当前位置:首页 » 网络连接 » 神经网络分层延时连接
扩展阅读
苹果电脑回收管家 2024-11-09 00:01:17

神经网络分层延时连接

发布时间: 2022-12-12 21:52:48

‘壹’ 人工神经网络分层结构包括

品牌型号:华为MateBook D15
系统:Windows 11

人工神经网络分层结构包括神经元、层和网络三个部分。

1、神经元是人工神经网络最基本的单元。单元以层的方式组,每一层的每个神经元和前一层、后一层的神经元连接,共分为输入层、输出层和隐藏层,三层连接形成一个神经网络。

2、输入层只从外部环境接收信息,是由输入单元组成,而这些输入单元可接收样本中各种不同的特征信息。该层的每个神经元相当于自变量,不完成任何计算,只为下一层传递信息;隐藏层介于输入层和输出层之间,这些层完全用于分析,其函数联系输入层变量和输出层变量,使其更配适数据。而最后,输出层生成最终结果,每个输出单元会对应到某一种特定的分类,为网络送给外部系统的结果值,,整个网络由调整链接强度的程序来达成学习的目的。

3、神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。

‘贰’ 神经网络(Neural Network)

(1)结构:许多树突(dendrite)用于输入,一个轴突 (axon)用于输出。

(2)特性:兴奋性和传导性。兴奋性是指当信号量超过某个阈值时,细胞体就会被激活,产生电脉冲。传导性是指电脉冲沿着轴突并通过突触传递到其它神经元。

(3)有两种状态的机器:激活时为“是”,不激活时为“否”。神经细胞的状态取决于从其他神经细胞接收到的信号量,以及突触的性质(抑制或加强)。

(1)神经元——不重要

① 神经元是包含权重和偏置项的 函数 :接收数据后,执行一些计算,然后使用激活函数将数据限制在一个范围内(多数情况下)。

② 单个神经元:线性可分的情况下,本质是一条直线, ,这条直线将数据划分为两类。而线性分类器本身就是一个单层神经网络。

③ 神经网络:非线性可分的情况下,神经网络通过多个隐层的方法来实现非线性的函数。

(2)权重/参数/连接(Weight)——最重要

每一个连接上都有一个权重。一个神经网络的训练算法就是让权重的值调整到最佳,以使得整个网络的预测效果最好。

(3)偏置项(Bias Units)——必须

① 如果没有偏置项,所有的函数都会经过原点。

② 正则化偏置会导致欠拟合:若对偏置正则化,会导致激活变得更加简单,偏差就会上升,学习的能力就会下降。

③ 偏置的大小度量了神经元产生激励(激活)的难易程度。

(1)定义:也称为转换函数,是一种将输入 (input) 转成输出 (output) 的函数。

(2)作用:一般直线拟合的精确度要比曲线差很多,引入激活函数能给神经网络 增加一些非线性 的特性。

(3)性质:

① 非线性:导数不是常数,否则就退化成直线。对于一些画一条直线仍然无法分开的问题,非线性可以把直线变弯,就能包罗万象;

② 可微性:当优化方法是基于梯度的时候,处处可导为后向传播算法提供了核心条件;

③ 输出范围:一般限定在[0,1],使得神经元对一些比较大的输入会比较稳定;

④ 非饱和性:饱和就是指,当输入比较大的时候输出几乎没变化,会导致梯度消失;

⑤ 单调性:导数符号不变,输出不会上蹿下跳,让神经网络训练容易收敛。

(1)线性函数 (linear function)—— purelin()

(2)符号函数 (sign function)—— hardlim() 

① 如果z值高于阈值,则激活设置为1或yes,神经元将被激活。

② 如果z值低于阈值,则激活设置为0或no,神经元不会被激活。

(3)对率函数 (sigmoid function)—— logsig()

① 优点:光滑S型曲线连续可导,函数阈值有上限。

② 缺点:❶ 函数饱和使梯度消失,两端梯度几乎为0,更新困难,做不深;

                ❷ 输出不是0中心,将影响梯度下降的运作,收敛异常慢;

                ❸ 幂运算相对来讲比较耗时

(4)双曲正切函数(hyperbolic tangent function)—— tansig()

① 优点:取值范围0中心化,防止了梯度偏差

② 缺点:梯度消失现象依然存在,但相对于sigmoid函数问题较轻

(5)整流线性单元 ReLU 函数(rectified linear unit)

① 优点:❶ 分段线性函数,它的非线性性很弱,因此网络做得很深;

                ❷ 由于它的线性、非饱和性, 对于随机梯度下降的收敛有巨大的加速作用;

② 缺点:❶ 当x<0,梯度都变成0,参数无法更新,也导致了数据多样化的丢失;

