当前位置:首页 » 网络连接 » 计算机网络中的链路是什么
扩展阅读
卖农机应该上哪个网站 2024-11-18 14:56:44
手机一直按键的软件 2024-11-18 14:47:21

计算机网络中的链路是什么

发布时间: 2022-12-27 03:02:54

1. 计算机网络(3)| 数据链路层

数据链路层属于计算机网络的低层。数据链路层使用的信道主要是两种类型:
(1)点对点信道 。即信道使用的是一对一点对点通信方式。
(2)广播信道 。这种信道使用的是一对多的光播通信方式,相对复杂。在广播信道上连接的主机很多,因此必须使用专用的共享信道协议来协调这些主机的数据发送。

首先我们应该了解一些有关点对点信道的一点基本概念。
(1)数据链路 。值得是当我们需要在一条线路上传送数据时,除了有一条物理线路外(链路),还必须有一些必要的通信协议来控制这些数据的传输,若把实现这些协议的硬件和软件加到链路上就构成了数据链路。
(2)帧 。帧指的是点对点信道的数据链路层的协议数据单元,即数据链路层把网络层交下来的数据构成帧发送到链路上以及把接收到的帧中的数据取出并上交给网络层。

点对点信道的数据链路层在进行通信时的主要步骤如下:
(1)结点A的数据链路层把网络层交下来的IP数据报添加首部和尾部封装成帧。
(2)结点A把封装好的帧发送给结点B的数据链路层。
(3)若B接收的帧无差错,则从接收的帧中提取出IP数据报上交给上面的网络层;否则丢弃这个帧。

接下来是来介绍数据链路层的三个基本问题,而这三个问题对于各种数据链路层的协议都是通用的。

(1)封装成帧 。指的是在一段数据的前后分别添加首部和尾部,这样就构成了一个帧,从而能够作为数据链路层的基本单位进行数据传输。在发送帧时,是从帧的首部开始发送的。各种数据链路层协议都对帧首部和帧尾部的格式有着明确的规定,且都规定了所能传送的 帧的数据部分 长度上限—— 最大传送单元MTU 。首部和尾部的作用是进行帧定界,帧定界可以使用特殊的 帧定界符 ,当数据在传输中出现差错时,通过帧的帧定界符就可以知道收到的数据是一个不完整的帧(即只有首部开始符而没有结束符)。

(2)透明传输 。从上面的介绍中知道帧的开始和结束标记使用了专门的控制字符,因此所传输的数据中任何与帧定界符相同的比特编码是不允许出现的,否则就会出现帧定界错误。当传送的帧是用文本文件组成的帧时,它的数据部分一定不会出现和帧定界符相同的字符,这样的传输就叫做 透明传输 。为了解决其他类型文件传输时产生的透明传输问题,就将帧定界符的前面插入一个 转义字符ESC ,这种方法称为 字节填充 。如果转义字符也出现在数据中,就在转义字符前面加上一个转义字符,当接收端收到两个转义字符时,就删除前面的那一个。

(3)差错检测 。在现实中,通信链路都不会是完美的,在传输比特的过程当中都是会产生差错的,1变成0或者0变成1都是可能发生的,我们把这样的错误叫做差错检测。在数据链路层中,为了保证数据传输的可靠性,减少差错出现的数量,就会采用各种差错检测措施,目前最常使用的检错技术是 循环冗余校验 。它的原理简单来说就是在被传输的数据M后面添加供错检测用的n为冗余码,构成一个帧数据发送出去。关于n位冗余码的得出方式与检验方式,可以 点击这里进一步了解 。

对于点对点链路,点对点协议PPP是目前使用得最广泛的数据链路层协议。由于因特网的用户通常都要连接到某个ISP才能接入到因特网,PPP协议就是用户计算机和ISP进行通信所使用的数据链路层协议。

在设计PPP协议时必须要考虑以下多方面的需求:
(1)简单 。简单的设计可使协议在实现时不容易出错,这样使得不同厂商对协议的不同实现的互操作性提高了。
(2)封装成帧 。PPP协议必须规定特殊的字符作为帧定界符(即标志一个帧的开始和结束的字符),以便使接收端从收到的比特流中能准确的找出帧的开始和结束的位置。
(3)透明性 。PPP协议必须保证数据传输的透明性。如果说是数据中碰巧出现和帧定界符一样的比特组合时,就要采用必要的措施来解决。
(4)多种网络层协议 。PPP协议必须能够在同一条物理链路上同时支持多种网络层协议(IP和IPX等)的运行。
(5)多种类型链路 。除了要支持多种网络层的协议外,PPP还必须能够在多种链路上运行(串行与并行链路)。
(6)差错检测 。PPP协议必须能够对接收端收到的帧进行检测,并舍弃有差错的帧。
(7)检测连接状态 。必须具有一种机制能够及时(不超过几分钟)自动检测出链路是否处于正常工作状态。
(8)最大传送单元 。协议对每一种类型的点对点链路设置最大传送单元MTU。
(9)网络层地址协商 。协议必须提供一种机制使通信的两个网络层(如两个IP层)的实体能够通过协商知道或能够配置彼此的网络层地址。
(10)数据压缩协商 。协议必须能够提供方法来协商使用数据压缩算法。但PPP协议不要求将数据压缩算法进行标准化。

PPP协议主要是由三个方面组成的:
(1) 一个将IP数据报封装到串行链路的方法。
(2) 一个用来建立、配置和测试数据链路连接的链路控制协议LCP(Link Control Protocol)。
(3) 一套网络控制协议NCP(Network Control Protocol),其中的每一个协议支持不同的网络层协议,如IP、OSI的网络层、DECnet,以及AppleTalk等。

最后来介绍PPP协议帧的格式:

首先是各个字段的意义。首部中的地址字段A规定为0xFF,控制字段C规定为0x03,这两个字段并没有携带PPP帧的信息。首部的第一个字段和尾部的第二个字段都是标识字段F(Flag)。首部的第四个字段是2字节的协议字段。当协议字段为0x0021时,PPP帧的信息部分字段就是IP数据报。若为0xC021,则信息字段是PPP链路控制协议LCP的数据,而 0x8021表示这是网络层的控制数据。尾部中的第一个字段(2字节)是使用CRC的帧检验序列FCS。

接着是关于PPP协议的差错检测的方法,主要分为字节填充和零比特填充。当是PPP异步传输时,采用的是字节填充的方法。字节填充是指当信息字段中出现和标志字段一样的比特(0x7E)组合时,就必须采取一些措施使这种形式上和标志字段一样的比特组合不出现在信息字段中。而当PPP协议使用的是同步传输时,就会采用零比特填充方法来实现透明传输,即只要发现有5个连续1,则立即填入一个0的方法。

