当前位置:首页 » 网络连接 » 计算机网络结构体系大全
扩展阅读
苹果下载软件全屏 2025-02-02 09:53:45
移动网络hd是否额外收费 2025-02-02 09:48:57

计算机网络结构体系大全

发布时间: 2023-09-22 18:58:10

1. 计算机网络系统由什么组成

早期的计算机网络是由计算机——通信路线——终端组成系统。

第一代计算机网络---远程终端联机阶段。

第二代计算机网络---计算机网络阶段。

第三代计算机网络---计算机网络互联阶段。

第四代计算机网络---国际互联网与信息高速公路阶段。

(1)计算机网络结构体系大全扩展阅读:

三个阶段的演进:

1、从单个网络ARPAnet向互联网发展:1969年美国国防部创建了第一个分组交换网ARPAnet只是一个单个的分组交换网,所有想连接在它上的主机都直接与就近的结点交换机相连,它规模增长很快,到70年代中期,人们认识到仅使用一个单独的网络无法满足所有的通信问题。

于是ARPA开始研究很多网络互联的技术,这就导致后来的互联网的出现。1983年TCP/IP协议称为ARPAnet的标准协议。同年,ARPAnet分解成两个网络,一个进行试验研究用的科研网ARPAnet,另一个是军用的计算机网络MILnet。1990,ARPAnet因试验任务完成正式宣布关闭。

2、建立三级结构的因特网:1985年起,美国国家科学基金会NSF就认识到计算机网络对科学研究的重要性,1986年,NSF围绕六个大型计算机中心建设计算机网络NSFnet,它是个三级网络,分主干网、地区网、校园网。它代替ARPAnet成为internet的主要部分。

1991年,NSF和美国政府认识到因特网不会限于大学和研究机构,于是支持地方网络接入,许多公司的纷纷加入,使网络的信息量急剧增加,美国政府就决定将因特网的主干网转交给私人公司经营,并开始对接入因特网的单位收费。

3、多级结构因特网的形成:1993年开始,美国政府资助的NSFnet就逐渐被若干个商用的因特网主干网替代。

这种主干网也叫因特网服务提供者ISP,考虑到因特网商用化后可能出现很多的ISP,为了使不同ISP经营的网络能够互通,在1994创建了4个网络接入点NAP分别由4个电信公司经营,本世纪初,美国的NAP达到了十几个。

NAP是最高级的接入点,它主要是向不同的ISP提供交换设备,使它们相互通信。因特网已经很难对其网络结构给出很精细的描述,但大致可分为五个接入级:网络接入点NAP,多个公司经营的国家主干网,地区ISP,本地ISP,校园网、企业或家庭PC机上网用户。

2. 计算机网络拓扑结构有哪些

计算机网络的拓扑结构主要有:总线型拓扑、星型拓扑、环型拓扑、树型拓扑和混合型拓扑。


总线型拓扑


总线型结构由一条高速公用主干电缆即总线连接若干个结点构成网络。网络中所有的结点通过总线进行信息的传输基圆。这种结构的特点是结构简单灵活,建网容易,使用方便,性能好。其缺点是主干总线对网络起决定性作用,总线运穗故障将影响整个网络。 总线型拓扑是使用最普遍的一种网络。


星型拓扑


星型拓扑由中央结点集线器与各个结点连接组成。这种网络各结点必须通过中央结点才能实现通信。星型结构的特点是结构简单、建网容易,便于控制和管理。其缺点是中央结点坦旁负担较重,容易形成系统的“瓶颈”,线路的利用率也不高。


环型拓扑


环型拓扑由各结点首尾相连形成一个闭合环型线路。环型网络中的信息传送是单向的,即沿一个方向从一个结点传到另一个结点;每个结点需安装中继器,以接收、放大、发送信号。这种结构的特点是结构简单,建网容易,便于管理。其缺点是当结点过多时,将影响传输效率,不利于扩充。


树型拓扑


树型拓扑是一种分级结构。在树型结构的雹谨网络中,任意两个结点之间不产生回路,每条通路都支持双向传输。这种结构的特点是扩充方便、灵活,成本低,易推广,适合于分主次或分等级的层次型管理系统。


网型拓扑


主要用于广域网,由于结点之间有多条线路相连,所以网络的可靠性较搞高。由于结构比较复杂,建设成本较高。


混合型拓扑


混合型拓扑可以是不规则型的网络让锋橡,也可以是点-点相连结构的网络。


蜂窝拓扑结构


蜂窝拓扑结构是无线局域网中常用的结构。它以无线传输介质(微波源悄基、卫星、红外等)点到点和多点传输为特征,是一种无线网,适用于城市网、校园网、企业网。


编辑本段局域网的结构


局域网中常见的结构为总线型或星型。

3. 计算机网络的组成和体系结构

一、计算机网络的基本组成

计算机网络是一个很复杂的系统,它由许多计算机软件、硬件和通信设备组合而成。下面对一个计算机网络所需的主要部分,即服务器、工作站、外围设备、网络软件作简要介绍。

1.服务器(Server)

在计算机网络中,服务器是整个网络系统的核心,一般是指分散在不同地点担负一定数据处理任务和提供资源的计算机,它为网络用户提供服务并管理整个网络,它影响着网络的整体性能。一般在大型网络中采用大型机、中型机和小型机作为网络服务器,可保证网络的可靠性。对于网点不多,网络通信量不大,数据安全性要求不太高的网络,可以选用高档微机作网络服务器。根据服务器在网络中担负的网络功能的不同,又可分为文件服务器、通信服务器和打印服务器等。在小型局域网中,最常用的是文件服务器。一般来说网络越大、用户越多、服务器负荷越大,对服务器性能要求越高。