                ❷ 输出不是0中心

(6)渗漏型整流线性单元激活函数 Leaky ReLU 函数

① 优点:❶ 是为解决“ReLU死亡”问题的尝试,在计算导数时允许较小的梯度;

                ❷ 非饱和的公式,不包含指数运算,计算速度快。

② 缺点:❶ 无法避免梯度爆炸问题; (没有体现优于ReLU)

                ❷ 神经网络不学习 α 值。

(7)指数线性单元 ELU (Exponential Linear Units)

① 优点:❶ 能避免“死亡 ReLU” 问题;

                ❷ 能得到负值输出,这能帮助网络向正确的方向推动权重和偏置变化;

                ❸ 在计算梯度时能得到激活,而不是让它们等于 0。

② 缺点:❶ 由于包含指数运算,所以计算时间更长;

                ❷ 无法避免梯度爆炸问题; (没有体现优于ReLU)

                ❸ 神经网络不学习 α 值。

(8)Maxout(对 ReLU 和 Leaky ReLU的一般化归纳)

① 优点:❶ 拥有ReLU的所有优点(线性和不饱和)

                ❷ 没有ReLU的缺点(死亡的ReLU单元)

                ❸ 可以拟合任意凸函数

② 缺点 :参数数量增加了一倍。难训练,容易过拟合

(9)Swish

① 优点:❶ 在负半轴也有一定的不饱和区,参数的利用率更大

                ❷ 无上界有下界、平滑、非单调

                ❸ 在深层模型上的效果优于 ReLU

每个层都包含一定数量的单元(units)。增加层可增加神经网络输出的非线性。

(1)输入层:就是接收原始数据,然后往隐层送

(2)输出层:神经网络的决策输出

(3)隐藏层:神经网络的关键。把前一层的向量变成新的向量,让数据变得线性可分。

(1)结构:仅包含输入层和输出层,直接相连。

(2)作用:仅能表示 线性可分 函数或决策,且一定可以在有限的迭代次数中收敛。

(3)局限:可以建立与门、或门、非门等,但无法建立更为复杂的异或门(XOR),即两个输入相同时输出1,否则输出0。 (“AI winter”)

(1)目的:拟合某个函数      (两层神经网络可以逼近任意连续函数)

(2)结构:包含输入层、隐藏层和输出层 ,由于从输入到输出的过程中不存在与模型自身的反馈连接,因此被称为“前馈”。    (层与层之间全连接)

(3)作用: 非线性 分类、聚类、预测等,通过训练,可以学习到数据中隐含的知识。

(4)局限:计算复杂、计算速度慢、容易陷入局部最优解,通常要将它们与其他网络结合形成新的网络。

(5)前向传播算法(Forward Propagation)

① 方法:从左至右逐级依赖的算法模型,即网络如何根据输入X得到输出Y,最终的输出值和样本值作比较, 计算出误差 。

② 目的:完成了一次正反向传播,就完成了一次神经网络的训练迭代。通过输出层的误差,快速求解对每个ω、b的偏导,利用梯度下降法,使Loss越来越小。

② 局限:为使最终的误差达到最小,要不断修改参数值,但神经网络的每条连接线上都有不同权重参数,修改这些参数变得棘手。

(6)误差反向传播(Back Propagation)

① 原理:梯度下降法求局部极值

② 方法:从后往前,从输出层开始计算 L 对当前层的微分,获得各层的误差信号,此误差信号即作为修正单元权值的依据。计算结束以后,所要的两个参数矩阵的 梯度 就都有了。

③ 局限:如果激活函数是饱和的,带来的缺陷就是系统迭代更新变慢,系统收敛就慢,当然这是可以有办法弥补的,一种方法是使用 交叉熵函数 作为损失函数。

(1)原理:随着网络的层数增加,每一层对于前一层次的抽象表示更深入。在神经网络中,每一层神经元学习到的是前一层神经元值的更抽象的表示。通过抽取更抽象的特征来对事物进行区分,从而获得更好的区分与分类能力。

(2)方法:ReLU函数在训练多层神经网络时,更容易收敛,并且预测性能更好。

(3)优点:① 易于构建,表达能力强,基本单元便可扩展为复杂的非线性函数

                      ② 并行性号,有利于在分布是系统上应用

(4)局限:① 优化算法只能获得局部极值,性能与初始值相关

                      ② 调参理论性缺乏

                      ③ 不可解释,与实际任务关联性模糊

(1)原理:由手工设计卷积核变成自动学习卷积核

(2)卷积(Convolutional layer): 输入与卷积核相乘再累加 (内积、加权叠加)

① 公式:

② 目的:提取输入的不同特征,得到维度很大的 特征图(feature map)