广播信道可以进行一对多的通信。由于局域网采用的就是广播通信,因此下面有关广播通信的讨论就是基于局域网来进行的。

首先我们要知道局域网的主要 特点 ,即网络为一个单位所拥有,且地理范围和站点数目均有限。在局域网才出现时,局域网比广域网有着较高的数据率、较低的时延和较小的误码率。

局域网的 优点 主要有一下几个方面:
(1) 具有广播功能,从一个站点可方便地访问全网。
(2) 便于系统的扩展和逐渐地演变,各设备的位置可灵活地调整和改变。
(3) 提高了系统的可靠性(reliability)、可用性(availibility)、生存性(survivability)。

关于局域网的分类,我们一般是对局域网按照网络拓扑进行分类:
1.星状网: 由于集线器的出现和双绞线大量用于局域网中,星形以太网和多级星形结构的以太网获得了非常广泛的应用。
2.环形网: 顾名思义,就是将各个主机像环一样串起来的拓扑结构,最典型的就是令牌环形网。
3.总线网: 各站直接连在总线上。总线两端的匹配电阻吸收在总线上传播的电磁波信号的能量,避免在总线上产生有害的电磁波反射。

以太网主要有两个标准,即DIX Ethernet V2和IEEE 802.3标准,这两种标准的差别很小,可以不是很严格的区分它们。

但是由于有关厂商的商业上的激烈竞争,导致IEEE 802委员会未能形成一个最佳的局域网标准而制定了几个不同的局域网标准,所以为了数据链路层能够更好的适应各种不同的标准,委员会就把局域网的数据链路层拆成两个子层: 逻辑链路控制LLC子层 媒体接入控制MAC子层

计算机与外界局域网的连接是通过通信适配器(adapter)来进行的。适配器本来是在电脑主机箱内插入的一块网络接口板(或者是在笔记本电脑中插入一块PCMCIA卡),这种接口板又称为网络接口卡NIC(Network Interface Card)或简称为网卡。适配器和局域网之间的通信是通过电缆或双绞线以串行传输方式进行的,而适配器和计算机之间的通信则是通过计算机主板上的I/O总线以并行传输方式进行的,因此适配器的一个重要功能就是要进行数据串行传输和并行传输的转换。由于网络上的数据率和计算机总线上的数据率并不相同,所以在适配器中必须装有对数据进行缓存的存储芯片。若在主板上插入适配器时,还必须把管理该适配器的设备驱动程序安装在计算机的操作系统中。这个驱动程序以后就会告诉适配器,应当从存储器的什么位置上把多长的数据块发送到局域网,或应当在存储器的什么位置上把局域网传送过来的数据块存储下来。适配器还要能够实现以太网协议。

要注意的是,适配器在接收和发送各种帧时是不使用计算机的CPU的,所以这时计算机中的CPU可以处理其他的任务。当适配器收到有差错的帧时,就把这个帧丢弃而不必通知计算机,而当适配器收到正确的帧时,它就使用中断来通知该计算机并交付给协议栈中的网络层。当计算机要发送IP数据报时,就由协议栈把IP数据报向下交给适配器,组装成帧后发送到局域网。特别注意: 计算机的硬件地址—MAC地址,就在适配器的ROM中。计算机的软件地址—IP地址,就在计算机的存储器中。

CSMA/CD协议主要有以下3个要点:
1.多点接入 :指的是这是总线型网络,许多计算机以多点接入的方式连接在一根总线上。
2.载波监听 :就是用电子技术检测总线上有没有其他的计算机也在发送。载波监听也称为检测信道,也就是说,为了获得发送权,不管在发送前,还是在发送中,每一个站都必须不停的检测信道。如果检测出已经有其他站在发送,则自己就暂时不发送数据,等到信道空闲时才发送数据。而在发送中检测信道是为了及时发现有没有其他站的发送和本站发送的碰撞。
3.碰撞检测 :也就是边发送边监听。适配器一边发送数据一边检测信道上的信号电压的变化情况,以便判断自己在发送数据时其他站是否也在发送数据。所谓碰撞就是信号之间产生了冲突,这时总线上传输的信号严重失真,无法从中恢复出有用的信息来。

集线器的一些特点如下:
(1)使用集线器的以太网在逻辑上仍然是一个总线网,各个站点共享逻辑上的总线,使用的还是CSMA/CD协议。
(2)一个集线器是有多个接口。一个集线器就像一个多接口的转发器。
(3)集线器工作在物理层,所以它的每一个接口仅仅是简单的转发比特。它不会进行碰撞检测,所以当两个接口同时有信号的输入,那么所有的接口都将收不到正确的帧。
(4)集线器自身采用了专门的芯片来进行自适应串音回波抵消。这样可使接口转发出去的较强的信号不致对该接口收到的较弱信号产生干扰。
(5)集线器一般都有少量的容错能力和网络管理能力,也就是说如果在以太网中有一个适配器出现了故障,不停地发送以太网帧,这是集线器可以检测到这个问题从而断开与故障适配器的连线。

在局域网中,硬件地址又称为物理地址或者MAC地址,这种地址是用在MAC帧中的。由于6字节的地址字段可以使全世界所有的局域网适配器具有不同的地址,所以现在的局域网适配器都是使用6字节MAC地址。

主要负责分配地址字段的6个字节中的前3个字节。世界上凡事要生产局域适配器的厂家都必须向IEEE购买这3个字节构成的地址号,这个地址号我们通常叫做 公司标识符 ,而地址字段的后3个字节则由厂家自行指派,称为 扩展标识符

IEEE规定地址字段的第一字节的最低位为I/G位。当I/G位为0时,地址字段表示一个单个站地址,而当I/G位为1时表示组地址,用来进行多播。所以IEEE只分配地址字段前三个字节中的23位,当I/G位分别为0和1时,一个地址块可分别生 2^24 个单个站地址和2^24个组地址。IEEE还把地址字段第1个字节的最低第二位规定为G/L位。当G/L位为0时是全球管理,来保证在全球没有相同的地址,厂商向IEEE购买的都属于全球管理。当地址段G/L位为1时是本地管理,这时用户可以任意分配网络上的地址,但是以太网几乎不会理会这个G/L位的。