2.工作站(Workstation)

工作站有时也称为“节点”或“客户机(Client)”,是指通过网络适配器和线缆连接到网络上的计算机,是网络用户进行信息处理的个人计算机。它和服务器不同,服务器是为整个网络提供服务并管理整个网络,而工作站只是一个接入网络的设备,它保持原有计算机的功能,作为独立的计算机为用户服务,同时又可按一定的权限访问服务器,享用网络资源。

工作站通常都是普通的个人计算机,有时为了节约经费,不配软、硬盘,称为“无盘工作站”。

3.网络外围设备

是指连接服务器和工作站的一些连线或连接设备,如同轴电缆、双绞线、光纤等传输介质,网卡(NIC)、中继器(Repeater)、集线器(Hub)、交换机(Switch)、网桥(Bridge)等,又如用于广域网的设备:调制解调器(Modem)、路由器(Router)、网关(Gateway)等,接口设备:T型头、BNC连接器、终端匹配器、RJ45头、ST头、SC头、FC头等。

4.网络软件

前面介绍的都是网络硬件设备。要想网络能很好地运行,还必须有网络软件。

通常网络软件包括网络操作系统(NOS)、网络协议软件和网络通信软件等。其中,网络操作系统是为了使计算机具备正常运行和连接上网的能力,常见的网络操作系统有UNIX、Linux、Novell Netware、Windows NT、Windows 2000 Server、Windows XP等;网络协议软件是为了各台计算能使用统一的协议,可以看成是计算机之间相互会话使用的语言;而运用协议进行实际的通信则是由通信软件完成的。

网络软件功能的强弱直接影响到网络的性能,因为网络中的资源共享、相互通信、访问控制和文件管理等都是通过网络软件实现的。

二、计算机网络的拓扑结构

所谓计算机网络的拓扑结构是指网络中各结点(包括连接到网络中的设备、计算机)的地理分布和互连关系的几何构形,即网络中结点的互连模式。

网络的拓扑结构影响着整个网络的设计、功能、可靠性和通信费用等指标,常见的网络拓扑结构有总线型、星型、环型等,通过使用路由器和交换机等互连设备,可在此基础上构建一个更大网络。

1.总线型

在总线型结构中,将所有的入网计算机接入到一条通信传输线上,为防止信号反射,一般在总线两端连有终端匹配器如图6-1(a)。总线型结构的优点是信道利用率高,可扩充性好,结构简单,价格便宜。当数据在总线上传递时,会不断地“广播”,第一节点均可收到此信息,各节点会对比数据送达的地址与自己的地址是否相同,若相同,则接收该数据,否则不必理会该数据。缺点是同一时刻只能有两个网络结点在相互通信,网络延伸距离有限,网络容纳的节点数有限。在总线上只要有一个结点连接出现问题,会影响整个网络运行,且不易找到故障点。

图6-1 网络拓扑结构

2.星型

在星型结构中,以中央结点为中心,其他结点都与中央结点相连。每台计算机通过单独的通信线路连接到中央结点,由该中央结点向目的结点传送信息,如图6-1(b),因此,中央结点必须有较强的功能和较高的可靠性。

在已实现的网络拓扑结构中,这是最流行的一种。跟总线型拓扑结构相比,它的主要的优势是一旦某一个电缆线段被损坏了,只有连接到那个电缆段的主机才会受到影响,结构简单,建网容易,便于管理。缺点是该拓扑是以点对点方式布线的,故所需线材较多,成本相对较高,此外中央结点易成为系统的“瓶颈”,且一旦发生故障,将导致全网瘫痪。

3.环型

在环型结构中,如图6-1(c)所示,各网络结点连成封闭环路,数据只能是单向传递,每个收到数据包的结点都向它的下一结点转发该数据包,环游一圈后由发送结点回收。当数据包经过目标结点时,目标结点根据数据包中的目标地址判断出是自己接收,并把该数据包拷贝到自己的接收缓冲中。

环型拓扑结构的优点是:结构简单,网络管理比较简单,实时性强。缺点是:成本较高,可靠性差,网络扩充复杂,网络中若有任一结点发生故障都会使整个网络瘫痪。

三、计算机网络的体系结构

要弄清网络的体系结构,需先弄清网络协议是什么。

网络协议是两台网络上的计算机进行通信时使用的语言,是通信的规则和约定。为了在网络上传输数据,网络协议定义了数据应该如何被打成包、并且定义了在接收数据时接收计算机如何解包。在同一网络中的两台计算机为了相互通信,必须运行同一协议,就如同两个人交谈时,必须采用对方听得懂的语言和语速。

由于网络结点之间的连接可能是很复杂的,因此,为了减少协议设计的复杂性,在制定协议时,一般把复杂成分分解成一些简单成分,再将它们复合起来,而大多数网络都按层来组织,并且规定:(1)一般是将用户应用程序作为最高层,把物理通信线路作为最低层,将其间再分为若干层,规定每层处理的任务,也规定每层的接口标准;(2)每一层向上一层提供服务,而与再上一层不发生关系;(3)每一层可以调用下一层的服务传输信息,而与再下一层不发生关系。(4)相邻两层有明显的接口。

