当前位置:首页 » 网络连接 » 计算机网络体系五层模型每一层是什么
扩展阅读
568a网络模块怎么设置 2025-01-11 22:39:57
hdp直播出现网络连接失败 2025-01-11 22:11:54

计算机网络体系五层模型每一层是什么

发布时间: 2024-10-26 02:13:31

计算机网络中五层协议它们分别的主要功能是什么它们具体分别是在哪里(从硬件层面上谈)实现的

答:所谓五层协议的网络体系结构是为便于学习计算机网络原理而采用的综合了OSI七层模型和TCP/IP的四层模型而得到的五层模型。各层的主要功能:(1)应用层 应用层确定进程之间通信的性质以满足用户的需要。应用层不仅要提供应用进程所需要的信息交换和远地操作,而且还要作为互相作用的应用进程的用户代理(user agent),来完成一些为进行语义上有意义的信息交换所必须的功能。(2)运输层任务是负责主机中两个进程间的通信。因特网的运输层可使用两种不同的协议。即面向连接的传输控制协议TCP和无连接的用户数据报协议UDP。面向连接的服务能够提供可靠的交付。无连接服务则不能提供可靠的交付。只是best-effort delivery.(3)网络层网络层负责为分组选择合适的路由,使源主机运输层所传下来的分组能够交付到目的主机。(4)数据链路层数据链路层的任务是将在网络层交下来的数据报组装成帧(frame),在两个相邻结点间的链路上实现帧的无差错传输。(5)物理层物理层的任务就是透明地传输比特流。“透明地传送比特流”指实际电路传送后比特流没有发生变化。物理层要考虑用多大的电压代表“1”或“0”,以及当发送端发出比特“1”时,接收端如何识别出这是“1”而不是“0”。物理层还要确定连接电缆的插头应当有多少根脚以及各个脚如何连接。

② 典型的计算机网络体系结构有哪些

OSI七层模型、TCP/IP四层模型、五层体系结构

一、OSI七层模型

OSI七层协议模型主要是:应用层(Application)、表示层(Presentation)、会话层(Session)、传输层(Transport)、网络层(Network)、数据链路层(DataLink)、物理层(Physical)。

二、TCP/IP四层模型

TCP/IP是一个四层的体系结构,主要包括:应用层、运输层、网际层和网络接口层。从实质上讲,只有上边三层,网络接口层没有什么具体的内容。

三、五层体系结构

五层体系结构包括:应用层、运输层、网络层、数据链路层和物理层。五层协议只是OSI和TCP/IP的综合,实际应用还是TCP/IP的四层结构。为了方便可以把下两层称为网络接口层。

(2)计算机网络体系五层模型每一层是什么扩展阅读:

世界上第一个网络体系结构是美国IBM公司于1974年提出的,它取名为系统网络体系结构SNA(System Network Architecture)。凡是遵循SNA的设备就称为SNA设备。这些SNA设备可以很方便地进行互连。此后,很多公司也纷纷建立自己的网络体系结构,这些体系结构大同小异,都采用了层次技术。

③ 简述具有五层协议的网络体系结构中各层的主要功能。

物理层:以太网·调制解调器· 电力线通信(PLC) ·SONET/SDH· G.709 ·光导纤维· 同轴电缆 · 双绞线等

物理层(或称物理层,Physical Layer)是计算机网络OSI模型中最低的一层。物理层规定:为传输数据所需要的物理链路创建、维持、拆除,而提供具有机械的,电子的,功能的和规范的特性。简单的说,物理层确保原始的数据可在各种物理媒体上传输。局域网与广域网皆属第1、2层。

物理层是OSI的第一层,它虽然处于最底层,却是整个开放系统的基础。物理层为设备之间的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。如果您想要用尽量少的词来记住这个第一层,那就是“信号和介质”。

OSI采纳了各种现成的协议,其中有RS-232、RS-449、X.21、V.35、ISDN、以及FDDI、IEEE802.3、IEEE802.4、和IEEE802.5的物理层协议。

数据链路层:Wi-Fi(IEEE 802.11) · WiMAX(IEEE 802.16) ·ATM · DTM ·令牌环·以太网·FDDI ·帧中继· GPRS · EVDO ·HSPA · HDLC ·PPP· L2TP ·PPTP · ISDN·STP 等

数据链路层是OSI参考模型中的第二层,介乎于物理层和网络层之间。数据链路层在物理层提供的服务的基础上向网络层提供服务,其最基本的服务是将源自网络层来的数据可靠地传输到相邻节点的目标机网络层。为达到这一目的,数据链路必须具备一系列相应的功能,主要有:如何将数据组合成数据块,在数据链路层中称这种数据块为帧(frame),帧是数据链路层的传送单位;如何控制帧在物理信道上的传输,包括如何处理传输差错,如何调节发送速率以使与接收方相匹配;以及在两个网络实体之间提供数据链路通路的建立、维持和释放的管理。

移动通信系统中Uu口协议的第二层,也叫层二或L2。

网络层协议:IP (IPv4 · IPv6) · ICMP· ICMPv6·IGMP ·IS-IS · IPsec · ARP · RARP等

网络层是OSI参考模型中的第三层,介于传输层和数据链路层之间,它在数据链路层提供的两个相邻端点之间的数据帧的传送功能上,进一步管理网络中的数据通信,将数据设法从源端经过若干个中间节点传送到目的端,从而向运输层提供最基本的端到端的数据传送服务。主要内容有:虚电路分组交换和数据报分组交换、路由选择算法、阻塞控制方法、X.25协议、综合业务数据网(ISDN)、异步传输模式(ATM)及网际互连原理与实现。