适配器对MAC帧是具有的过滤功能的,当适配器从网络上每收到一个MAC帧就先用硬件检查MAC帧中的目的地址。如果是发往本站的帧则收下,然后再进行其他的处理,否则就将此帧丢弃。这样做就可以不浪费主机的处理机和内存资源这里发往本站的帧包括以下三种帧:
(1)单播帧:即收到的帧的MAC地址与本站的硬件地址相同。
(2)广播帧:即发送给本局域网上所有站点的帧。
(3)多播帧:即发送给本局域网上一部分站点的帧。

常用的以太网MAC帧格式是以太网V2的MAC帧格式。如下图:

可以看到以太网V2的MAC帧比较的简单,有五个字段组成。前两个字段分别为6字节长的目的地址和源地址字段。第三个字段是2字节的类型字段,用来标志上一层使用的是什么协议,以便把收到的MAC帧的数据上交给上一层的这个协议。下一个字段是数据字段,其长度在46到1500字节之间。最后一个字段是4字节的帧检验序列FCS(使用CRC检验)。

从图中可以看出,采用以太网V2的MAC帧并没有一个结构来存储一个数据的帧长度。这是由于在曼彻斯特编码中每一个码元的正中间一定有一次电压的转换,如果当发送方在发送完一个MAC帧后就不再发送了,则发送方适配器的电压一定是不会在变化的。这样接收方就可以知道以太网帧结束的位置,在这个位置减去FCS序列的4个字节,就可以知道帧的长度了。

当数据字段的长度小于42字节时,MAC子层就会在MAC帧后面加入一个整数字节来填充字段,来保证以太网的MAC帧的长度不小于64字节。当MAC帧传送给上层协议后,上层协议必须具有能够识别填充字段的功能。当上层使用的是IP协议时,其首部就有一个总长度字段,因此总长度加上填充字段的长度,就是MAC帧的数据字段的长度。

从图中还可以看出,在传输MAC帧时传输媒体上实际是多发送了8个字节,这是因为当MAC帧开始接收时,由于适配器的时钟尚未与比特流达成同步,因此MAC帧的最开始的部分是无法接收的,结果就是会使整个MAC成为无用帧。所以为了接收端能够迅速的与比特流形成同步,就需要在前面插入这8个字节。这8个字节是由两个部分组成的,第一个部分是由前7个字节构成的前同步码,它的主要作用就是就是实现同步。第二个部分是帧开始界定符,它的作用就是告诉接收方MAC帧马上就要来了。需要注意的是,帧与帧之间的传输是需要一定的间隔的,否则接收端在收到了帧开始界定符后就会认为后面的都是MAC帧而会造成错误。

以太网上的主机之间的距离不能太远,否则主机发送的信号经过铜线的传输就会衰减到使CSMA/CD协议无法正常工作,所以在过去常常使用工作在物理层的转发器来拓展以太网的地理覆盖范围。但是现在随着双绞线以太网成为以太网的主流类型,拓展以太网的覆盖范围已经很少使用转发器,而是使用光纤和一对光纤调制解调器来拓展主机和集线器之间的距离。

光纤解调器的作用是进行电信号与光信号的转换。由于光纤带来的时延很小,并且带宽很宽,所以才用这种方法可以很容易地使主机和几公里外的集线器相连接。

如果是使用多个集线器,就可以连接成覆盖更大范围的多级星形结构的以太网:

使用多级星形结构的以太网不仅能够让连接在不同的以太网的计算机能够进行通信,还可以扩大以太网的地理覆盖范围。但是这样的多级结构也带来了一些缺点,首先这样的结构会增大它们的碰撞域,这样做会导致图中的某个系的两个站在通信时所传送的数据会通过所有的集线器进行转发,使得其他系的内部在这时都不能进行通信。其次如果不同的以太网采用的是不同的技术,那么就不可能用集线器将它们互相连接起来。

拓展以太网的更常用的方法是在数据链路层中进行的,在开始时人们使用的是网桥。但是现在人们更常用的是 以太网交换机

以太网交换机实质上是一个多接口的网桥,通常是有十几个或者更多的接口,而每一个接口都是直接与一个单台主机或者另一个以太网交换机相连。同时以太网交换机还具有并行性,即能同时连通多对接口,使多对主机能同时通信,对于相互通信的主机来说都是独占传输媒体且无碰撞的传输数据。

以太网交换机的接口还有存储器,能够在输出端口繁忙时把到来的帧进行缓存,等到接口不再繁忙时再将缓存的帧发送出去。

以太网交换机还是一种即插即用的设备,它的内部的地址表是通过自学习算法自动的建立起来的。以太网交换机由于使用了专用的交换结构芯片,用硬件转发,它的转发速率是要比使用软件转发的网桥快很多。

如下图中带有4个接口的以太网交换机,它的4个接口各连接一台计算机,其MAC地址分别为A、B、C、D。在开始时,以太网交换机里面的交换表是空的。

首先,A先向B发送一帧,从接口1进入到交换机。交换机收到帧后,先查找交换表,但是没有查到应从哪个接口转发这个帧,接着交换机把这个帧的源地址A和接口1写入交换表中,并向除接口1以外的所有接口广播这个帧。C和D因为目的地址不对会将这个帧丢弃,只有B才收下这个目的地址正确的帧。从新写入的交换表(A,1)可以得出,以后不管从哪一个接口收到帧,只要其目的地址是A,就应当把收到的帧从接口1转发出去。以此类推,只要主机A、B、C也向其他主机发送帧,以太网交换机中的交换表就会把转发到A或B或C应当经过的借口号写入到交换表中,这样交换表中的项目就齐全了,以后要转发给任何一台主机的帧,就都能够很快的在交换表中找到相应的转发接口。

考虑到有时可能要在交换机的接口更换主机或者主机要更换其网络适配器,这就需要更改交换表中的项目,所以交换表中每个项目都设有一定的有效时间。

但是这样的自学习有时也会在某个环路中无限制的兜圈子,如下图:

假设一开始主机A通过接口交换机#1向主机B发送一帧。交换机#1收到这个帧后就向所有其他接口进行广播发送。其中一个帧的走向:离开#1的3->交换机#2的接口1->接口2->交换机#1的接口4->接口3->交换机#2的接口1......一直循环下去,白白消耗网络资源。所以为了解决这样的问题,IEEE制定了一个生成树协议STP,其要点就是不改变网络的实际拓扑,但在逻辑上切断某些链路,从而防止出现环路。

