OSI七层模型、TCP/IP四层模型、五层体系结构
一、OSI七层模型
OSI七层协议模型主要是:应用层(Application)、表示层(Presentation)、会话层(Session)、传输层(Transport)、网络层(Network)、数据链路层(DataLink)、物理层(Physical)。
二、TCP/IP四层模型
TCP/IP是一个四层的体系结构,主要包括:应用层、运输层、网际层和网络接口层。从实质上讲,只有上边三层,网络接口层没有什么具体的内容。
三、五层体系结构
五层体系结构包括:应用层、运输层、网络层、数据链路层和物理层。五层协议只是OSI和TCP/IP的综合,实际应用还是TCP/IP的四层结构。为了方便可以把下两层称为网络接口层。
(1)计算机网络五层体系结构扩展阅读:
世界上第一个网络体系结构是美国IBM公司于1974年提出的,它取名为系统网络体系结构SNA(System Network Architecture)。凡是遵循SNA的设备就称为SNA设备。这些SNA设备可以很方便地进行互连。此后,很多公司也纷纷建立自己的网络体系结构,这些体系结构大同小异,都采用了层次技术。
㈡ 计算机网络之五层协议
一:概述
计算机网络 (网络)把许多 计算机 连接在一起,而 互联网 则把许多网络连接在一起,是 网络的网络 。因特网是世界上最大的互联网。
以小写字母i开始的internet( 互联网或互连网 )是 通用 名词,它泛指由多个计算机网络互连而成的网络。在这些网络之间的通信协议(通信规则)可以是 任意 的。
以大写字母I开始的Interent( 因特网 )是 专有 名词,它指当前全球最大的、开放的、由众多网络相互连接而成的特定计算机网络,它采用的是 TCP/IP 协议族 作为通信规则,且其前身是美国的 ARPANET 。
因特网现在采用 存储转发 的 分组交换 技术,以及三层因特网服务提供者(ISP)结构。
因特网按 工作方式 可以划分为 边缘 部分和 核心 部分,主机在网络的边缘部分,作用是进行信息处理。 路由器 是在网络的核心部分,作用是:按存储转发方式进行 分组交换 。
计算机通信是计算机的 进程 (运行着的程序)之间的通信,计算机网络采用 通信方式 :客户–服务器方式和对等连接方式(P2P方式)
按作用 范围 不同,计算机网络分为:广域网WAN,城域网MAN,局域网LAN和个人区域网PAN。
五层协议 的体系结构由:应用层,运输层,网络层,数据链路层和物理层。
<1>:应用层 : 是体系结构中的最高层,应用层的任务是 通过应用进程间的交互来完成特定网络应用 。应用层协议定义的是 应用进程间通信和交互的规则 。
<2>:运输层 :任务是负责向 两个主机中的进程之间的通信提供可靠的端到端服务 ,应用层利用该服务传送应用层报文。
TCP :提供面向连接的,可靠的数据传输服务,其数据传输的单位是报文段。
UDP :提供无连接的,尽最大努力的数据传输服务,不保证数据传输的可靠性。
<3>网络层: 网络层的任务就是要选择合适的路由,在发送数据时, 网络层把运输层产生的报文段或者用户数据报 封装 成分组或包进行交付给目的站的运输层。
<4>数据链路层: 数据链路层的任务是在两个相邻结点间的线路上无差错地传送以帧(frame)为单位的数据。每一帧包括数据和必要的控制信息。
<5>:物理层: 物理层的任务就是 透明 地传送比特流,物理层还要确定连接电缆插头的 定义 及 连接法 。
运输层最重要的协议是:传输控制协议 TCP 和用户数据报协议 UDP ,而网络层最重要的协议是网络协议 IP 。
分组交换的优点:高效、灵活、迅速、可靠。
网络协议主要由三个要素组成: (1)语法:即数据和控制信息的结构或者格式; (2)语义:即需要发出何种控制信息,完成何种动作以及做出何种响应。 (3)同步:即事件实现顺序的详细说明。
二:物理层
物理层的主要任务:描述为确定与 传输媒体 的 接口 有关的一些特性。
机械特性 :接口所用接线器的形状和尺寸,引脚数目和排列,固定和锁定装置等,平时常见的各种规格的插件都有严格的 标准化的规定 。