除最低层可水平通信外,其他层只能垂直通信。

层和协议的集合被称为网络的体系结构。为了帮助大家理解,我们从现实生活中的一个例子来理解网络的层次关系。假如一个只懂得法语的法国文学家和一个只懂得中文的中国文学家要进行学术交流,那么他们可将论文翻译成英语或某一种中间语言,然后交给各自的秘书选一种通信方式发给对方,如图6-2所示。

图6-2 中法文学家学术交流方式

下面介绍两个重要的网络体系结构:OSI参考模型和TCP/IP参考模型。

1.OSI参考模型

由于世界各大型计算机厂商推出各自的网络体系结构,不同计算机厂商的设备相互通信困难。为建立更大范围内的计算机网络,必然要解决异构网络的互连,因而国际标准化组织ISO于1977年提出“开放系统互连参考模型”,即着名的OSI(Open system interconnection/Reference Model)。它将计算机网络规定为物理层、数据链路层、网络层、传输层、会话层、表示层、应用层等七层,受到计算机界和通信界的极大关注。

2.TCP/IP参考模型

TCP/IP(Transmission Control Protocol/Internet protocol)协议是Internet使用的通信协议,由ARPANET研究中心开发。TCP/IP是一组协议集(Internet protocol suite),而TCP、IP是该协议中最重要最普遍使用的两个协议,所以用TCP/IP来泛指该组协议。

TCP/IP协议的体系结构被分为四层:

(1)网络接口层 是该模型的最低层,其作用是负责接收IP数据报,并通过网络发送出去,或者从网络上接收网络帧,分离IP数据报。

(2)网络层 IP协议被定义驻留在这一层中,它负责将信息从一台主机传到指定接收的另一台主机。主要功能是:寻址、打包和路由选择。

(3)传输层 提供了两个协议用于数据传输,即传输控制协议TCP和通用数据协议UDP,负责提供准确可靠和高效的数据传送服务。

(4)应用层 位于TCP/IP最高层,为用户提供一组常用的应用程序协议。例如:简单邮件传输协议SMTP、文件传协议FTP、远程登录协议Telnet、超文本传输协议HTTP(该协议是后来扩充的)等。随着Internet的发展,又开发了许多实用的应用层协议。

图6-3是TCP/IP模型和OSI模型的简单比较:

图6-3 TCP/IP模型和OSI模型的对比

4. 计算机网络体系结构的ISO/OSI网络体系结构

国际标准化组织ISO(International Standards Organization)在80年代提出的开放系统互联参考模型OSI(Open System Interconnection),这个模型将计算机网络通信协议分为七层。这个模型是一个定义异构计算机连接标准的框架结构,其具有如下特点:
①网络中异构的每个节点均有相同的层次,相同层次具有相同的功能。
②同一节点内相邻层次之间通过接口通信。
③相邻层次间接口定义原语操作,由低层向高层提供服务。
④不同节点的相同层次之间的通信由该层次的协议管理,
⑤每层次完成对该层所定义的功能,修改本层次功能不影响其它层、
⑥仅在最低层进行直接数据传送。
⑦定义的是抽象结构,并非具体实现的描述。
在OSI网络体系结构中、除了物理层之外,网络中数据的实际传输方向是垂直的。数据由用户发送进程发送给应用层,向下经表示层、会话层等到达物理层,再经传输媒体传到接收端,由接收端物理层接收,向上经数据链路层等到达应用层,再由用户获取。数据在由发送进程交给应用层时,由应用层加上该层有关控制和识别信息,再向下传送,这一过程一直重复到物理层。在接收端信息向上传递时,各层的有关控制和识别信息被逐层剥去,最后数据送到接收进程。
现在一般在制定网络协议和标准时,都把ISO/OSI参考模型作为参照基准,并说明与该参照基准的对应关系。例如,在IEEE802局域网LAN标准中,只定义了物理层和数据链路层,并且增强了数据链路层的功能。在广域网WAN协议中,CCITT的X.25建议包含了物理层、数据链路层和网络层等三层协议。一般来说,网络的低层协议决定了一个网络系统的传输特性,例如所采用的传输介质、拓扑结构及介质访问控制方法等,这些通常由硬件来实现;网络的高层协议则提供了与网络硬件结构无关的,更加完善的网络服务和应用环境,这些通常是由网络操作系统来实现的。 物理层建立在物理通信介质的基础上,作为系统和通信介质的接口,用来实现数据链路实体间透明的比特 (bit) 流传输。只有该层为真实物理通信,其它各层为虚拟通信。物理层实际上是设备之间的物理接口,物理层传输协议主要用于控制传输媒体。
(1)物理层的特性
物理层提供与通信介质的连接,提供为建立、维护和释放物理链路所需的机械的、电气的、功能的和规程的特性,提供在物理链路上传输非结构的位流以及故障检测指示。物理层向上层提供位 (bit) 信息的正确传送。
其中机械特性主要规定接口连接器的尺寸、芯数和芯的位置的安排、连线的根数等。电气特性主要规定了每种信号的电平、信号的脉冲宽度、允许的数据传输速率和最大传输距离。功能特性规定了接口电路引脚的功能和作用。规程特性规定了接口电路信号发出的时序、应答关系和操作过程,例如,怎样建立和拆除物理层连接,是全双工还是半双工等。
(2)物理层功能
为了实现数据链路实体之间比特流的透明传输,物理层应具有下述功能:
①物理连接的建立与拆除
当数据链路层请求在两个数据链路实体之间建立物理连接时,物理层能够立即为它们建立相应的物理连接。若两个数据链路实体之间要经过若干中继数据链路实体时,物理层还能够对这些中继数据链路实体进行互联,以建立起一条有效的物理连接。当物理连接不再需要时,由物理层立即拆除。
②物理服务数据单元传输
物理层既可以采取同步传输方式,也可以采取异步传输方式来传输物理服务数据单元。
③物理层管理
对物理层收发进行管理,如功能的激活 (何时发送和接收、异常情况处理等)、差错控制 (传输中出现的奇偶错和格式错)等。 数据链路层为网络层相邻实体间提供传送数据的功能和过程;提供数据流链路控制;检测和校正物理链路的差错。物理层不考虑位流传输的结构,而数据链路层主要职责是控制相邻系统之间的物理链路,传送数据以帧为单位,规定字符编码、信息格式,约定接收和发送过程,在一帧数据开头和结尾附加特殊二进制编码作为帧界识别符,以及发送端处理接收端送回的确认帧,保证数据帧传输和接收的正确性,以及发送和接收速度的匹配,流量控制等。
(1)数据链路层的目的
提供建立、维持和释放数据链路连接以及传输数据链路服务数据单元所需的功能和过程的手段。数据链路连接是建立在物理连接基础上的,在物理连接建立以后,进行数据链路连接的建立和数据链路连接的拆除。具体说,每次通信前后,双方相互联系以确认一次通信的开始和结束,在一次物理连接上可以进行多次通信。数据链路层检测和校正在物理层出现的错误。
(2)数据链路层的功能和服务
数据链路层的主要功能是为网络层提供连接服务,并在数据链路连接上传送数据链路协议数据单元L-PDU,一般将L-PDU称为帧。数据链路层服务可分为以下三种:
①无应答、无连接服务。发送前不必建立数据链路连接,接收方也不做应答,出错和数据丢失时也不做处理。这种服务质量低,适用于线路误码率很低以及传送实时性要求高的 (例如语音类的)信息等。
②有应答、无连接服务。当发送主机的数据链路层要发送数据时,直接发送数据帧。目标主机接收数据链路的数据帧,并经校验结果正确后,向源主机数据链路层返回应答帧;否则返回否定帧,发送端可以重发原数据帧。这种方式发送的第一个数据帧除传送数据外,也起数据链路连接的作用。这种服务适用于一个节点的物理链路多或通信量小的情况,其实现和控制都较为简单。
③面向连接的服务。该服务一次数据传送分为三个阶段:数据链路建立,数据帧传送和数据链路的拆除。数据链路建立阶段要求双方的数据链路层作好传送的准备;数据传送阶段是将网络层递交的数据传送到对方;数据链路拆除阶段是当数据传送结束时,拆除数据链路连接。这种服务的质量好,是ISO/OSI参考模型推荐的主要服务方式。
(3)数据链路数据单元
数据链路层与网络层交换数据格式为服务数据单元。数据链路服务数据单元,配上数据链路协议控制信息,形成数据链路协议数据单元。
数据链路层能够从物理连接上传输的比特流中,识别出数据链路服务数据单元的开始和结束,以及识别出其中的每个字段,实现正确的接收和控制。能按发送的顺序传输到相邻结点。
(4)数据链路层协议
数据链路层协议可分为面向字符的通信规程和面向比特的通信规程。