虚拟局域网VLAN是由一些局域网网段构成的与物理位置无关的逻辑组,而这些网段具有某些共同的需求。每一个VLAN的帧都有一个明确的标识符,指明发送这个帧的计算机属于VLAN。要注意虚拟局域网其实只是局域网给用户提供的一种服务,而不是一种新型局域网。

现在已经有标准定义了以太网的帧格式的扩展,以便支持虚拟局域网。虚拟局域网协议允许在以太网的帧格式中插入一个4字节的标识符,称为VLAN标记,它是用来指明发送该帧的计算机属于哪一个虚拟局域网。VLAN标记字段的长度是4字节,插入在以太网MAC帧的源地址字段和类型字段之间。VLAN标记的前两个字节总是设置为0x8100,称为IEEE802.1Q标记类型。当数据链路层检测到MAC帧的源地址字段后面的两个字节的值是0x8100时,就知道现在插入了4字节的VLAN标记。于是就接着检查后面两个字节的内容,在后面的两个字节中,前3位是用户优先级字段,接着的一位是规范格式指示符CFI,最后的12位是该虚拟局域网VLAN标识符VID,它唯一的标志了这个以台网属于哪一个VLAN。

高速以太网主要是分为三种,即100BASE-T以太网、吉比特以太网和10吉比特以太网:

2. 计算机网络(三)数据链路层

结点:主机、路由器

链路:网络中两个结点之间的物理通道,链路的传输介质主要有双绞线、光纤和微波。分为有线链路、无线链路。

数据链路:网络中两个结点之间的逻辑通道,把实现控制数据传输协议的硬件和软件加到链路上就构成数据链路。

帧:链路层的协议数据单元,封装网络层数据报。

数据链路层负责通过一条链路从一个结点向另一个物理链路直接相连的相邻结点传送数据报。

数据链路层在物理层提供服务的基础上向网络层提供服务,其最基本的服务是将源自网络层来的数据可靠地传输到相邻节点的目标机网络层。其主要作用是加强物理层传输原始比特流的功能,将物理层提供的可能出错的物理连接改造成为 逻辑上无差错的数据链路 ,使之对网络层表现为一条无差错的链路。

封装成帧就是在一段数据的前后部分添加首部和尾部,这样就构成了一个帧。接收端在收到物理层上交的比特流后,就能根据首部和尾部的标记,从收到的比特流中识别帧的开始和结束。首部和尾部包含许多的控制信息,他们的一个重要作用:帧定界(确定帧的界限)。

帧同步:接收方应当能从接收到的二进制比特流中区分出帧的起始和终止。

组帧的四种方法:

透明传输是指不管所传数据是什么样的比特组合,都应当能够在链路上传送。因此,链路层就“看不见”有什么妨碍数据传输的东西。

当所传数据中的比特组合恰巧与某一个控制信息完全一样时,就必须采取适当的措施,使收方不会将这样的数据误认为是某种控制信息。这样才能保证数据链路层的传输是透明的。

概括来说,传输中的差错都是由于噪声引起的。

数据链路层编码和物理层的数据编码与调制不同。物理层编码针对的是单个比特,解决传输过程中比特的同步等问题,如曼彻斯特编码。而数据链路层的编码针对的是一组比特,它通过冗余码的技术实现一组二进制比特串在传输过程是否出现了差错。

较高的发送速度和较低的接收能力的不匹配,会造成传输出错,因此流量控制也是数据链路层的一项重要工作。数据链路层的流量控制是点对点的,而传输层的流量控制是端到端的。

滑动窗口有以下重要特性:

若采用n个比特对帧编号,那么发送窗口的尺寸W T 应满足: 。因为发送窗口尺寸过大,就会使得接收方无法区别新帧和旧帧。

每发送完一个帧就停止发送,等待对方的确认,在收到确认后再发送下一个帧。

除了比特出差错,底层信道还会出现丢包 [1] 问题

“停止-等待”就是每发送完一个分组就停止发送,等待对方确认,在收到确认后再发送下一个分组。其操作简单,但信道利用率较低

信道利用率是指发送方在一个发送周期内,有效地发送数据所需要的时间占整个发送周期的比率。即

GBN发送方:

GBN接收方:

因连续发送数据帧而提高了信道利用率,重传时必须把原来已经正确传送的数据帧重传,是传送效率降低。

设置单个确认,同时加大接收窗口,设置接收缓存,缓存乱序到达的帧。

SR发送方:

SR接收方:

发送窗口最好等于接收窗口。(大了会溢出,小了没意义),即

传输数据使用的两种链路

信道划分介质访问控制将使用介质的每个设备与来自同一通信信道上的其他设备的通信隔离开来,把时域和频域资源合理地分配给网络上的设备。

当传输介质的带宽超过传输单个信号所需的带宽时,人们就通过在一条介质上同时携带多个传输信号的方法来提高传输系统的利用率,这就是所谓的多路复用,也是实现信道划分介质访问控制的途径。多路复用技术把多个信号组合在一条物理信道上进行传输,使多个计算机或终端设备共享信道资源,提高了信道的利用率。信道划分的实质就是通过分时、分频、分码等方法把原来的一条广播信道,逻辑上分为几条用于两个结点之间通信的互不干扰的子信道,实际上就是把广播信道转变为点对点信道。

频分多路复用是一种将多路基带信号调制到不同频率载波上,再叠加形成一个复合信号的多路复用技术。在物理信道的可用带宽超过单个原始信号所需带宽的情况下,可将该物理信道的总带宽分割成若千与传输单个信号带宽相同(或略宽)的子信道,每个子信道传输一种信号,这就是频分多路复用。

每个子信道分配的带宽可不相同,但它们的总和必须不超过信道的总带宽。在实际应用中,为了防止子信道之间的千扰,相邻信道之间需要加入“保护频带”。频分多路复用的优点在于充分利用了传输介质的带宽,系统效率较高;由于技术比较成熟,实现也较容易。

时分多路复用是将一条物理信道按时间分成若干时间片,轮流地分配给多个信号使用。每个时间片由复用的一个信号占用,而不像FDM那样,同一时间同时发送多路信号。这样,利用每个信号在时间上的交叉,就可以在一条物理信道上传输多个信号。

就某个时刻来看,时分多路复用信道上传送的仅是某一对设备之间的信号:就某段时间而言,传送的是按时间分割的多路复用信号。但由于计算机数据的突发性,一个用户对已经分配到的子信道的利用率一般不高。统计时分多路复用(STDM,又称异步时分多路复用)是TDM 的一种改进,它采用STDM帧,STDM帧并不固定分配时隙,面按需动态地分配时隙,当终端有数据要传送时,才会分配到时间片,因此可以提高线路的利用率。例如,线路传输速率为8000b/s,4个用户的平均速率都为2000b/s,当采用TDM方式时,每个用户的最高速率为2000b/s.而在STDM方式下,每个用户的最高速率可达8000b/s.