电气特性 :接口电缆上的各条线上出现的电压 范围 。
功能特性 :某条线上出现的某一电平的点电压表示何种 意义 ;
过程特性 :指明对不同功能的各种可能事件的出现 顺序 。
通信的目的 是: 传送消息 , 数据 是运送消息的 实体 。 信号 是数据的电气或电磁的表现。
根据信号中代表 参数 的取值方式不同。 信号分为 : 模拟信号 (连续无限)+ 数字信号 (离散有限)。代表数字信号不同的离散数值的基本波形称为 码元 。
通信 的双方信息交互的方式来看,有三中 基本方式 :
单向 通信(广播)
双向交替 通信(**半双工**_对讲机)
双向同时 通信( 全双工 _电话)
调制 :来自信源的信号常称为基带信号。其包含较多低频成分,较多信道不能传输低频分量或直流分量,需要对其进行调制。
调制分为 两大类 : 基带调制 (仅对波形转换,又称 编码 ,D2D)+ 带通调制 (基带信号频率范围搬移到较高频段, 载波 调制,D2M)。
编码方式 :
不归零制 (正电平1/负0)
归零制度 (正脉冲1/负0)
曼彻斯特编码 (位周期中心的向上跳变为0/下1)
差分曼彻斯特编码 (每一位中心处有跳变,开始辩解有跳变为0,无跳变1)
带通调制方法 : 调 幅 ( AM ):(0, f1) 。调 频 ( FM ):(f1, f2) 。调 相 ( PM ):(0 , 180度) 。
正交振幅调制(QAM)物理层 下面 的 传输媒体 (介质): 不属于任何一层 。包括有: 引导性传输媒体 :双绞、同轴电缆、光缆 、 非引导性传输媒体 :短波、微波、红外线。
信道复用技术 : 频分复用 :(一样的时间占有不不同资源) ; 时分复用 :(不同时间使用同样资源) ;统计时分复用、波分复用(WDM)、码分复用(CDM)。
宽带接入技术 : 非对称数字用户线 ADSL (Asymmetric Digital Subcriber Line)(用数字技术对现有的模拟电话用户线进行改造)
三:数据链路层
数据链路层使用的 信道 有 两种类型: * 点对点(PPP) 信道+ 广播*信道
点对点信道的数据链路层的协议数据单元- -帧
数据链路层协议有许多, 三个基本问题 是共同的
封装成桢
透明传输
差错检测
局域网的数据链路层拆成两个子层,即 逻辑链路层(LLC) 子层+ 媒体接入控制(MAC) 子层;
适配器的作用:
计算机与外界局域网的连接是通过通信适配器,适配器本来是主机箱内插入的一块网络接口板,又称网络接口卡,简称( 网卡 )。
以太网采用 无连接 的工作方式,对发送的数据帧 不进行编号 ,也不要求对方发回确认,目的站收到差错帧就丢掉。
以太网采用的协议是:具有 冲突检测 的 载波监听多点接入 ( CSMA/CD )。协议的要点是: 发送前先监听,边发送边监听,一旦发现总线出现了碰撞,就立即停止发送。
以太网的硬件地址 , MAC 地址实际上就是适配器地址或者适配器标识符。 48位长 , 以太网最短帧长:64字节。争用期51.2微秒。
以太网适配器有 过滤 功能:只接收 单播帧,广播帧,多播帧 。
使用 集线器 可以在 物理层 扩展以太网(半双工),使用 网桥 可以在 数据链路层 扩展以太网(半双工),网桥转发帧时, 不改变帧 的源地址。网桥 优点 :对帧进行转发过滤,增大 吞吐量 。扩大网络物理范围,提高 可靠 性,可 互连 不同物理层,不同MAC子层和不同速率的以太网。 网桥 缺点 :增加时延,可能产生广播风暴。
透明网桥 : 自学习 办法处理接收到的帧。
四:网络层
TCP/IP 体系中的网络层向上只提供简单灵活的、无连接,尽最大努力交付的数据报服务。网络层不提供服务质量的承诺,不保证分组交付的时限, 进程 之间的通信的 可靠性 由 运输层 负责。
一个IP地址在整个因特网范围内是唯一的,分类的 IP地址 包括A类( 1~126 )、B类( 128~191 )、C类( 192~223 单播地址)、D类( 多播 地址)。
分类的IP地址由 网络号字段 和 主机号字段 组成。
物理地址(硬件地址)是数据链路层和物理层使用的地址,而 IP 地址是网络层和以上各层使用的地址,是一种 逻辑地址 ,数据链路层看不见数据报的IP地址。