面向字符的通信规程是利用控制字符控制报文的传输。报文由报头和正文两部分组成。报头用于传输控制,包括报文名称、源地址、目标地址、发送日期以及标识报文开始和结束的控制字符。正文则为报文的具体内容。目标节点对收到的源节点发来的报文,进行检查,若正确,则向源节点发送确认的字符信息;否则发送接收错误的字符信息。
面向比特的通信规程典型是以帧为传送信息的单位,帧分为控制帧和信息帧。在信息帧的数据字段 (即正文)中,数据为比特流。比特流用帧标志来划分帧边界,帧标志也可用作同步字符。 广域网络一般都划分为通信子网和资源子网,物理层、数据链路层和网络层组成通信子网,网络层是通信子网的最高层,完成对通信子网的运行控制。网络层和传输层的界面,既是层间的接口,又是通信子网和用户主机组成的资源子网的界限,网络层利用本层和数据链路层、物理层两层的功能向传输层提供服务。
数据链路层的任务是在相邻两个节点间实现透明的无差错的帧级信息的传送,而网络层则要在通信子网内把报文分组从源节点传送到目标节点。在网络层的支持下,两个终端系统的传输实体之间要进行通信,只需把要交换的数据交给它们的网络层便可实现。至于网络层如何利用数据链路层的资源来提供网络连接,对传输层是透明的。
网络层控制分组传送操作,即路由选择,拥塞控制、网络互连等功能,根据传输层的要求来选择服务质量,向传输层报告未恢复的差错。网络层传输的信息以报文分组为单位,它将来自源的报文转换成包文,并经路径选择算法确定路径送往目的地。网络层协议用于实现这种传送中涉及的中继节点路由选择、子网内的信息流量控制以及差错处理等。
(1)网络层功能
网络层的主要功能是支持网络层的连接。网络层的具体功能如下:
①建立和拆除网络连接
在数据链路层提供的数据链路连接的基础上,建立传输实体间或者若干个通信子网的网络连接。互连的子网可采用不同的子网协议。
②路径选择、中继和多路复用
网际的路径和中继不同与网内的路径和和中继,网络层可以在传输实体的两个网络地址之间选择一条适当的路径,或者在互连的子网之间选择一条适当的路径和中继。并提供网络连接多路复用的数据链路连接,以提高数据链路连接的利用率。
③分组、组块和流量控制
数据分组是指将较长的数据单元分割为一些相对较小的数据单元;数据组块是指将一些相对较小的数据单元组成块后一起传输。用以实现网络服务数据单元的有序传输,以及对网络连接上传输的网络服务数据单元进行有效的流量控制,以免发生信息堵塞现象。
④差错的检测与恢复
利用数据链路层的差错报告,以及其他的差错检测能力来检测经网络连接所传输的数据单元,检测是否出现异常情况。并可以从出错状态中解脱出来。
(2)数据报和虚电路
网络层中提供两种类型的网络服务,即无连接服务和面向连接的服务。它们又被称为数据报服务和虚电路服务。
①数据报 (Datagram)服务
在数据报方式,网络层从传输层接受报文,拆分为报文分组,并且独立地传送,因此数据报格式中包含有源和目标节点的完整网络地址、服务要求和标识符。发送时,由于数据报每经过一个中继节点时,都要根据当时情况按照一定的算法为其选择一条最佳的传输路径,因此,数据报服务不能保证这些数据报按序到达目标节点,需要在接收节点根据标识符重新排序。
数据报方式对故障的适应性强,若某条链路发生故障,则数据报服务可以绕过这些故障路径而另选择其他路径,把数据报传送至目标节点。数据报方式易于平衡网络流量,因为中继节点可为数据报选择一条流量较少的路由,从而避开流量较高的路由。数据报传输不需建立连接,目标节点在收到数据报后,也不需发送确认,因而是一种开销较小的通信方式。但是发方不能确切地知道对方是否准备好接收、是否正在忙碌,故数据报服务的可靠性不是很高。而且数据报发送每次都附加源和目标主机的全网名称降低了信道利用率。
②虚电路 (Virtue Circuit) 服务
在虚电路传输方式下,在源主机与目标主机通信之前,必须为分组传输建立一条逻辑通道,称为虚电路。为此,源节点先发送请求分组Call-Request,Call-Request包含了源和目标主机的完整网络地址。Call-Request途径每一个通信网络节点时,都要记下为该分组分配的虚电路号,并且路由器为它选择一条最佳传输路由发往下一个通信网络节点。当请求分组到达目标主机后,若它同意与源主机通信,沿着该虚电路的相反方向发送请求分组Call-Request给源节点,当在网络层为双方建立起一条虚电路后,每个分组中不必再填上源和目标主机的全网地址,而只需标上虚电路号,即可以沿着固定的路由传输数据。当通信结束时,将该虚电路拆除。
虚电路服务能保证主机所发出的报文分组按序到达。由于在通信前双方已进行过联系,每发送完一定数量的分组后,对方也都给予了确认,故可靠性较高。
③路由选择
网络层的主要功能是将分组从源节点经过选定的路由送到目标节点,分组途经多个通信网络节点造成多次转发,存在路由选择问题。路由选择或称路径控制,是指网络中的节点根据通信网络的情况 (可用的数据链路、各条链路中的信息流量),按照一定的策略 (传输时间最短、传输路径最短等)选择一条可用的传输路由,把信息发往目标节点。
网络路由选择算法是网络层软件的一部分,负责确定所收到的分组应传送的路由。当网络内部采用无连接的数据报方式时,每传送一个分组都要选择一次路由。当网络层采用虚电路方式时,在建立呼叫连接时,选择一次路径,后继的数据分组就沿着建立的虚电路路径传送,路径选择的频度较低。
路由选择算法可分为静态算法和动态算法。静态路由算法是指总是按照某种固定的规则来选择路由,例如,扩散法、固定路由选择法、随机路由选择法和流量控制选择法。动态路由算法是指根据拓扑结构以及通信量的变化来改变路由,例如,孤立路由选择法、集中路由选择法、分布路由选择法、层次路由选择法等 从传输层向上的会话层、表示层、应用层都属于端一端的主机协议层。传输层是网络体系结构中最核心的一层,传输层将实际使用的通信子网与高层应用分开。从这层开始,各层通信全部是在源与目标主机上的各进程间进行的,通信双方可能经过多个中间节点。传输层为源主机和目标主机之间提供性能可靠、价格合理的数据传输。具体实现上是在网络层的基础上再增添一层软件,使之能屏蔽掉各类通信子网的差异,向用户提供一个通用接口,使用户进程通过该接口,方便地使用网络资源并进行通信。