③ 卷积核:需要训练的参数。一般为奇数维,有中心像素点,便于定位卷积核

④ 特点:局部感知、参数变少、权重共享、分层提取

(3)池化(Pooling Layer):用更高层的抽象表达来表示主要特征,又称“降采样”

① 分类: 最大 (出现与否)、平均(保留整体)、随机(避免过拟合)

② 目的:降维,不需要训练参数,得到新的、维度较小的特征

(4)步长(stride):若假设输入大小是n∗n,卷积核的大小是f∗f,步长是s,则最后的feature map的大小为o∗o,其中

(5)填充(zero-padding)

① Full模式:即从卷积核(fileter)和输入刚相交开始做卷积,没有元素的部分做补0操作。

② Valid模式:卷积核和输入完全相交开始做卷积,这种模式不需要补0。

③ Same模式:当卷积核的中心C和输入开始相交时做卷积。没有元素的部分做补0操作。

(7)激活函数:加入非线性特征

(8)全连接层(Fully-connected layer)

如果说卷积层、池化层和激活函数层等是将原始数据映射到隐层特征空间(决定计算速度),全连接层则起到将学到的“分布式特征表示”映射到样本标记空间的作用(决定参数个数)。

参考:

[1]  神经网络(入门最详细)_ruthy的博客-CSDN博客_神经网络算法入门

[2]  神经网络(容易被忽视的基础知识) - Evan的文章 - 知乎

[3]  人工神经网络——王的机器

[4]  如何简单形象又有趣地讲解神经网络是什么? - 舒小曼的回答 - 知乎

[5]  神经网络15分钟入门!足够通俗易懂了吧 - Mr.括号的文章 - 知乎

[6]  神经网络——最易懂最清晰的一篇文章_illikang的博客-CSDN博客_神经网络

[7]  直觉化深度学习教程——什么是前向传播——CSDN

[8]  “反向传播算法”过程及公式推导(超直观好懂的Backpropagation)_aift的专栏-CSDN

[9]  卷积、反卷积、池化、反池化——CSDN

[10]  浙大机器学习课程- bilibili.com

‘叁’ 人工神经元网络的拓扑结构主要有哪几种谢谢大侠~~~

神经网络的拓扑结构包括网络层数、各层神经元数量以及各神经元之间相互连接的方式。

人工神经网络的模型从其拓扑结构角度去看,可分为层次型和互连型。层次型模型是将神经网络分为输入层(Input Layer)、隐层(Hidden Layer)和输出层(Output Layer),各层顺序连接。其中,输入层神经元负责接收来自外界的输入信息,并将其传递给隐层神经元。隐层负责神经网络内部的信息处理、信息变换。通常会根据变换的需要,将隐层设计为一层或多层。

(3)神经网络分层延时连接扩展阅读:

人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。

人工神经网络采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结构化信息方面的缺陷,具有自适应、自组织和实时学习的特点。

‘肆’ 前馈型神经网络中各个层之间是什么的

前馈型神经网络的中各个层之间是无环的,反馈型神经网络中各个层之间是有环的。
前馈神经网络
前馈神经网络是一种最简单的神经网络,各神经元分层排列。每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层.各层间没有反馈。
前馈神经网络的基本结构和要素前馈神经网络也叫做多层感知机,网络中无回路,输入的信息总是向前传播,神经网络训练过程中,输入层/输出层节点数通常固定,隐藏层节点数根据网络效果调节,神经网络结构在训练过程中的重点在于神经元之间的连接线的权重的确定

"/>

‘伍’ 神经网络连接方式分为哪几类每一类有哪些特点

神经网络模型的分类
人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两种分类方法是,按照网络连接的拓朴结构分类和按照网络内部的信息流向分类。
1 按照网络拓朴结构分类
网络的拓朴结构,即神经元之间的连接方式。按此划分,可将神经网络结构分为两大类:层次型结构和互联型结构。
层次型结构的神经网络将神经元按功能和顺序的不同分为输出层、中间层(隐层)、输出层。输出层各神经元负责接收来自外界的输入信息,并传给中间各隐层神经元;隐层是神经网络的内部信息处理层,负责信息变换。根据需要可设计为一层或多层;最后一个隐层将信息传递给输出层神经元经进一步处理后向外界输出信息处理结果。

而互连型网络结构中,任意两个节点之间都可能存在连接路径,因此可以根据网络中节点的连接程度将互连型网络细分为三种情况:全互连型、局部互连型和稀疏连接型
2 按照网络信息流向分类
从神经网络内部信息传递方向来看,可以分为两种类型:前馈型网络和反馈型网络。
单纯前馈网络的结构与分层网络结构相同,前馈是因网络信息处理的方向是从输入层到各隐层再到输出层逐层进行而得名的。前馈型网络中前一层的输出是下一层的输入,信息的处理具有逐层传递进行的方向性,一般不存在反馈环路。因此这类网络很容易串联起来建立多层前馈网络。
反馈型网络的结构与单层全互连结构网络相同。在反馈型网络中的所有节点都具有信息处理功能,而且每个节点既可以从外界接受输入,同时又可以向外界输出。

