当前位置:首页 » 网络连接 » 计算机网络由硬件系统和软件系统组成
扩展阅读
手机网络图标是3g 2024-09-08 09:33:57

计算机网络由硬件系统和软件系统组成

发布时间: 2024-05-15 16:30:22

计算机网络软件的组成

不得不说,楼主的这个标题足够写一篇20多页的学科论文了。。。。

⑵ 计算机网络主要由什么系统构成

网络的构成
计算机网络的构成

计算机网络系统是由网络硬件和网络软件组成的。在网络系统中,硬件的选择对网络起着决定的作用,而网络软件则是挖掘网络潜力的工具。

网络硬件

网络硬件是计算机网络系统的物质基础。要构成一个计算机网络系统,首先要将计算机及其附属硬件设备与网络中的其他计算机系统连接起来,实现物理连接。不同的计算机网络系统,在硬件方面是有差别的。随着计算机技术和网络技术的发展,网络硬件日趋多样化,且功能更强,更复杂。常见的网络硬件有服务器、工作站、网络接口卡、集中器、调制解调器、终端及传输介质等。

服务器

在计算机网络中,分散在不同地点担负一定数据处理任务和提供资源的计算机被称为服务器。服务器是网络运行、管理和提供服务的中枢,它影响着网络的整体性能。一般在大型网络中采用大型机、中型机和小型机作为网络服务器,可以保证网络的可靠性。对于网点不多、网络通信量不大、数据的安全可靠性要求不高的网络,可以选用高档微机作网络服务器。

工作站

在计算机局域网中,网络工作站是通过网卡连接到网络上的一台个人计算机,它仍保持原有计算机的功能,作为独立的个人计算机为用户服务,同时它又可以按照被授予的一定权限访问服务器。工作站之间可以进行通信,可以共享网络的其他资源。

网络接口卡

网络接口卡也称为网卡或网板,是计算机与传输介质进行数据交互的中间部件,主要进行编码转换。在接收传输介质上传送的信息时,网卡把传来的信息按照网络上信号编码要求和帧的格式接受并交给主机处理。在主机向网络发送信息时,网卡把发送的信息按照网络传送的要求装配成帧的格式,然后采用网络编码信号向网络发送出去。

调制解调器

调制解调器(MODEM)是调制器和解调器的简称,是实现计算机通信的外部设备。调制解调器是一种进行数字信号与模拟信号转换的设备。计算机处理的是数字信号,而电话线传输的是模拟信号,在计算机和电话线之间需要一个连接设备,将计算机输出的数字信号变换为适合电话线传输的模拟信号,在接收端再将接收到的模拟信号变换为数字信号由计算机处理。因此,调制解调器成对使用。

终端

终端设备是用户进行网络操作所使用的设备,它的种类很多,可以是具有键盘及显示功能的一般终端,也可以是一台计算机。

传输介质

传输介质是传送信号的载体,在计算机网络中通常使用的传输介质有双绞线、同轴电缆、光纤、微波及卫星通信等。它们可以支持不同的网络类型,具有不同的传输速率和传输距离。

网络软件

在网络系统中,网络中的每个用户都可享用系统中的各种资源,所以系统必须对用户进行控制,否则就会造成系统混乱,造成信息数据的破坏和丢失。为了协调系统资源,系统需要通过软件工具对网络资源进行全面的管理,进行合理的调度和分配,并采取一系列的保密安全措施,防止用户不合理的对数据和信息的访问,防止数据和信息的破坏与丢失。

网络软件是实现网络功能所不可缺少的软环境。通常网络软件包括网络协议软件、网络通信软件和网络操作系统。

网络结构

在不同的网络系统中,网络结构及所选择使用的网络软件是有差别的。对于实用的网络系统来说,选择什么硬件和软件是根据系统的规模、系统的结构决定的。比如Novell局域网,如果网络系统所涉及的地理范围小,同时系统所拥有的数据量和通信数据量不大,那么只要一台网络服务器,并具备系统所规定的工作站数,选择适当的通信介质和相匹配的网络接口卡、网络软件、网络操作系统就可以建立起一个完整的网络系统。

在一个远程网络系统中所需要的设备和技术更为复杂。在远程通信网中,服务器与工作站、服务器通过集中器与工作站直接通信的部分是短程通信;而服务器与各工作站通信需要经过调制解调器或前端处理机的通信部分属于远程通信。