IP首部中的 生存时间 段给出了IP数据报在因特网中经过的 最大路由器数 ,可防止IP数据报在互联网中无限制的 兜圈 子。
地址解析协议 ARP(Address Resolution Protocol) 把IP地址解析为 硬件地址 ,它解决 同一个局域网的主机或路由器的IP地址和硬件地址的映射问题 ,是一种解决地址问题的协议。以目标IP地址为线索,用来定位一个下一个应该接收数据分包的网络设备对应的MAC地址。如果目标主机不再同一链路上时,可以通过ARP查找下一跳路由器的MAC地址,不过ARP只适用于IPV4,不能用于IPV6,IPV6中可以用ICMPV6替代ARP发送邻居搜索消息。
路由选择协议有两大类: 内部网关 协议(RIP和OSPE)和 外部网关 协议(BGP-4)。
网际控制报文协议 ICMP (Internet Control Message Protocol )控制报文协议。是IP层协议,ICMP报文作为IP数据报的数据,加上首部后组成IP数据报发送出去,使用ICMP并不是实现了可靠传输。ICMP允许主机或者路由器 报告差错 情况和 提供有关异常 的情况报告。
ICMP是一个重要应用是分组网间探测 PING
与单播相比,在一对多的通信中,IP多播可大大节约网络资源, IP多播使用D类地址,IP多播需要使用 网际组管理协议IGMP 和多播路由选择协议。
五: 运输层
网络层为主机之间提供逻辑通信,运输层为应用进程之间提供端到端的逻辑通信。
运输层有两个协议 TCP和UDP
运输层用一个 16位 端口号来标志一个端口。
UDP特点 :无连接、尽最大努力交付、面向报文、无拥塞控制、支持一对一,多对一,一对多,多对多的交互通信。首部开销小。
TCP特点: 面向连接,每一条TCP连接只能是点对点、提供可靠的交付服务,提供全双工通信、面向字节流。
TCP用主机的IP地址加上主机上的端口号作为TCP连接的端点,这样的端点就叫 套接字 。
流量控制 是一个 端到端 的问题,是接收端抑制发送端发送数据的速率,以方便接收端来得及接收。 拥塞控制 是一个全局性过程,涉及到所有的主机,所有的路由器,以及与降低网络传输性能有关的所有因素。
TCP拥塞控制采用四种算法: 慢开始、拥塞避免、快重传、快恢复 。
传输有 三个连接 :连接建立、数据传送、连接释放。
TCP连接建立采用三次握手机制,连接释放采用四次握手机制。
六:应用层
文件传送协议FTP 使用 TCP 可靠传输服务。FTP使用客户服务器方式,一个FTP服务器进程可同时为多个客户进程提供服务。在进行文件传输时,FTP的客户和服务器之间要建立两个并行的TCP连接,控制连接和数据连接,实际用于传输文件的是 数据连接 。
万维网 WWW 是一个大规模,联机式的信息储藏所,可以方便从因特网上一个站点链接到另一个站点。
万维网使用 统一资源定位符URL 来标志万维网上的各种文档,并使每一个文档在整个因特网的范围内具有唯一的标识符 URL 。
㈢ 计算机网络
TCP/IP五层协议的体系结构,自顶向下依次为:应用层、传输层、网络层、数据链路层、物理层。
不使用两次握手和四次握手的原因
为什么TIME_WAIT等待的时间是2MSL
MSL,Maximum Segment Lifetime英文的缩写, 报文最大生存时间 ,它是任何报文在网络上存在的最长时间,超过这个时间将被丢弃。
概述
区别 :
区别(表形式)
概念
超时时间应该设置为多少呢
8、快速重传
概念
SACK(Selective Acknowledgment 选择性确认),这种方式需要在 TCP 头部选项字段里加一个 叫SACK 的东西,它可以将 缓存的地图发送给发送方 ,这样发送方就可以知道哪些数据收到了,哪些数据没收到,知道了这些信息,就可以 只重传丢失的数据 。
D-SACK,其主要使用了 SACK 来 告诉发送方有哪些数据被重复接收了 。
下面以两个例子,来说明D-SACK的作用。
D-SACK有这么几个好处 :
引入滑动窗口的原因
窗口的实现
窗口的大小
窗口应用示例
窗口的大小由哪一方决定?