(1) 传输层功能
传输层独立于所使用的物理网络,提供传输服务的建立、维护和连接拆除的功能;选择网络层提供的最适合的服务。传输层接收会话层的数据,分成较小的信息单位,再送到网络层,实现两传输层间数据的无差错透明传送。
传输层可以使源与目标主机之间以点对点的方式简单地连接起来。真正实现端一端间可靠通信。传输层服务是通过服务原语提供给传输层用户(可以是应用进程或者会话层协议),传输层用户使用传输层服务是通过传送服务端口TSAP实现的。当一个传输层用户希望与远端用户建立连接时,通常定义传输服务访问点TSAP。提供服务的进程在本机TSAP端口等待传输连接请求,当某一节点机的应用程序请求该服务时,向提供服务的节点机的TSAP端口发出传输连接请求,并表明自己的端口和网络地址。如果提供服务的进程同意,就向请求服务的节点机发确认连接,并对请求该服务的应用程序传递消息,应用程序收到消息后,释放传输连接。
传输层提供面向连接和无连接两种类型的服务。这两种类型的服务和网络层的服务非常相似。传输层提供这两种类型服务的原因是因为,用户不能对通信子网加以控制,无法通过使用通信处理机来改善服务质量。传输层提供比网络层更可靠的端一端间数据传输,更完善的查错纠错功能。传输层之上的会话层、表示层、应用层都不包含任何数据传送的功能。
(2)传输层协议类型
传输层协议和网络层提供的服务有关。网络层提供的服务于越完善,传输层协议就越简单,网络层提供的服务越简单,传输层协议就越复杂。传输层服务可分成五类:
0类:提供最简单形式的传送连接,提供数据流控制。
1类:提供最小开销的基本传输连接,提供误差恢复。
2类:提供多路复用,允许几个传输连接多路复用一条链路。
3类:具有0类和1类的功能,提供重新同步和重建传输连接的功能。
4类:用于不可靠传输层连接,提供误差检测和恢复。
基本协议机制包括建立连接、数据传送和拆除连接。传输连接涉及四种不同类型的标识:
用户标识:即服务访问点SAP,允许实体多路数据传输到多个用户。
网络地址:标识传输层实体所在的站。
协议标识:当有多个不同类型的传输协议的实体,对网络服务标识出不同类型的协议。
连接标识:标识传送实体,允许传输连接多路复用。 会话是指两个用户进程之间的一次完整通信。会话层提供不同系统间两个进程建立、维护和结束会话连接的功能;提供交叉会话的管理功能,有一路交叉、两路交叉和两路同时会话的3种数据流方向控制模式。会话层是用户连接到网络的接口。
(1)会话层的主要功能
会话层的目的是提供一个面向应用的连接服务。建立连接时,将会话地址映射为传输地址。会话连接和传输连接有三种对应关系,一个会话连接对应一个传输连接;多个会话连接建立在一个传输连接上;一个会话连接对应多个传输连接。
数据传送时,可以进行会话的常规数据、加速数据、特权数据和能力数据的传送。
会话释放时,允许正常情况下的有序释放;异常情况下由用户发起的异常释放和服务提供者发起的异常释放。
(2)会话活动
会话服务用户之间的交互对话可以划分为不同的逻辑单元,每个逻辑单元称为活动。每个活动完全独立于它前后的其他活动,且每个逻辑单元的所有通信不允许分隔开。
会话活动由会话令牌来控制,保证会话有序进行。会话令牌分为四种,数据令牌、释放令牌、次同步令牌和主同步令牌。令牌是互斥使用会话服务的手段。
会话用户进程间的数据通信一般采用交互式的半双工通信方式。由会话层给会话服务用户提供数据令牌来控制常规数据的传送,有数据令牌的会话服务用户才可发送数据,另一方只能接收数据。当数据发完之后,就将数据令牌转让给对方,对方也可请求令牌。
(3)会话同步
在会话服务用户组织的一个活动中,有时要传送大量的信息,如将一个文件连续发送给对方,为了提高数据发送的效率,会话服务提供者允许会话用户在传送的数据中设置同步点。一个主同步点表示前一个对话单元的结束及下一个对话单元的开始。在一个对话单元内部或者说两个主同步点之间可以设置次同步点,用于会话单元数据的结构化。当会话用户持有数据令牌、次同步令牌和主同步令牌时就可在发送数据流中用相应的服务原语设置次同步点和主同步点。
一旦出现高层软件错误或不符合协议的事件则发生会话中断,这时会话实体可以从中断处返回到一个已知的同步点继续传送,而不必从文件的开头恢复会话。会话层定义了重传功能,重传是指在已正确应答对方后,在后期处理中发现出错而请求的重传,又称为再同步。为了使发送端用户能够重传,必须保存数据缓冲区中已发送的信息数据,将重新同步的范围限制在一个对话单元之内,一般返回到前一个次同步点,最多返回到最近一个主同步点。 应用层作为用户访问网络的接口层,给应用进程提供了访问OSI环境的手段。
应用进程借助于应用实体 (AE)、实用协议和表示服务来交换信息,应用层的作用是在实现应用进程相互通信的同时,完成一系列业务处理所需的服务功能。当然这些服务功能与所处理的业务有关。
应用进程使用OSI定义和通信功能,这些通信功能是通过OSI参考模型各层实体来实现的。应用实体是应用进程利用OSI通信功能的唯一窗口。它按照应用实体间约定的通信协议 (应用协议),传送应用进程的要求,并按照应用实体的要求在系统间传送应用协议控制信息,有些功能可由表示层和表示层以下各层实现。
应用实体由一个用户元素和一组应用服务元素组成。用户元素是应用进程在应用实体内部,为完成其通信目的,需要使用的那些应用服务元素的处理单元。实际上,用户元素向应用进程提供多种形式的应用服务调用,而每个用户元素实现一种特定的应用服务使用方式。用户元素屏蔽应用的多样性和应用服务使用方式的多样性,简化了应用服务的实现。应用进程完全独立于OSI环境,它通过用户元素使用OSI服务。
应用服务元素可分为两类,公共应用服务元素 (CASE)和特定应用服务元素 (SASE)。公共应用服务元素是用户元素和特定应用服务元素公共使用的部分,提供通用的最基本的服务,它使不同系统的进程相互联系并有效通信。它包括联系控制元素、可靠传输服务元素、远程操作服务元素等;特定应用服务元素提供满足特定应用的服务。包括虚拟终端、文件传输和管理、远程数据库访问、作业传送等。对于应用进程和公共应用服务元素来说,用户元素具有发送和接收能力。对特定服务元素来说,用户元素是请求的发送者,也是响应的最终接收者。