传输层协议:TCP · UDP · TLS ·DCCP· SCTP · RSVP · OSPF 等

传输层(Transport Layer)是ISO OSI协议的第四层协议,实现端到端的数据传输。该层是两台计算机经过网络进行数据通信时,第一个端到端的层次,具有缓冲作用。当网络层服务质量不能满足要求时,它将服务加以提高,以满足高层的要求;当网络层服务质量较好时,它只用很少的工作。传输层还可进行复用,即在一个网络连接上创建多个逻辑连接。

传输层在终端用户之间提供透明的数据传输,向上层提供可靠的数据传输服务。传输层在给定的链路上通过流量控、分段/重组和差错控制。一些协议是面向链接的。这就意味着传输层能保持对分段的跟踪,并且重传那些失败的分段。

应用层协议:DHCP ·DNS· FTP · Gopher · HTTP· IMAP4 · IRC · NNTP · XMPP ·POP3 · SIP · SMTP ·SNMP · SSH ·TELNET · RPC · RTCP · RTP ·RTSP· SDP · SOAP · GTP · STUN · NTP· SSDP · BGP · RIP 等

应用层位于物联网三层结构中的最顶层,其功能为“处理”,即通过云计算平台进行信息处理。应用层与最低端的感知层一起,是物联网的显着特征和核心所在,应用层可以对感知层采集数据进行计算、处理和知识挖掘,从而实现对物理世界的实时控制、精确管理和科学决策。

物联网应用层的核心功能围绕两个方面:

一是“数据”,应用层需要完成数据的管理和数据的处理;

二是“应用”,仅仅管理和处理数据还远远不够,必须将这些数据与各行业应用相结合。例如在智能电网中的远程电力抄表应用:安置于用户家中的读表器就是感知层中的传感器,这些传感器在收集到用户用电的信息后,通过网络发送并汇总到发电厂的处理器上。该处理器及其对应工作就属于应用层,它将完成对用户用电信息的分析,并自动采取相关措施。

(3)计算机网络体系五层模型每一层是什么扩展阅读

TCP/IP协议毫无疑问是这三大协议中最重要的一个,作为互联网的基础协议,没有它就根本不可能上网,任何和互联网有关的操作都离不开TCP/IP协议。不过TCP/IP协议也是这三大协议中配置起来最麻烦的一个,单机上网还好,而通过局域网访问互联网的话,就要详细设置IP地址,网关,子网掩码,DNS服务器等参数。

TCP/IP尽管是目前最流行的网络协议,但TCP/IP协议在局域网中的通信效率并不高,使用它在浏览“网上邻居”中的计算机时,经常会出现不能正常浏览的现象。此时安装NetBEUI协议就会解决这个问题。

NetBEUI即NetBios Enhanced User Interface ,或NetBios增强用户接口。它是NetBIOS协议的增强版本,曾被许多操作系统采用,例如Windows for Workgroup、Win 9x系列、Windows NT等。NETBEUI协议在许多情形下很有用,是WINDOWS98之前的操作系统的缺省协议。NetBEUI协议是一种短小精悍、通信效率高的广播型协议,安装后不需要进行设置,特别适合于在“网络邻居”传送数据。所以建议除了TCP/IP协议之外,小型局域网的计算机也可以安上NetBEUI协议。另外还有一点要注意,如果一台只装了TCP/IP协议的WINDOWS98机器要想加入到WINNT域,也必须安装NetBEUI协议。

IPX/SPX协议本来就是Novell开发的专用于NetWare网络中的协议,但是也非常常用--大部分可以联机的游戏都支持IPX/SPX协议,比如星际争霸,反恐精英等等。虽然这些游戏通过TCP/IP协议也能联机,但显然还是通过IPX/SPX协议更省事,因为根本不需要任何设置。除此之外,IPX/SPX协议在非局域网络中的用途似乎并不是很大.如果确定不在局域网中联机玩游戏,那么这个协议可有可无。

参考资料:网络-网络七层协议

④ OSI鍙傝冩ā鍨嫔悇灞备娇鐢ㄧ殑缃戠粶璁惧囨槸浠涔堬纻

绗涓灞傦细鐬庢竻瀹界墿鐞嗗眰锛圥hysicalLayer)涓昏佽惧囷细涓缁у櫒銆侀泦绾垮櫒銆傜浜屽眰锛鏁版嵁阈捐矾灞锛图ataLinkLayer)
涓昏佽惧囷细浜屽眰浜ゆ崲链恒缃戞ˉ绗涓夊眰鏄缃戠粶灞(Network layer)
涓昏佽惧囨h寗锛氲矾鐢卞櫒绗锲涘眰鏄澶勭悊淇℃伅镄勪紶杈揿眰(Transport layer)
绗浜斿眰鏄浼氲瘽灞傜(浜(Session layer)
绗鍏灞傛槸琛ㄧず灞(Presentation layer)
绗涓冨眰搴旂敤灞(Application layer)钖庡洓灞备富瑕佹槸璁$畻链鸿蒋浠舵带鍒 婊℃剰璇烽噰绾筹纴璋㈣阿.