波分多路复用即光的频分多路复用,它在一根光纤中传输多种不同波长(频率)的光信号,由于波长(频率)不同,各路光信号互不干扰,最后再用波长分解复用器将各路波长分解出来。由于光波处于频谱的高频段,有很高的带宽,因而可以实现多路的波分复用

码分多路复用是采用不同的编码来区分各路原始信号的一种复用方式。与FDM和 TDM不同,它既共享信道的频率,又共享时间。下面举一个直观的例子来理解码分复用。

实际上,更常用的名词是码分多址(Code Division Multiple Access.CDMA),1个比特分为多个码片/芯片( chip),每一个站点被指定一个唯一的m位的芯片序列,发送1时发送芯片序列(通常把o写成-1) 。发送1时站点发送芯片序列,发送o时发送芯片序列反码。

纯ALOHA协议思想:不监听信道,不按时间槽发送,随机重发。想发就发

如果发生冲突,接收方在就会检测出差错,然后不予确认,发送方在一定时间内收不到就判断发生冲突。超时后等一随机时间再重传。

时隙ALOHA协议的思想:把时间分成若干个相同的时间片,所有用户在时间片开始时刻同步接入网络信道,若发生冲突,则必须等到下一个时间片开始时刻再发送。

载波监听多路访问协议CSMA(carrier sense multiple access)协议思想:发送帧之前,监听信道。

坚持指的是对于监听信道忙之后的坚持。

1-坚持CSMA思想:如果一个主机要发送消息,那么它先监听信道。

优点:只要媒体空闲,站点就马上发送,避免了媒体利用率的损失。

缺点:假如有两个或两个以上的站点有数据要发送,冲突就不可避免。

非坚持指的是对于监听信道忙之后就不继续监听。

非坚持CSMA思想:如果一个主机要发送消息,那么它先监听信道。

优点:采用随机的重发延迟时间可以减少冲突发生的可能性。

缺点:可能存在大家都在延迟等待过程中,使得媒体仍可能处于空闲状态,媒体使用率降低。

p-坚持指的是对于监听信道空闲的处理。

p-坚持CSMA思想:如果一个主机要发送消息,那么它先监听信道。

优点:既能像非坚持算法那样减少冲突,又能像1-坚持算法那样减少媒体空闲时间的这种方案。

缺点:发生冲突后还是要坚持把数据帧发送完,造成了浪费。

载波监听多点接入/碰撞检测CSMA/CD(carrier sense multiple access with collision detection)

CSMA/CD的工作流程:

由图可知,至多在发送帧后经过时间 就能知道所发送的帧有没有发生碰撞。因此把以太网端到端往返时间为 称为争周期(也称冲突窗口或碰撞窗口)。

截断二进制指数规避算法:

最小帧长问题:帧的传输时延至少要两倍于信号在总线中的传播时延。

载波监听多点接入/碰撞避免CSMA/CA(carrier sense multiple access with collision avoidance)其工作原理如下

CSMA/CD与CSMA/CA的异同点:

相同点:CSMA/CD与CSMA/CA机制都从属于CSMA的思路,其核心是先听再说。换言之,两个在接入信道之前都须要进行监听。当发现信道空闲后,才能进行接入。

不同点:

轮询协议:主结点轮流“邀请”从属结点发送数据。

令牌:一个特殊格式的MAC控制帧,不含任何信息。控制信道的使用,确保同一时刻只有一个结点独占信道。每个结点都可以在一定的时间内(令牌持有时间)获得发送数据的权利,并不是无限制地持有令牌。应用于令牌环网(物理星型拓扑,逻辑环形拓扑)。采用令牌传送方式的网络常用于负载较重、通信量较大的网络中。

轮询访问MAC协议/轮流协议/轮转访问MAC协议:基于多路复用技术划分资源。

随机访问MAC协议: 用户根据意愿随机发送信息,发送信息时可独占信道带宽。 会发生冲突

信道划分介质访问控制(MAC Multiple Access Control )协议:既要不产生冲突,又要发送时占全部带宽。

局域网(Local Area Network):简称LAN,是指在某一区域内由多台计算机互联成的计算机组,使用广播信道。其特点有

决定局域网的主要要素为:网络拓扑,传输介质与介质访问控制方法。

局域网的分类

IEEE 802标准所描述的局域网参考模型只对应OSI参考模型的数据链路层与物理层,它将数据链路层划分为逻辑链路层LLC子层和介质访问控制MAC子层。

以太网(Ethernet)指的是由Xerox公司创建并由Xerox、Intel和DEC公司联合开发的基带总线局域网规范,是当今现有局域网采用的最通用的通信协议标准。以太网络使用CSMA/CD(载波监听多路访问及冲突检测)技术。 以太网只实现无差错接收,不实现可靠传输。

以太网两个标准:

以太网提供无连接、不可靠的服务

10BASE-T是传送基带信号的双绞线以太网,T表示采用双绞线,现10BASE-T 采用的是无屏蔽双绞线(UTP),传输速率是10Mb/s。

计算机与外界有局域网的连接是通过通信适配器的。

在局域网中,硬件地址又称为物理地址,或MAC地址。MAC地址:每个适配器有一个全球唯一的48位二进制地址,前24位代表厂家(由IEEE规定),后24位厂家自己指定。常用6个十六进制数表示,如02-60-8c-e4-b1-21。

最常用的MAC帧是以太网V2的格式。

IEEE 802.11是无线局域网通用的标准,它是由IEEE所定义的无线网络通信的标准。

广域网(WAN,Wide Area Network),通常跨接很大的物理范围,所覆盖的范围从几十公里到几千公里,它能连接多个城市或国家,或横跨几个洲并能提供远距离通信,形成国际性的远程网络。

广域网的通信子网主要使用分组交换技术。广域网的通信子网可以利用公用分组交换网、卫星通信网和无线分组交换网,它将分布在不同地区的局域网或计算机系统互连起来,达到资源共享的目的。如因特网(Internet)是世界范围内最大的广域网。

点对点协议PPP(Point-to-Point Protocol)是目前使用最广泛的数据链路层协议,用户使用拨号电话接入因特网时一般都使用PPP协议。 只支持全双工链路。