计算机网络结构通常有星型结构、总线型结构、环型结构、树型结构和网状结构。

星型结构

星型结构是以一个节点为中心的处理系统,各种类型的入网机器均与该中心处理机有物理链路直接相连,与其他节点间不能直接通信,与其他节点通信时需要通过该中心处理机转发,因此中心节点必须有较强的功能和较高的可靠性。

星型结构的优点是结构简单、建网容易、控制相对简单。其缺点是属集中控制,主机负载过重,可靠性低,通信线路利用率低。

总线结构

将所有的入网计算机均接入到一条通信传输线上,为防止信号反射,一般在总线两端连有终结器匹配线路阻抗。总线结构的优点是信道利用率较高,结构简单,价格相对便宜。缺点是同一时刻只能有两个网络节点在相互通信,网络延伸距离有限,网络容纳节点数有限。在总线上只要有一个节点连接出现问题,会影响整个网络的正常运行。目前在局域网中多采用此种结构。

环型结构

环型结构将各个连网的计算机由通信线路连接成一个闭合的环。在环型结构的网络中,信息按固定方向流动,或顺时针方向,或逆时针方向。其传输控制机制较为简单,实时性强,但可靠性较差,网络扩充复杂。

树型结构

树型结构实际上星型结构的一种变形,它将原来用单独链路直接连接的节点通过多级处理主机进行分级连接。这种结构与星型结构相比降低了通信线路的成本,但增加了网络复杂性。网络中除最低层节点及其连线外,任一节点或连线的故障均影响其所在支路网络的正常工作。

网状结构

网状结构其优点是节点间路径多,碰撞和阻塞可大大减少,局部的故障不会影响整个网络的正常工作,可靠性高;网络扩充和主机入网比较灵活、简单。但这种网络关系复杂,建网不易,网络控制机制复杂。广域网中一般用网状结构。

网络拓扑结构图

常用的网络拓扑结构图如下,在组建局域网时常采用星型、环型、总线型和树型结构。树型和网状结构在广域网中比较常见。但是在一个实际的网络中,可能是上述几种网络构型的混合。

星型结构图 总线型结构图

环型结构图 树型结构图

网状结构图

http://210.41.4.20/course/53/53/whjc/computer/information/DOC/1-3-2.HTM#

⑶ 计算机网络由哪两部分组成,各自的作用是什么

1、计算机网络分成通信子网和资源子网两部分。

通信子网的功能:负责全网的数据通信;

资源子网的功能:提供各种网络资源和网络服务,实现网络的资源共享。

2、网络硬件系统和网络软件系统。

网络硬件系统:主要包括有:网络服务器、网络工作站、网络适配器、传输介质等。

网络软件系统:主要包括有:网络操作系统软件、网络通信协议、网络工具软件、网络应用软件等。

(3)计算机网络由硬件系统和软件系统组成扩展阅读:

一些相互连接的、以共享资源为目的的、自治的计算机的集合。若按此定义,则早期的面向终端的网络都不能算是计算机网络,而只能称为联机系统(因为那时的许多终端不能算是自治的计算机)。

但随着硬件价格的下降,许多终端都具有一定的智能,因而“终端”和“自治的计算机”逐渐失去了严格的界限。若用微型计算机作为终端使用,按上述定义,则早期的那种面向终端的网络也可称为计算机网络。

从用户角度看,计算机网络是这样定义的:存在着一个能为用户自动管理的网络操作系统。由它调用完成用户所调用的资源,而整个网络像一个大的计算机系统一样,对用户是透明的。

一个比较通用的定义是:利用通信线路将地理上分散的、具有独立功能的计算机系统和通信设备按不同的形式连接起来,以功能完善的网络软件及协议实现资源共享和信息传递的系统。

从整体上来说计算机网络就是把分布在不同地理区域的计算机与专门的外部设备用通信线路互联成一个规模大、功能强的系统,从而使众多的计算机可以方便地互相传递信息,共享硬件、软件、数据信息等资源。简单来说,计算机网络就是由通信线路互相连接的许多自主工作的计算机构成的集合体。

最简单的计算机网络就只有两台计算机和连接它们的一条链路,即两个节点和一条链路。

⑷ 计算机网络软件主要包含哪几个部分

计算机网络软件主要由计算机系统、数据通信系统、网络软件及协议三大部分组成。

计算机系统是由硬件系统和软件系统两大部分组成的。

由硬件系统和软件系统所组成,没有安装任何软件的计算机称为裸机。可分为超级计算机、工业控制计算机、网络计算机、个人计算机、嵌入式计算机五类,较先进的计算机有生物计算机、光子计算机、量子计算机等。