5. 计算机网络的基本组成部分有哪些

计算机网络的基本组成部分包括以下几个方面:

  • 硬件设备:计算机网络中的硬件设备包括计算机、服务器、路由器、交换机、集线器、网卡等,这些设备可以相互连接形成网络拓扑结构,使得数据能够在网络中进行传输。

  • 软件协议:计算机网络中的软件协议用于规范数据在网络中的传输方式和通信规则。常见的协议包括TCP/IP、HTTP、FTP、SMTP、POP3等。这些协议规定了数据传输的格式、数据包的分组、路由选择、差错检测和纠错等方面的细节,以确保网络中的数据能够安全、高效地传输。

  • 网络服务:计算机网络提供了多种网络服务,如Web服务、电子邮件服务、文件传输服务、远程登录服务、多媒体传输服务等,使得用户能够通过网络进行数据交换、信息传递和资源共享。

  • 网络协议和安全技术:为了保障网络安全,计算机网络需要采用多种网络协议和安全技术,如IPSec、SSL/TLS、防火墙、入侵检测系统等,以保护网络的安全和数旁陪据的隐私。

  • 网络管理和监控:计算机网络需要进行管理和监控,以确保网络的正常运行。网络管理员需要通过网络管理工具来管理网络中的设备、资源、用户、安全和性能等方面运亮蠢,以便及时排除故障,提高网络的可靠性和性能。

  • 综上所述键圆,计算机网络的基本组成部分包括硬件设备、软件协议、网络服务、网络协议和安全技术以及网络管理和监控等方面,它们共同构成了计算机网络的基础架构和功能体系。

-------FunNet超有趣学网络

6. 计算机网络的体系结构

要想让两台计算机进行通信,必须使它们采用相同的信息交换规则。我们把在计算机网络中用于规定信息的格式以及如何发送和接收信息的一套规则称为网络协议(network protocol)或通信协议(communication protocol)。
为了减少网络协议设计的复杂性,网络设计者并不是设计一个单一、巨大的协议来为所有形式的通信规定完整的细节,而是采用把通信问题划分为许多个小问题,然后为每个小问题设计一个单独的协议的方法。这样做使得每个协议的设计、分析、编码和测试都比较容易。分层模型(layering model)是一种用于开发网络协议的设计方法。本质上,分层模型描述了把通信问题分为几个小问题(称为层次)的方法,每个小问题对应于一层。
在计算机网络中要做到有条不紊地交换数据,就必须遵守一些事先约定好的规则。这些规则明确规定了所交换的数据格式以及有关的同步问题。这里所说的同步不是狭义的(即同频或同频同相)而是广义的,即在一定的条件下应当发生什么事件(如发送一个应答信息),因而同步含有时序的意思。这些为进行网络中的数据交换而建立的规则、标准或约定称为网络协议,网络协议也可简称为协议。网络协议主要由以下三个要素组成。
① 语法,即数据与控制信息的结构或格式。
② 语义,即需要发出何种控制信息,完成何种动作以及做出何种响应。
③ 同步,即事件实现顺序的详细说明。
网络协议是计算机网络的不可缺少的组成部分。
协议通常有两种不同的形式。一种是使用便于人来阅读和理解的文字描述,另一种是使用计算机能够理解的程序代码。
对于非常复杂的计算机网络协议,其结构应该是层次式的。分层可以带来许多好处。
① 各层之间是独立的。某一层并不需要知道它的下一层是如何实现的,而仅仅需要知道该层通过层间的接口(即界面)所提供的服务。由于每一层只实现一种相对独立的功能,因而可将一个难以处理的复杂问题分解为若干个较容易处理的更小一些的问题。这样,整个问题的复杂程度就下降了。
② 灵活性好。当任何一层发生变化时(例如由于技术的变化),只要层间接口关系保持不变,则在这层以上或以下各层均不受影响。此外,对某一层提供的服务还可进行修改。当某层提供的服务不再需要时,甚至可以将这层取消。
③ 结构上可分割开。各层都可以采用最合适的技术来实现。
④ 易于实现和维护。这种结构使得实现和调试一个庞大而又复杂的系统变得易于处理,因为整个的系统已被分解为若干个相对独立的子系统。
⑤ 能促进标准化工作。因为每一层的功能及其所提供的服务都已有了精确的说明。
分层时应注意使每一层的功能非常明确。若层数太少,就会使每一层的协议太复杂。但层数太多又会在描述和综合各层功能的系统工程任务时遇到较多的困难。
我们把计算机网络的各层及其协议的集合,称为网络的体系结构。换种说法,计算机网络的体系结构就是这个计算机网络及其构件所应完成的功能的精确定义。需要强调的是:这些功能究竟是用何种硬件或软件完成的,则是一个遵循这种体系结构的实现的问题。体系结构的英文名词architecture的原意是建筑学或建筑的设计和风格。但是它和一个具体的建筑物的概念很不相同。我们也不能把一个具体的计算机网络说成是一个抽象的网络体系结构。总之,体系结构是抽象的,而实现则是具体的,是真正在运行的计算机硬件和软件。
图5.8所示是计算机网络体系结构示意图。其中图5.8(a)是OSI的七层协议体系结构图、图5.8(b)是TCP/IP四层体系结构、图5.8(c)是五层协议的体系结构。五层协议的体系结构综合了前两种体系结构的优点,既简洁又能将概念阐述清楚。