TCP 利用滑动窗⼝实现流量控制。流量控制是为了控制发送方发送速率,保证接收方来得及接收(让发送方根据接收方的实际接收能力控制发送的数据量)。 接收方发送的确认报文中的窗口字段可以用来控制发送方窗口大小,从而影响发送方的发送速率。将窗口字段设置为 0,则发送方不能发送数据。
HTTP协议的⻓连接和短连接,实质上是TCP协议的⻓连接和短连接。
HTTP 是⼀种不保存状态的协议,即无状态(stateless)协议。也就是说 HTTP 协议⾃身不对请求和响应之间的通信状态进⾏保存。
无状态的利弊:
对于无状态的问题,解法方案有很多种,其中比较简单的方式用 Cookie 技术 。Cookie的工作原理如下:
(1)浏览器端第一次发送请求到服务器端
(2)服务器端创建Cookie,该Cookie中包含用户的信息,然后将该Cookie发送到浏览器端
(3)浏览器端再次访问服务器端时会携带服务器端创建的Cookie
(4)服务器端通过Cookie中携带的数据区分不同的用户
此外,还有 Session 机制来解决这一问题。Session的工作原理如下:
(1)浏览器端第一次发送请求到服务器端,服务器端创建一个Session,同时会创建一个 特殊 的Cookie(name为JSESSIONID的固定值,value为session对象的ID),然后将该Cookie发送至浏览器端
(2)浏览器端发送第N(N>1)次请求到服务器端,浏览器端访问服务器端时就会携带该name为JSESSIONID的Cookie对象
(3)服务器端根据name为JSESSIONID的Cookie的value(sessionId),去查询Session对象,从而区分不同用户。
Cookie 和 Session都是⽤来跟踪浏览器⽤户身份的会话⽅式,但是两者的应⽤场景不太⼀样。
Cookie ⼀般⽤来保存⽤户信息。比如①我们在 Cookie 中保存已经登录过得⽤户信息,下次访问⽹站的时候⻚⾯可以⾃动帮你登录的⼀些基本信息给填了;②⼀般的⽹站都会有保持登录也就是说下次你再访问⽹站的时候就不需要重新登录了,这是因为⽤户登录的时候我们可以存放了⼀个Token 在 Cookie 中,下次登录的时候只需要根据 Token 值来查找⽤户即可(为了安全考虑,重新登录⼀般要将 Token 重写);③登录⼀次⽹站后访问⽹站其他⻚⾯不需要重新登录。
Session 的主要作⽤就是通过服务端记录⽤户的状态。 典型的场景是购物⻋,当你要添加商品到购物⻋的时候,系统不知道是哪个⽤户操作的,因为 HTTP 协议是⽆状态的。服务端给特定的⽤户创建特定的 Session 之后就可以标识这个⽤户并且跟踪这个⽤户了。
Cookie数据存储在客户端(浏览器)中,⽽Session数据保存在服务器上,相对来说 Session 安全性更⾼。如果要在Cookie 中存储⼀些敏感信息,不要直接写⼊ Cookie 中,最好能将 Cookie 信息加密然后使⽤到的时候再去服务器端解密。
HTTP1.0最早在⽹⻚中使⽤是在1996年,那个时候只是使⽤⼀些较为为简单的⽹⻚上和⽹络请求上,⽽HTTP1.1则在1999年才开始⼴泛应⽤于现在的各⼤浏览器⽹络请求中,同时HTTP1.1也是当前使⽤最为⼴泛的HTTP协议。 主要区别主要体现在:
URI的作⽤像身份证号⼀样,URL的作⽤更像家庭住址⼀样。URL是⼀种具体的URI,它不仅唯⼀标识资源,⽽且还提供了定位该资源的信息。
㈣ 五层协议的网络体系结构要点。
五层协议的网络体系结构各层的结构要点如下:
1、物理层:
物理层的任务就是透明地传送比特流,确定连接电缆插头的定义及连接法。
2、数据链路层:
数据链路层的任务是在两个相邻结点间的线路上无差错地传送以帧(frame)为单位的数据。每一帧包括数据和必要的控制信息。
3、网络层:
网络层的任务就是要选择合适的路由,使发送站的运输层所传下来的分组能够正确无误地按照地址找到目的站,并交付给目的站的运输层。
4运输层:
运输层的任务是向上一层的进行通信的两个进程之间提供一个可靠的端到端服务,使它们看不见运输层以下的数据通信的细节。
5、应用层:
应用层直接为用户的应用进程提供服务。
网络协议为计算机网络中进行数据交换而建立的规则、标准或约定的集合。例如,网络中一个微机用户和一个大型主机的操作员进行通信,由于这两个数据终端所用字符集不同,因此操作员所输入的命令彼此不认识。
为了能进行通信,规定每个终端都要将各自字符集中的字符先变换为标准字符集的字符后,才进入网络传送,到达目的终端之后,再变换为该终端字符集的字符。
㈤ 试述五层协议的网络体系结构的要点,包括各层的主要功能
1.应用层
应用层的任务是通过应用进程间的交互来完成特定网络应用。应用层协议定义的是应用进程间通信和交互的规则。
不同的网络应用需要不同的协议,如万维网应用的HTTP协议,支持电子邮件的SMTP协议,支持文件传送的FTP协议等
2.运输层
运输层的任务是负责为两个主机中进程之间的通信提供通用的数据传输服务。应用进程利用该服务传送应用层 报文。
所谓通用,是指并不针对某个特定网络的应用。而是多种应用可以使用同一个运输层服务。
运输层主要使用以下两种协议:
传输控制协议TCP (提供面向连接的,可靠的数据传输服务,数据传输的单位是报文段)
用户数据报协议UDP(提供无连接的,尽最大努力交付,其数据传输的单位是用户数据报)
3.网络层
网络层为分组交换网上不同主机提供通信服务。网络层将运输层产生的报文段或用户数据报封装成分组和包进行传送。
4.数据链路层
两台主机间的数据传输,总是一段一段在数据链路上传送的,这就需要使用专门的链路层协议。在两个相邻节点间的链路上传送帧,每一帧包括数据和必要的控制信息(如同步信息,地址信息,差错控制等)
三个基本问题:封装成帧,透明传输,差错检测
5.物理层
在物理层上所传数据单位是比特。
(5)计算机网络五层体系结构扩展阅读:网络体系结构是指通信系统的整体设计,它为网络硬件、软件、协议、存取控制和拓扑提供标准。它广泛采用的是国际标准化组织(ISO)在1979年提出的开放系统互连(OSI-Open System Interconnection)的参考模型。
㈥ 试述具有五层协议的网络体系结构要点,包括
五层协议的网络体系结构应用层、运输层、网络层、数据链路层、物理层。
互联网概述:
互联网(internet)又称因特网,即广域网、城域网、局域网及单机按照一定的通讯协议组成的国际计算机网络。互联网是指将两台计算机或者是两台以上的计算机终端、客户端、服务端通过计算机信息技术的手段互相联系起来的结果,人们可以与远在千里之外的朋友相互发送邮件、共同完成一项工作、共同娱乐。
同时拆斗,互联网还是物联网的重要组成部分,根据中国物联网校企联盟的定义,物联网是当下几乎所有技术与计算机互联网技术的结合,让信息更快更准得收集、传递、处理并执行。
㈦ 简述具有五层协议的网络体系结构中各层的主要功能。
物理层:以太网·调制解调器· 电力线通信(PLC) ·SONET/SDH· G.709 ·光导纤维· 同轴电缆 · 双绞线等
物理层(或称物理层,Physical Layer)是计算机网络OSI模型中最低的一层。物理层规定:为传输数据所需要的物理链路创建、维持、拆除,而提供具有机械的,电子的,功能的和规范的特性。简单的说,物理层确保原始的数据可在各种物理媒体上传输。局域网与广域网皆属第1、2层。
物理层是OSI的第一层,它虽然处于最底层,却是整个开放系统的基础。物理层为设备之间的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。如果您想要用尽量少的词来记住这个第一层,那就是“信号和介质”。