计算机的组成

计算机是由硬件系统(hardwaresystem)和软件系统(softwaresystem)两部分组成的。传统电脑系统的硬体单元一般可分为输入单元、输出单元、算术逻辑单元、控制单元及记忆单元,其中算术逻辑单元和控制单元合称中央处理单元(CenterProcessingUnit,CPU)。

(4)计算机网络由硬件系统和软件系统组成扩展阅读:

计算机的主要特点

一、冲茄运算速度快:计算机内部电路组成,可以高速准确地完成各种算术运算。当今计算机系统的运算速度已达到

每秒万亿次,微机也可达每秒亿次以上,使大量复杂的科学计算问题得以解决。例如:卫星轨道物前的计算、大型水坝的计算、24小时天气算需要几年甚至几十年,而在现代社会里,用计算机只需几分钟就可完成。

二、计算精确度高:科学技术的发展特别是尖端科学技术的发展,需要高度精确的计算。计算机控制的导弹之所以能准确地击中预定的目标,是与计算机的精确计算分不开的。一般计算机可以有十几位甚至几十位(二进制)有效数字,计算精度可由千分之几到百万分之几,是任何计算工具所望尘莫及的。

三、逻辑运算能力强:计算机不仅能进行精确计算,还具有逻辑运算功能,能对信息进行比较和判断。计算机能把参加运算的数据、程序以及中间结果和最后结果保存起来,并能根据判断的结果自动执行下一条指令以供用户随时调用。

四、存储容量大:计算机内部的存储器具有记忆特性,可以存储大量的信息,这些信息,不仅包括各类数据信息,还包括加工这些数据的程散蚂察序。

⑸ 计算机网络的组成和体系结构

一、计算机网络的基本组成

计算机网络是一个很复杂的系统,它由许多计算机软件、硬件和通信设备组合而成。下面对一个计算机网络所需的主要部分,即服务器、工作站、外围设备、网络软件作简要介绍。

1.服务器(Server)

在计算机网络中,服务器是整个网络系统的核心,一般是指分散在不同地点担负一定数据处理任务和提供资源的计算机,它为网络用户提供服务并管理整个网络,它影响着网络的整体性能。一般在大型网络中采用大型机、中型机和小型机作为网络服务器,可保证网络的可靠性。对于网点不多,网络通信量不大,数据安全性要求不太高的网络,可以选用高档微机作网络服务器。根据服务器在网络中担负的网络功能的不同,又可分为文件服务器、通信服务器和打印服务器等。在小型局域网中,最常用的是文件服务器。一般来说网络越大、用户越多、服务器负荷越大,对服务器性能要求越高。

2.工作站(Workstation)

工作站有时也称为“节点”或“客户机(Client)”,是指通过网络适配器和线缆连接到网络上的计算机,是网络用户进行信息处理的个人计算机。它和服务器不同,服务器是为整个网络提供服务并管理整个网络,而工作站只是一个接入网络的设备,它保持原有计算机的功能,作为独立的计算机为用户服务,同时又可按一定的权限访问服务器,享用网络资源。

工作站通常都是普通的个人计算机,有时为了节约经费,不配软、硬盘,称为“无盘工作站”。

3.网络外围设备

是指连接服务器和工作站的一些连线或连接设备,如同轴电缆、双绞线、光纤等传输介质,网卡(NIC)、中继器(Repeater)、集线器(Hub)、交换机(Switch)、网桥(Bridge)等,又如用于广域网的设备:调制解调器(Modem)、路由器(Router)、网关(Gateway)等,接口设备:T型头、BNC连接器、终端匹配器、RJ45头、ST头、SC头、FC头等。

4.网络软件

前面介绍的都是网络硬件设备。要想网络能很好地运行,还必须有网络软件。

通常网络软件包括网络操作系统(NOS)、网络协议软件和网络通信软件等。其中,网络操作系统是为了使计算机具备正常运行和连接上网的能力,常见的网络操作系统有UNIX、Linux、Novell Netware、Windows NT、Windows 2000 Server、Windows XP等;网络协议软件是为了各台计算能使用统一的协议,可以看成是计算机之间相互会话使用的语言;而运用协议进行实际的通信则是由通信软件完成的。

网络软件功能的强弱直接影响到网络的性能,因为网络中的资源共享、相互通信、访问控制和文件管理等都是通过网络软件实现的。

二、计算机网络的拓扑结构

所谓计算机网络的拓扑结构是指网络中各结点(包括连接到网络中的设备、计算机)的地理分布和互连关系的几何构形,即网络中结点的互连模式。

网络的拓扑结构影响着整个网络的设计、功能、可靠性和通信费用等指标,常见的网络拓扑结构有总线型、星型、环型等,通过使用路由器和交换机等互连设备,可在此基础上构建一个更大网络。