PPP协议应满足的要求

PPP协议的三个组成部分

以太网交换机

冲突域:在同一个冲突域中的每一个节点都能收到所有被发送的帧。简单的说就是同一时间内只能有一台设备发送信息的范围。

广播域:网络中能接收任一设备发出的广播帧的所有设备的集合。简单的说如果站点发出一个广播信号,所有能接收收到这个信号的设备范围称为一个广播域。

以太网交换机的两种交换方式:

直通式交换机:查完目的地址(6B)就立刻转发。延迟小,可靠性低,无法支持具有不同速率的端口的交换。

存储转发式交换机:将帧放入高速缓存,并检查否正确,正确则转发,错误则丢弃。延迟大,可靠性高,可以支持具有不同速率的端口的交换。

3. 计算机网络:数据链路层

互联网是指很多异构的网络由路由器联系起来的一个大网络。在研究这个大网络之前,我们要庖丁解牛,先研究其局部和单元。最小的网络单元就是局域网,局域网是一个单位所拥有,且地理范围和站点数量都很有限。

局域网内的计算机通信不需要路由器,所以不会用到网络层的协议,而是依赖数据链路层。

上图说明了数据链路层在整个互联网体系中的位置。数据链路层的信道分为两种:

在点到点信道的数据链路层协议上,可以采用简化的三层模型。无论是主机和主机,主机和路由器,或者两个路由器之间,我们都可以看成结点和结点之间的通信。

数据链路层不必考虑物理层是如何实现比特传输的细节,我们甚至可以简单设想,节点A沿着数据链路层的水平方向把帧输出给结点B。

数据链路层的协议有多个,但有三个共性问题。

从上图可以得出以下结论:

利用转义字符(ESC,十六进制编码0x1B)来解决帧的数据部分包含控制字符的问题

信道往往不是理想的,所以通信会带来误差。常用误码率来衡量传输误差。误码率BER(bit error rate)等于错误的比特占全部比特的百分比。

那么我们怎么知道所接受到的帧有没有错误比特呢?这就需要校验机制,目前数据链路层广泛采用循环冗余校验CRC((Cyclic Rendancy Check)。其原理是在帧的数据部分后面加上冗余码(FCS),接受方利用冗余码校验数据部分。具体细节请参考《计算机网络》。

综上,封装成帧和透明传输保证收到完整的帧,差错检验保证收到正确的帧。这三种机制能保证帧的无差错传输,但不能保证可靠传输(发送什么就接收到什么)。造成不可靠传输的原因有两类:

1. 帧中的比特错误
2. 帧重复,帧丢失,帧失序
数据链路层的帧的三种机制只能消除第一种错误,至于第二种则需要确认和重传机制。在早期互联网中,数据链路层曾经保证可靠传输,但随着光纤技术的发展,误码率大大下降,数据链路层就采用了简单的不可靠传输协议,把可靠运输的实现放在了运输层中。实践证明,这样可以提高通信效率。

最后,我们可以看到,计算机网络本质是通信问题,里面包含了很多通信元素:完整,误差,校验,重复,丢失,失序,可靠传输等。

4. 计算机网络由哪几部分组成

计算机网络就是由多台计算机(或其它计算机网络设备)通过传输介质和软件物理(或逻辑)连接在一起组成的。总的来说计算机网络的组成基本上包括:计算机、网络操作系统、传输介质(可以是有形的,也可以是无形的,如无线网络的传输介质就是空间)以及相应的应用软件四部分。

从整体上来说计算机网络就是把分布在不同地理区域的计算机与专门的外部设备用通信线路互联成一个规模大、功能强的系统,从而使众多的计算机可以方便地互相传递信息,共享硬件、软件、数据信息等资源。简单来说,计算机网络就是由通信线路互相连接的许多自主工作的计算机构成的集合体。

最简单的计算机网络就只有两台计算机和连接它们的一条链路,即两个节点和一条链路。

(4)计算机网络中的链路是什么扩展阅读

20世纪60年代中期之前的第一代计算机网络是以单个计算机为中心的远程联机系统,典型应用是由一台计算机和全美范围内2000多个终端组成的飞机订票系统,终端是一台计算机的外围设备,包括显示器和键盘,无CPU和内存。

随着远程终端的增多,在主机前增加了前端机(FEP)。当时,人们把计算机网络定义为“以传输信息为目的而连接起来,实现远程信息处理或进一步达到资源共享的系统”,这样的通信系统已具备网络的雏形。

20世纪60年代中期至70年代的第二代计算机网络是以多个主机通过通信线路互联起来,为用户提供服务,兴起于60年代后期,典型代表是美国国防部高级研究计划局协助开发的ARPANET。

主机之间不是直接用线路相连,而是由接口报文处理机(IMP)转接后互联的。IMP和它们之间互联的通信线路一起负责主机间的通信任务,构成了通信子网。

通信子网互联的主机负责运行程序,提供资源共享,组成资源子网。这个时期,网络概念为“以能够相互共享资源为目的互联起来的具有独立功能的计算机之集合体”,形成了计算机网络的基本概念。

5. 计算机网络里面的链路是什么,

什么是链路层劫持
数据链路层处在OSI模型的第二层,它控制网络层与物理层之间的通信。数据链路层定义了如何让格式化数据以进行传输,以及如何让控制对物理介质的访问。它的主要功能是如何在不可靠的物理线路上进行数据的可靠传递,还提供错误检测和纠正,以确保数据的可靠传输。该层的作用包括:物理地址寻址、数据的成帧、流量控制、数据的检错、重发等。

链路层劫持是指第三方(可能是运营商、黑客)通过在用户至服务器之间,植入恶意设备或者控制网络设备的手段,侦听或篡改用户和服务器之间的数据,达到窃取用户重要数据(包括用户密码,用户身份数据等等)的目的。链路层劫持最明显的危害就是帐号、密码被窃取。

二、链路劫持案例分析
以下引用红黑联盟站内一项案例分析,说明链路劫持的现象。

案例现象描述:
有用户反馈访问公司部分业务的URL时被重定向至公司其他业务的URL,导致用户无法请求所需的服务,严重影响了用户体验以及用户利益。我们第一时间通过远控的方式复现了上述现象,并及时抓取了相关数据包以供分析,当然前期也采取了用户电脑杀毒、开发者工具分析等方式排除了用户端个人原因的可能性。从图1来看,初步判断是运营商某员工所为,意欲通过流量重定向来获取非法的流量分成,啥意思呢,被劫持的该业务的流量要经过联盟的该账户spm,使得公司再付费给联盟,归根结底还是为了盈利。