OSI采纳了各种现成的协议,其中有RS-232、RS-449、X.21、V.35、ISDN、以及FDDI、IEEE802.3、IEEE802.4、和IEEE802.5的物理层协议。
数据链路层:Wi-Fi(IEEE 802.11) · WiMAX(IEEE 802.16) ·ATM · DTM ·令牌环·以太网·FDDI ·帧中继· GPRS · EVDO ·HSPA · HDLC ·PPP· L2TP ·PPTP · ISDN·STP 等
数据链路层是OSI参考模型中的第二层,介乎于物理层和网络层之间。数据链路层在物理层提供的服务的基础上向网络层提供服务,其最基本的服务是将源自网络层来的数据可靠地传输到相邻节点的目标机网络层。为达到这一目的,数据链路必须具备一系列相应的功能,主要有:如何将数据组合成数据块,在数据链路层中称这种数据块为帧(frame),帧是数据链路层的传送单位;如何控制帧在物理信道上的传输,包括如何处理传输差错,如何调节发送速率以使与接收方相匹配;以及在两个网络实体之间提供数据链路通路的建立、维持和释放的管理。
移动通信系统中Uu口协议的第二层,也叫层二或L2。
网络层协议:IP (IPv4 · IPv6) · ICMP· ICMPv6·IGMP ·IS-IS · IPsec · ARP · RARP等
网络层是OSI参考模型中的第三层,介于传输层和数据链路层之间,它在数据链路层提供的两个相邻端点之间的数据帧的传送功能上,进一步管理网络中的数据通信,将数据设法从源端经过若干个中间节点传送到目的端,从而向运输层提供最基本的端到端的数据传送服务。主要内容有:虚电路分组交换和数据报分组交换、路由选择算法、阻塞控制方法、X.25协议、综合业务数据网(ISDN)、异步传输模式(ATM)及网际互连原理与实现。
传输层协议:TCP · UDP · TLS ·DCCP· SCTP · RSVP · OSPF 等
传输层(Transport Layer)是ISO OSI协议的第四层协议,实现端到端的数据传输。该层是两台计算机经过网络进行数据通信时,第一个端到端的层次,具有缓冲作用。当网络层服务质量不能满足要求时,它将服务加以提高,以满足高层的要求;当网络层服务质量较好时,它只用很少的工作。传输层还可进行复用,即在一个网络连接上创建多个逻辑连接。
传输层在终端用户之间提供透明的数据传输,向上层提供可靠的数据传输服务。传输层在给定的链路上通过流量控、分段/重组和差错控制。一些协议是面向链接的。这就意味着传输层能保持对分段的跟踪,并且重传那些失败的分段。
应用层协议:DHCP ·DNS· FTP · Gopher · HTTP· IMAP4 · IRC · NNTP · XMPP ·POP3 · SIP · SMTP ·SNMP · SSH ·TELNET · RPC · RTCP · RTP ·RTSP· SDP · SOAP · GTP · STUN · NTP· SSDP · BGP · RIP 等
应用层位于物联网三层结构中的最顶层,其功能为“处理”,即通过云计算平台进行信息处理。应用层与最低端的感知层一起,是物联网的显着特征和核心所在,应用层可以对感知层采集数据进行计算、处理和知识挖掘,从而实现对物理世界的实时控制、精确管理和科学决策。
物联网应用层的核心功能围绕两个方面:
一是“数据”,应用层需要完成数据的管理和数据的处理;
二是“应用”,仅仅管理和处理数据还远远不够,必须将这些数据与各行业应用相结合。例如在智能电网中的远程电力抄表应用:安置于用户家中的读表器就是感知层中的传感器,这些传感器在收集到用户用电的信息后,通过网络发送并汇总到发电厂的处理器上。该处理器及其对应工作就属于应用层,它将完成对用户用电信息的分析,并自动采取相关措施。