1.总线型

在总线型结构中,将所有的入网计算机接入到一条通信传输线上,为防止信号反射,一般在总线两端连有终端匹配器如图6-1(a)。总线型结构的优点是信道利用率高,可扩充性好,结构简单,价格便宜。当数据在总线上传递时,会不断地“广播”,第一节点均可收到此信息,各节点会对比数据送达的地址与自己的地址是否相同,若相同,则接收该数据,否则不必理会该数据。缺点是同一时刻只能有两个网络结点在相互通信,网络延伸距离有限,网络容纳的节点数有限。在总线上只要有一个结点连接出现问题,会影响整个网络运行,且不易找到故障点。

图6-1 网络拓扑结构

2.星型

在星型结构中,以中央结点为中心,其他结点都与中央结点相连。每台计算机通过单独的通信线路连接到中央结点,由该中央结点向目的结点传送信息,如图6-1(b),因此,中央结点必须有较强的功能和较高的可靠性。

在已实现的网络拓扑结构中,这是最流行的一种。跟总线型拓扑结构相比,它的主要的优势是一旦某一个电缆线段被损坏了,只有连接到那个电缆段的主机才会受到影响,结构简单,建网容易,便于管理。缺点是该拓扑是以点对点方式布线的,故所需线材较多,成本相对较高,此外中央结点易成为系统的“瓶颈”,且一旦发生故障,将导致全网瘫痪。

3.环型

在环型结构中,如图6-1(c)所示,各网络结点连成封闭环路,数据只能是单向传递,每个收到数据包的结点都向它的下一结点转发该数据包,环游一圈后由发送结点回收。当数据包经过目标结点时,目标结点根据数据包中的目标地址判断出是自己接收,并把该数据包拷贝到自己的接收缓冲中。

环型拓扑结构的优点是:结构简单,网络管理比较简单,实时性强。缺点是:成本较高,可靠性差,网络扩充复杂,网络中若有任一结点发生故障都会使整个网络瘫痪。

三、计算机网络的体系结构

要弄清网络的体系结构,需先弄清网络协议是什么。

网络协议是两台网络上的计算机进行通信时使用的语言,是通信的规则和约定。为了在网络上传输数据,网络协议定义了数据应该如何被打成包、并且定义了在接收数据时接收计算机如何解包。在同一网络中的两台计算机为了相互通信,必须运行同一协议,就如同两个人交谈时,必须采用对方听得懂的语言和语速。

由于网络结点之间的连接可能是很复杂的,因此,为了减少协议设计的复杂性,在制定协议时,一般把复杂成分分解成一些简单成分,再将它们复合起来,而大多数网络都按层来组织,并且规定:(1)一般是将用户应用程序作为最高层,把物理通信线路作为最低层,将其间再分为若干层,规定每层处理的任务,也规定每层的接口标准;(2)每一层向上一层提供服务,而与再上一层不发生关系;(3)每一层可以调用下一层的服务传输信息,而与再下一层不发生关系。(4)相邻两层有明显的接口。

除最低层可水平通信外,其他层只能垂直通信。

层和协议的集合被称为网络的体系结构。为了帮助大家理解,我们从现实生活中的一个例子来理解网络的层次关系。假如一个只懂得法语的法国文学家和一个只懂得中文的中国文学家要进行学术交流,那么他们可将论文翻译成英语或某一种中间语言,然后交给各自的秘书选一种通信方式发给对方,如图6-2所示。

图6-2 中法文学家学术交流方式

下面介绍两个重要的网络体系结构:OSI参考模型和TCP/IP参考模型。

1.OSI参考模型

由于世界各大型计算机厂商推出各自的网络体系结构,不同计算机厂商的设备相互通信困难。为建立更大范围内的计算机网络,必然要解决异构网络的互连,因而国际标准化组织ISO于1977年提出“开放系统互连参考模型”,即着名的OSI(Open system interconnection/Reference Model)。它将计算机网络规定为物理层、数据链路层、网络层、传输层、会话层、表示层、应用层等七层,受到计算机界和通信界的极大关注。

2.TCP/IP参考模型

TCP/IP(Transmission Control Protocol/Internet protocol)协议是Internet使用的通信协议,由ARPANET研究中心开发。TCP/IP是一组协议集(Internet protocol suite),而TCP、IP是该协议中最重要最普遍使用的两个协议,所以用TCP/IP来泛指该组协议。

