有许多端口的单个盒子式的产品,独立型集线器之间用一段10Base-5同轴电缆把它们连接在一起,或者是在每个集线器上的独立端口之间用双绞线把它们连接起来。模块化集线器配有机架,带有多个卡槽,每个槽可放一块通信卡,每个卡的作用就相当于一个独立型集线器。堆栈式集线器可以将多个集线器"堆栈"使用,当它们连接在一起时,其作用就像一个模块化集线器一样,可以当作一个单元设备来进行管理。
按照管理的方式不同,可分为切换式、共享式和可堆栈共享式三种。切换式集线器可以使10Mbps和100Mbps的站点用于同一网段中。一个切换式集线器重新生成每一个信号并在发送前过滤每一个包,而且只将其发送到目的地址。共享式集线器提供了所有连接点的站点间共享一个最大频宽。共享式集线器不过滤或重新生成信号,所有与之相连的站点必须以同一速度工作(10Mbps或100Mbps)。堆栈共享式集线器可将多个堆放在一起,通过级连口互连在一起,所以也可以看作是局域网中的一个大集线器。当5个12口的集线器级连在一起时,可以看作是1个60口的集线器。其中一台集线器作为主工作集线器,并带有SNMP网管代理,其它集线器则由主工作集线器代为执行网管任务。当堆栈式集线器进行堆栈时,集线器的ID自上而下设置为1、2、3...,有些集线器是通过DIP开关的方式设置,有些集线器是自动设置的,这种集线器价格昂贵。
此外根据外形尺寸的不同,可分为机架式和桌面式两种;根据延护方式的不同,有分为可堆栈和不可堆栈两种;根据安装方式的不同,可分有内置和外置两种。
集线器是如何工作的
典型的集线器有多个用户端口,用来连接计算机和服务器,每一个端口支持一个来自网络的连接。Arcnet、10Base-T、10Base-F及许多其它专用网络都依靠集线器来连接各段电缆及把数据分发到各个网段。尽管每一个站是用它自己专用的双绞线连接到集线器的,但基于集线器的网络仍然是一个共享介质的局域网。
当某个端口发送数据包时,首先到达集线器,集线器对收到的信号进行放大和相位失真进行补偿后,将再生的信号向与集线器中的其他所有端口进行传送。当存在一个以上的端口同时发送时,集线器将从其端口检测到碰撞并产生碰撞强化信号(Jam)向集线器所连接的目标端口进行传送。
集线器的外部结构
我们常见到的集线器是长方体,其外部结构比较简单。
集线器是电子设备,因此需要电源,背部面板上主要有交流电源插座、电源开关。为了能够利用以前铺设的介质(如粗缆、细缆),有些集线器还设有BNC接口和AUI接口。RJ-45接口用于连接工作站或服务器,BNC接口或AUI接口用于连接主干网。因此在这类集线器的背部面板中还有一个AUI接口和一个BNC接口。当你的网卡和网卡之间的接口插槽不相同时,就可买一个转换器。它可以将RJ-45接头转换成BNC接头或AUI接头,反之亦然。
正面的面板大部分位置分布有一排N个RJ-45接口(视几口集线器而定,大家可根据自己设立的站点数选择不同口数的集线器)。多数集线器还有指示多种状态的LED指示灯,常见有(Power)电源指示灯、AUI端口状态指示灯、BNC端口状态指示灯、每个RJ-45接口对应的监视端口通信状态(主要显示各端口接收指示和链路状态指示)。另外还有一个碰撞(Collision)指示灯,由于以太网采用CSMA/CD协议,在传输过程中可能发生冲突,此时,Collision要闪烁。但是,如果Collision闪烁过分频繁,说明您的网络负载已经很重了,您就要对您的网络进行调整或者升级。

交换机

它工作在OSI模型的第二层,数据链路层。分为可网管和不可网管两种,前者比较高级,可以由网络管理员进行配置管理,实现许多功能。如:VLAN的配置,端口的管理。我们本次实验用的就是可网管的两层交换机uHammer24 V2.0,还有一种比较高级的智能三层交换机,具有路由功能。关于交换机的配置以及维护我们将字后面进行讨论

交换机的连接方式:级联和堆叠两种,前者可以通过级联口或者普通口进行连接称为级联;后者通过交换机专用的堆叠接口进行连接,注意堆叠应该选择同一品牌的交换机进行堆叠连接,不同的品牌交换机堆叠可能不兼容,级联没有这种问题

⑶ 计算机网络的考题

1.解释TCP服务和UDP服务的差别
2.以太网是CSMA / CD协议方案,解释他们的工作原理
3.局域网是由下图所示开关和多台电脑了。开关表也显示如下。现在将局域网段B和thenb会回答:解释如何开关和电脑的工作
4.解释回退N步协议 和选择重传协议的区别

1.TCP:面向连接、传输可靠(保证数据正确性,保证数据顺序)、用于传输大量数据(流模式)、速度慢,建立连接需要开销较多(时间,系统资源)。
UDP:面向非连接、传输不可靠、用于传输少量数据(数据包模式)、速度快。
2.
CSMA/CD的工作原理可以用以下几句话来概括:
这里的"听"即监听、检测之意;"说"即发送数据之意。具体的检测原理描述如下:

(1)当一个站点想要发送数据的时候,它检测网络查看是否有其他站点正在传输,即侦听信道是否空闲。

(2)如果信道忙,则等待,直到信道空闲;如果信道空闲,站点就准备好要发送的数据。

(3)在发送数据的同时,站点继续侦听网络,确信没有其他站点在同时传输数据才继续传输数据。因为有可能两个或多个站点都同时检测到网络空闲然后几乎在同一时刻开始传输数据。如果两个或多个站点同时发送数据,就会产生冲突。若无冲突则继续发送,直到发完全部数据。

(4)若有冲突,则立即停止发送数据,但是要发送一个加强冲突的JAM(阻塞)信号,以便使网络上所有工作站都知道网上发生了冲突,然后,等待一个预定的随机时间,且在总线为空闲时,再重新发送未发完的数据。

CSMA/CD控制方式的优点是:原理比较简单,技术上易实现,网络中各工作站处于平等地位,不需集中控制,不提供优先级控制。但在网络负载增大时,发送时间增长,发送效率急剧下降。
4,回退N步协议和选择性重传协议

⑷ 在以太网中,什么是冲突

在以太网中,冲突指的是当两个节点同时经过同一个介质传输数据时,从两个设备发出的帧将会碰撞,在物理介质上相遇,彼此数据都会被破坏。 所以在以太网中我们引入了CSMA/CD(载波侦听多路访问/冲突检测)种机制来避免冲突。其工作原理为:
1、当一个节点想在网络中发送数据时,它首先检查线路上是否有其他主机的信号在传送:如果有,说明其他主机在发送数据,自己则利用退避算法等一会再试图发送;如果线路上没有其他主机的信号,自己就将数据发送出去。
2、不停的监听线路,以确信其他主机没有发送数据,如果检测到有其他信号,这个时候就知道发生了冲突了,自己就发送一个JAM阻塞信号,通知网段上的其他节点停止发送数据,这时,其他节点也必须采用退避算法等一会再试图发送。