案例问题追踪:
通过分析抓取的样本数据发现,数据包在传输过程中出现异常TTL,目标机的正常TTL为51如图2。

6. 计算机网络第三章(数据链路层)

3.1、数据链路层概述

概述

链路 是从一个结点到相邻结点的一段物理线路, 数据链路 则是在链路的基础上增加了一些必要的硬件(如网络适配器)和软件(如协议的实现)

网络中的主机、路由器等都必须实现数据链路层

局域网中的主机、交换机等都必须实现数据链路层

从层次上来看数据的流动

仅从数据链路层观察帧的流动

主机H1 到主机H2 所经过的网络可以是多种不同类型的

注意:不同的链路层可能采用不同的数据链路层协议

数据链路层使用的信道

数据链路层属于计算机网路的低层。 数据链路层使用的信道主要有以下两种类型:

点对点信道

广播信道

局域网属于数据链路层

局域网虽然是个网络。但我们并不把局域网放在网络层中讨论。这是因为在网络层要讨论的是多个网络互连的问题,是讨论分组怎么从一个网络,通过路由器,转发到另一个网络。

而在同一个局域网中,分组怎么从一台主机传送到另一台主机,但并不经过路由器转发。从整个互联网来看, 局域网仍属于数据链路层 的范围

三个重要问题

数据链路层传送的协议数据单元是 帧

封装成帧

封装成帧 (framing) 就是在一段数据的前后分别添加首部和尾部,然后就构成了一个帧。

首部和尾部的一个重要作用就是进行 帧定界 。

差错控制

在传输过程中可能会产生 比特差错 :1 可能会变成 0, 而 0 也可能变成 1。

可靠传输

接收方主机收到有误码的帧后,是不会接受该帧的,会将它丢弃

如果数据链路层向其上层提供的是不可靠服务,那么丢弃就丢弃了,不会再有更多措施

如果数据链路层向其上层提供的是可靠服务,那就还需要其他措施,来确保接收方主机还可以重新收到被丢弃的这个帧的正确副本

以上三个问题都是使用 点对点信道的数据链路层 来举例的

如果使用广播信道的数据链路层除了包含上面三个问题外,还有一些问题要解决

如图所示,主机A,B,C,D,E通过一根总线进行互连,主机A要给主机C发送数据,代表帧的信号会通过总线传输到总线上的其他各主机,那么主机B,D,E如何知道所收到的帧不是发送给她们的,主机C如何知道发送的帧是发送给自己的

可以用编址(地址)的来解决

将帧的目的地址添加在帧中一起传输

还有数据碰撞问题

随着技术的发展,交换技术的成熟,

在 有线(局域网)领域 使用 点对点链路 和 链路层交换机 的 交换式局域网 取代了 共享式局域网

在无线局域网中仍然使用的是共享信道技术

3.2、封装成帧

介绍

封装成帧是指数据链路层给上层交付的协议数据单元添加帧头和帧尾使之成为帧

帧头和帧尾中包含有重要的控制信息

发送方的数据链路层将上层交付下来的协议数据单元封装成帧后,还要通过物理层,将构成帧的各比特,转换成电信号交给传输媒体,那么接收方的数据链路层如何从物理层交付的比特流中提取出一个个的帧?

答:需要帧头和帧尾来做 帧定界

但比不是每一种数据链路层协议的帧都包含有帧定界标志,例如下面例子

前导码

前同步码:作用是使接收方的时钟同步

帧开始定界符:表明其后面紧跟着的就是MAC帧

另外以太网还规定了帧间间隔为96比特时间,因此,MAC帧不需要帧结束定界符

透明传输

透明

指某一个实际存在的事物看起来却好像不存在一样。

透明传输是指 数据链路层对上层交付的传输数据没有任何限制 ,好像数据链路层不存在一样

帧界定标志也就是个特定数据值,如果在上层交付的协议数据单元中, 恰好也包含这个特定数值,接收方就不能正确接收

所以数据链路层应该对上层交付的数据有限制,其内容不能包含帧定界符的值

解决透明传输问题

解决方法 :面向字节的物理链路使用 字节填充 (byte stuffing) 或 字符填充 (character stuffing),面向比特的物理链路使用比特填充的方法实现透明传输

发送端的数据链路层在数据中出现控制字符“SOH”或“EOT”的前面 插入一个转义字符“ESC” (其十六进制编码是1B)。

接收端的数据链路层在将数据送往网络层之前删除插入的转义字符。

如果转义字符也出现在数据当中,那么应在转义字符前面插入一个转义字符 ESC。当接收端收到连续的两个转义字符时,就删除其中前面的一个。

帧的数据部分长度

总结

3.3、差错检测

介绍

奇偶校验

循环冗余校验CRC(Cyclic Rendancy Check)

例题

总结

循环冗余校验 CRC 是一种检错方法,而帧校验序列 FCS 是添加在数据后面的冗余码

3.4、可靠传输

基本概念

下面是比特差错

其他传输差错

分组丢失

路由器输入队列快满了,主动丢弃收到的分组

分组失序

数据并未按照发送顺序依次到达接收端

分组重复

由于某些原因,有些分组在网络中滞留了,没有及时到达接收端,这可能会造成发送端对该分组的重发,重发的分组到达接收端,但一段时间后,滞留在网络的分组也到达了接收端,这就造成 分组重复 的传输差错

三种可靠协议

停止-等待协议SW

回退N帧协议GBN

选择重传协议SR

这三种可靠传输实现机制的基本原理并不仅限于数据链路层,可以应用到计算机网络体系结构的各层协议中

停止-等待协议

停止-等待协议可能遇到的四个问题

确认与否认

超时重传

确认丢失

既然数据分组需要编号,确认分组是否需要编号?