TCP/IP协议的体系结构被分为四层:

(1)网络接口层 是该模型的最低层,其作用是负责接收IP数据报,并通过网络发送出去,或者从网络上接收网络帧,分离IP数据报。

(2)网络层 IP协议被定义驻留在这一层中,它负责将信息从一台主机传到指定接收的另一台主机。主要功能是:寻址、打包和路由选择。

(3)传输层 提供了两个协议用于数据传输,即传输控制协议TCP和通用数据协议UDP,负责提供准确可靠和高效的数据传送服务。

(4)应用层 位于TCP/IP最高层,为用户提供一组常用的应用程序协议。例如:简单邮件传输协议SMTP、文件传协议FTP、远程登录协议Telnet、超文本传输协议HTTP(该协议是后来扩充的)等。随着Internet的发展,又开发了许多实用的应用层协议。

图6-3是TCP/IP模型和OSI模型的简单比较:

图6-3 TCP/IP模型和OSI模型的对比

⑹ 计算机网络系统由哪几个部分组成每个部分的主要作用是什么

计算机网络系统是由计算机系统、数据通信和网络系统软件组成的,从硬件来看主则哪尺要有下列组成部分:
(1)终端:用户进入网络所用的设备,如电传打字机、键盘显示器、计算机等。在局域网中,终端一般由微机担任,叫工作站,用户通过工作站共享网上资源。
(2)主机:有于进行数据分析处理和网络控制的计算机系统,其中包括外部设备、操作系统及其它软件。在局域网中,主机一般由较高档的计算机缓腔(如486和586机)担任,叫服务器,它应具有丰富的资源,如大容量硬盘、足够的内存和各种软件等。
(3)通信处理机:在接有终端的通信线路和主机之间设置的通信控制处理机器,分担数据孙高交换和各种通信的控制和管理。在局域网中,一般不设通讯处理机,直接由主机承担通信的控制和管理任务。
(4)本地线路:指把终端与节点蔌主机连接起来的线路,其中包括集中器或多路器等。它是一种低速线路,费用和效率均较低。

⑺ 计算机网络系统由什么组成

早期的计算机网络是由计算机——通信路线——终端组成系统。

第一代计算机网络---远程终端联机阶段。

第二代计算机网络---计算机网络阶段。

第三代计算机网络---计算机网络互联阶段。

第四代计算机网络---国际互联网与信息高速公路阶段。

(7)计算机网络由硬件系统和软件系统组成扩展阅读:

三个阶段的演进:

1、从单个网络ARPAnet向互联网发展:1969年美国国防部创建了第一个分组交换网ARPAnet只是一个单个的分组交换网,所有想连接在它上的主机都直接与就近的结点交换机相连,它规模增长很快,到70年代中期,人们认识到仅使用一个单独的网络无法满足所有的通信问题。

于是ARPA开始研究很多网络互联的技术,这就导致后来的互联网的出现。1983年TCP/IP协议称为ARPAnet的标准协议。同年,ARPAnet分解成两个网络,一个进行试验研究用的科研网ARPAnet,另一个是军用的计算机网络MILnet。1990,ARPAnet因试验任务完成正式宣布关闭。

2、建立三级结构的因特网:1985年起,美国国家科学基金会NSF就认识到计算机网络对科学研究的重要性,1986年,NSF围绕六个大型计算机中心建设计算机网络NSFnet,它是个三级网络,分主干网、地区网、校园网。它代替ARPAnet成为internet的主要部分。

1991年,NSF和美国政府认识到因特网不会限于大学和研究机构,于是支持地方网络接入,许多公司的纷纷加入,使网络的信息量急剧增加,美国政府就决定将因特网的主干网转交给私人公司经营,并开始对接入因特网的单位收费。

3、多级结构因特网的形成:1993年开始,美国政府资助的NSFnet就逐渐被若干个商用的因特网主干网替代。

这种主干网也叫因特网服务提供者ISP,考虑到因特网商用化后可能出现很多的ISP,为了使不同ISP经营的网络能够互通,在1994创建了4个网络接入点NAP分别由4个电信公司经营,本世纪初,美国的NAP达到了十几个。

NAP是最高级的接入点,它主要是向不同的ISP提供交换设备,使它们相互通信。因特网已经很难对其网络结构给出很精细的描述,但大致可分为五个接入级:网络接入点NAP,多个公司经营的国家主干网,地区ISP,本地ISP,校园网、企业或家庭PC机上网用户。