7. 计算机网络的拓扑结构主要有哪几种

计算机网络的拓扑结构如下:

1、星型拓扑:以一个电脑为中心,向四周分散开。这个结构简单,扩展性大,传输时间少。但是当中心部分出现错误后,全部的网络都会瘫痪。

2、总线拓扑:所有的电脑网络都连在一条线上。这个结构所需要的电线短,电线少;但是当这个结构出现故障后很难找到故障问题。

3、环形拓扑:所有的网络形成一个环形结构。这个结构可以节约设备,但是当其中网络出现问题时候不容易找到故障的设备。

4、树形拓扑:以一个中心开始像下面发展,像一棵树的形状。这样的结构扩展性强,分支多,但是当顶端网络出现错误的时候整个网络都容易瘫痪。

5、网性拓扑:所有的网络连接构成一个网状。这个结构应用广泛,利用性强,而且当一个网络出现错误的时候其他结构仍然可以使用,但是这个结构复杂,成本高。

6、混合式拓扑:是以上的拓扑结构混合而成。

8. 计算机网络通常由哪些部分组成

计算机网络通常由以下几个部分组成:

  • 硬件:包括计算机、路由器、交换机、调制解调器等硬件设备,用于在网络中传输和处理数据。

  • 1、软件:包括操作系统、网络协议、网络服务、应用程序等软件,用于控制网络硬件设备的操作,并提供各种网络服务。

  • 2、协议:网络协议规定了网络中数据的传输方式和处理方式。常见的协议包括TCP/IP协议、HTTP协议、FTP协议、SMTP协议等。

  • 3、拓扑结构:网络拓扑结构指的是网络中各个设备之间的物理连接方式。常见的拓扑结构包括星型拓扑、总线型拓扑、环型拓扑等。

  • 4、网络服务:网络服务是网络中的各种应用程序,包括电子邮件、文件传输、远程登录、网页浏览等服务。

  • 5、安全机制:网络安全是网络中一个重要的方面,包括防火墙、加密技术、身份认证、访问控制等安全机制,用于保护网络中的数据和设备免受攻击和威胁。

总之,计算机网络是由硬件、软件、协议、拓扑结构、网络服务和安全机制等多个组成部分构成的复杂系统。这些组成部分相互作用,共同实现了计算机网络中的数据传输、处理、存储和管理等功能。

-------FunNet超有趣学网络

9. 计算机网络体系结构的组成结构

一、计算机系统和终端
计算机系统和终端提供网络服务界面。地域集中的多个独立终端可通过一个终端控制器连入网络。
二、通信处理机
通信处理机也叫通信控制器或前端处理机,是计算机网络中完成通信控制的专用计算机,通常由小型机、微机或带有CPU的专用设备充当。在广域网中,采用专门的计算机充当通信处理机:在局域网中,由于通信控制功能比较简单,所以没有专门的通信处理机,而是在计算机中插入一个网络适配器(网卡)来控制通信。
三、通信线路和通信设备
通信线路是连接各计算机系统终端的物理通路。通信设备的采用与线路类型有很大关系:如果是模拟线路,在线中两端使用Modem(调制解调器);如果是有线介质,在计算机和介质之间就必须使用相应的介质连接部件。
四、操作系统
计算机连入网络后,还需要安装操作系统软件才能实现资源共享和管理网络资源。如:Windows 98、Windows 2000、Windows xp等。
五、网络协议
网络协议是规定在网络中进行相互通信时需遵守的规则,只有遵守这些规则才能实现网络通信。常见的协议有:TCT/IP协议、IPX/SPX协议、NetBEUI协议等。

10. 典型的计算机网络体系结构有哪些

OSI七层模型、TCP/IP四层模型、五层体系结构

一、OSI七层模型

OSI七层协议模型主要是:应用层(Application)、表示层(Presentation)、会话层(Session)、传输层(Transport)、网络层(Network)、数据链路层(DataLink)、物理层(Physical)。

二、TCP/IP四层模型

TCP/IP是一个四层的体系结构,主要包括:应用层、运输层、网际层和网络接口层。从实质上讲,只有上边三层,网络接口层没有什么具体的内容。

三、五层体系结构

五层体系结构包括:应用层、运输层、网络层、数据链路层和物理层。五层协议只是OSI和TCP/IP的综合,实际应用还是TCP/IP的四层结构。为了方便可以把下两层称为网络接口层。

(10)计算机网络结构体系大全扩展阅读:

世界上第一个网络体系结构是美国IBM公司于1974年提出的,它取名为系统网络体系结构SNA(System Network Architecture)。凡是遵循SNA的设备就称为SNA设备。这些SNA设备可以很方便地进行互连。此后,很多公司也纷纷建立自己的网络体系结构,这些体系结构大同小异,都采用了层次技术。