要。如下图所示

确认迟到

注意,图中最下面那个数据分组与之前序号为0的那个数据分组不是同一个数据分组

注意事项

停止-等待协议的信道利用率

假设收发双方之间是一条直通的信道

TD :是发送方发送数据分组所耗费的发送时延

RTT :是收发双方之间的往返时间

TA :是接收方发送确认分组所耗费的发送时延

TA一般都远小于TD,可以忽略,当RTT远大于TD时,信道利用率会非常低

像停止-等待协议这样通过确认和重传机制实现的可靠传输协议,常称为自动请求重传协议ARQ( A utomatic R epeat re Q uest),意思是重传的请求是自动进行,因为不需要接收方显式地请求,发送方重传某个发送的分组

回退N帧协议GBN

为什么用回退N帧协议

在相同的时间内,使用停止-等待协议的发送方只能发送一个数据分组,而采用流水线传输的发送方,可以发送多个数据分组

回退N帧协议在流水线传输的基础上,利用发送窗口来限制发送方可连续发送数据分组的个数

无差错情况流程

发送方将序号落在发送窗口内的0~4号数据分组,依次连续发送出去

他们经过互联网传输正确到达接收方,就是没有乱序和误码,接收方按序接收它们,每接收一个,接收窗口就向前滑动一个位置,并给发送方发送针对所接收分组的确认分组,在通过互联网的传输正确到达了发送方

发送方每接收一个、发送窗口就向前滑动一个位置,这样就有新的序号落入发送窗口,发送方可以将收到确认的数据分组从缓存中删除了,而接收方可以择机将已接收的数据分组交付上层处理

累计确认

累计确认

优点:

即使确认分组丢失,发送方也可能不必重传

减小接收方的开销

减小对网络资源的占用

缺点:

不能向发送方及时反映出接收方已经正确接收的数据分组信息

有差错情况

例如

在传输数据分组时,5号数据分组出现误码,接收方通过数据分组中的检错码发现了错误

于是丢弃该分组,而后续到达的这剩下四个分组与接收窗口的序号不匹配

接收同样也不能接收它们,讲它们丢弃,并对之前按序接收的最后一个数据分组进行确认,发送ACK4, 每丢弃一个数据分组,就发送一个ACK4

当收到重复的ACK4时,就知道之前所发送的数据分组出现了差错,于是可以不等超时计时器超时就立刻开始重传,具体收到几个重复确认就立刻重传,根据具体实现决定

如果收到这4个重复的确认并不会触发发送立刻重传,一段时间后。超时计时器超时,也会将发送窗口内以发送过的这些数据分组全部重传

若WT超过取值范围,例如WT=8,会出现什么情况?

习题

总结

回退N帧协议在流水线传输的基础上利用发送窗口来限制发送方连续发送数据分组的数量,是一种连续ARQ协议

在协议的工作过程中发送窗口和接收窗口不断向前滑动,因此这类协议又称为滑动窗口协议

由于回退N帧协议的特性,当通信线路质量不好时,其信道利用率并不比停止-等待协议高

选择重传协议SR

具体流程请看视频

习题

总结

3.5、点对点协议PPP

点对点协议PPP(Point-to-Point Protocol)是目前使用最广泛的点对点数据链路层协议

PPP协议是因特网工程任务组IEIF在1992年制定的。经过1993年和1994年的修订,现在的PPP协议已成为因特网的正式标准[RFC1661,RFC1662]

数据链路层使用的一种协议,它的特点是:简单;只检测差错,而不是纠正差错;不使用序号,也不进行流量控制;可同时支持多种网络层协议

PPPoE 是为宽带上网的主机使用的链路层协议

帧格式

必须规定特殊的字符作为帧定界符

透明传输

必须保证数据传输的透明性

实现透明传输的方法

面向字节的异步链路:字节填充法(插入“转义字符”)

面向比特的同步链路:比特填充法(插入“比特0”)

差错检测

能够对接收端收到的帧进行检测,并立即丢弃有差错的帧。

工作状态

当用户拨号接入 ISP 时,路由器的调制解调器对拨号做出确认,并建立一条物理连接。

PC 机向路由器发送一系列的 LCP 分组(封装成多个 PPP 帧)。

这些分组及其响应选择一些 PPP 参数,并进行网络层配置,NCP 给新接入的 PC 机

分配一个临时的 IP 地址,使 PC 机成为因特网上的一个主机。

通信完毕时,NCP 释放网络层连接,收回原来分配出去的 IP 地址。接着,LCP 释放数据链路层连接。最后释放的是物理层的连接。

可见,PPP 协议已不是纯粹的数据链路层的协议,它还包含了物理层和网络层的内容。

3.6、媒体接入控制(介质访问控制)——广播信道

媒体接入控制(介质访问控制)使用一对多的广播通信方式

Medium Access Control 翻译成媒体接入控制,有些翻译成介质访问控制

局域网的数据链路层

局域网最主要的 特点 是:

网络为一个单位所拥有;

地理范围和站点数目均有限。

局域网具有如下 主要优点 :

具有广播功能,从一个站点可很方便地访问全网。局域网上的主机可共享连接在局域网上的各种硬件和软件资源。

便于系统的扩展和逐渐地演变,各设备的位置可灵活调整和改变。

提高了系统的可靠性、可用性和残存性。

数据链路层的两个子层

为了使数据链路层能更好地适应多种局域网标准,IEEE 802 委员会就将局域网的数据链路层拆成 两个子层 :

逻辑链路控制 LLC (Logical Link Control)子层;

媒体接入控制 MAC (Medium Access Control)子层。

与接入到传输媒体有关的内容都放在 MAC子层,而 LLC 子层则与传输媒体无关。 不管采用何种协议的局域网,对 LLC 子层来说都是透明的。

基本概念

为什么要媒体接入控制(介质访问控制)?

共享信道带来的问题

若多个设备在共享信道上同时发送数据,则会造成彼此干扰,导致发送失败。

随着技术的发展,交换技术的成熟和成本的降低,具有更高性能的使用点对点链路和链路层交换机的交换式局域网在有线领域已完全取代了共享式局域网,但由于无线信道的广播天性,无线局域网仍然使用的是共享媒体技术

静态划分信道

信道复用

频分复用FDM (Frequency Division Multiplexing)

将整个带宽分为多份,用户在分配到一定的频带后,在通信过程中自始至终都占用这个频带。

频分复用 的所有用户在同样的时间 占用不同的带宽资源 (请注意,这里的“带宽”是频率带宽而不是数据的发送速率)。

7. 链路是什么

链路就是一条无源的点到点的物理线路段,中间没有任何其他的交换结点.在进行数据通信时,两个计算机之间的通路往往是由许多的链路串接而成的.它与数据链路的概念不同.数据链路是除了物理线路外,还必须有一点必要的通信协议来控制这些数据的传输,把实现这些协议的硬件和软件加到链路上,才是数据链路.

8. 计算机网络中 链路和物理层下的物理媒体(双绞线那些)的区别

你好!
链路确实就是指那些物理媒体。
但链路又不能等同于物理媒体,因为它强调的是“两个相邻的节点之间”这个概念。
在数据链路层,主要介绍的是数据链路层,数据链路,楼主也知道了,比链路更多一些软件或协议的意思.
如有疑问,请追问。