(7)计算机网络五层体系结构扩展阅读
TCP/IP协议毫无疑问是这三大协议中最重要的一个,作为互联网的基础协议,没有它就根本不可能上网,任何和互联网有关的操作都离不开TCP/IP协议。不过TCP/IP协议也是这三大协议中配置起来最麻烦的一个,单机上网还好,而通过局域网访问互联网的话,就要详细设置IP地址,网关,子网掩码,DNS服务器等参数。
TCP/IP尽管是目前最流行的网络协议,但TCP/IP协议在局域网中的通信效率并不高,使用它在浏览“网上邻居”中的计算机时,经常会出现不能正常浏览的现象。此时安装NetBEUI协议就会解决这个问题。
NetBEUI即NetBios Enhanced User Interface ,或NetBios增强用户接口。它是NetBIOS协议的增强版本,曾被许多操作系统采用,例如Windows for Workgroup、Win 9x系列、Windows NT等。NETBEUI协议在许多情形下很有用,是WINDOWS98之前的操作系统的缺省协议。NetBEUI协议是一种短小精悍、通信效率高的广播型协议,安装后不需要进行设置,特别适合于在“网络邻居”传送数据。所以建议除了TCP/IP协议之外,小型局域网的计算机也可以安上NetBEUI协议。另外还有一点要注意,如果一台只装了TCP/IP协议的WINDOWS98机器要想加入到WINNT域,也必须安装NetBEUI协议。
IPX/SPX协议本来就是Novell开发的专用于NetWare网络中的协议,但是也非常常用--大部分可以联机的游戏都支持IPX/SPX协议,比如星际争霸,反恐精英等等。虽然这些游戏通过TCP/IP协议也能联机,但显然还是通过IPX/SPX协议更省事,因为根本不需要任何设置。除此之外,IPX/SPX协议在非局域网络中的用途似乎并不是很大.如果确定不在局域网中联机玩游戏,那么这个协议可有可无。
参考资料:网络-网络七层协议
㈧ 计算机网络中五层协议它们分别的主要功能是什么它们具体分别是在哪里(从硬件层面上谈)实现的
1,物理层;其主要功能是:主要负责在物理线路上传输原始的二进制数据。
2、数据链路层;其主要功能是:主要负责在通信的实体间建立数据链路连接。
3、网络层;其主要功能是:要负责创建逻辑链路,以及实现数据包的分片和重组,实现拥塞控制、网络互连等功能。
4、传输层;其主要功能是:负责向用户提供端到端的通信服务,实现流量控制以及差错控制。
5、应用层;其主要功能是:为应用程序提供了网络服务。
物理层和数据链路层是由计算机硬件(如网卡)实现的,网络层和传输层由操作系统软件实现,而应用层由应用程序或用户创建实现。
(8)计算机网络五层体系结构扩展阅读:
应用层是体系结构中的最高层。应用层确定进程之间通信的性质以满足用户的需要。这里的进程就是指正在运行的程序。
应用层不仅要提供应用进程所需要的信息交换
和远地操作,而且还要作为互相作用的应用进程的用户代理,来完成一些为进行语义上有意义的信息交换所必须的功能。应用层直接为用户的应用进程提供服务。
传输层的任务就是负责主机中两个进程之间的通信。因特网的传输层可使用两种不同协议:即面向连接的传输控制协议TCP,和无连接的用户数据报协议UDP。
面向连接的服务能够提供可靠的交付,但无连接服务则不保证提供可靠的交付,它只是“尽最大努力交付”。这两种服务方式都很有用,备有其优缺点。在分组交换网内的各个交换结点机都没有传输层。
网络层负责为分组交换网上的不同主机提供通信。在发送数据时,网络层将运输层产生的报文段或用户数据报封装成分组或包进行传送。
在TCP/IP体系中,分组也叫作IP数据报,或简称为数据报。网络层的另一个任务就是要选择合适的路由,使源主
机运输层所传下来的分组能够交付到目的主机。