‘陆’ BP神经网络

神经网络能很好地解决不同的机器学习问题。神经网络模型是许多逻辑单元按照不同层级组织起来的网络,每一层的输出变量都是下一层的输入变量。

上图显示了人工神经网络是一个分层模型,逻辑上可以分为三层:

输入层 :输入层接收特征向量 x

输出层 :输出层产出最终的预测 h

隐含层 :隐含层介于输入层与输出层之间,之所以称之为隐含层,是因为当中产生的值并不像输入层使用的样本矩阵 X或者输出层用到的标签矩阵 y 那样直接可见。

下面引入一些标记法来帮助描述模型:

!$ a^{(j)}_{i} $ 代表第j层的第i个激活单元。 !$ heta^{(j)} $ 代表从第 j 层映射到第 j+1 层时的权重的矩阵,例如 !$ heta^{(1)} $ 代表从第一层映射到第二层的权重的矩阵。其尺寸为:以第 j+1层的激活单元数量为行数,以第 j 层的激活单元数加一为列数的矩阵。例如:上图所示的神经网络中 !$ heta^{(1)} $ 的尺寸为 3*4。

对于上图所示的模型,激活单元和输出分别表达为:

!$ a^{(2)}_{1} = g( heta^{(1)}_{10}x_0 + heta^{(1)}_{11}x_1 + heta^{(1)}_{12}x_2 + heta^{(1)}_{13}x_3 ) $

!$a^{(2)}_{2} = g( heta^{(1)}_{20}x_0 + heta^{(1)}_{21}x_1 + heta^{(1)}_{22}x_2 + heta^{(1)}_{23}x_3 ) $

!$a^{(2)}_{3} = g( heta^{(1)}_{30}x_0 + heta^{(1)}_{31}x_1 + heta^{(1)}_{32}x_2 + heta^{(1)}_{33}x_3 ) $

!$h_{ heta}{(x)} = g( heta^{(2)}_{10}a^{2}_{0} + heta^{(2)}_{11}a^{2}_{1} + heta^{(2)}_{12}a^{2}_{2} + heta^{(2)}_{13}a^{2}_{3} ) $

下面用向量化的方法以上面的神经网络为例,试着计算第二层的值:

对于多类分类问题来说:

我们可将神经网络的分类定义为两种情况:二类分类和多类分类。

二类分类: !$ S_{L} = 0,y = 0,y = 1$

多类分类: !$ S_{L} = k, y_{i} = 1表示分到第i类;(k>2)$

在神经网络中,我们可以有很多输出变量,我们的 !$h_{ heta}{(x)} $ 是一个维度为K的向量,并且我们训练集中的因变量也是同样维度的一个向量,因此我们的代价函数会比逻辑回归更加复杂一些,为: !$ h_{ heta}{(x)} in R^{K}(h_{ heta}{(x)})_{i} = i^{th} output$

我们希望通过代价函数来观察算法预测的结果与真实情况的误差有多大,唯一不同的是,对于每一行特征,我们都会给出K个预测,基本上我们可以利用循环,对每一行特征都预测K个不同结果,然后在利用循环在K个预测中选择可能性最高的一个,将其与y中的实际数据进行比较。

正则化的那一项只是排除了每一层 !$ heta_0$ 后,每一层的 矩阵的和。最里层的循环j循环所有的行(由 +1 层的激活单元数决定),循环i则循环所有的列,由该层( !$ s_l$ 层)的激活单元数所决定。即: !$h_{ heta}{(x)}$ 与真实值之间的距离为每个样本-每个类输出的加和,对参数进行 regularization bias 项处理所有参数的平方和。

由于神经网络允许多个隐含层,即各层的神经元都会产出预测,因此,就不能直接利用传统回归问题的梯度下降法来最小化 !$J( heta)$ ,而需要逐层考虑预测误差,并且逐层优化。为此,在多层神经网络中,使用反向传播算法(Backpropagation Algorithm)来优化预测,首先定义各层的预测误差为向量 !$ δ^{(l)} $

训练过程:

当我们对一个较为复杂的模型(例如神经网络)使用梯度下降算法时,可能会存在一些不容易察觉的错误,意味着,虽然代价看上去在不断减小,但最终的结果可能并不是最优解。

为了避免这样的问题,我们采取一种叫做梯度的数值检验( Numerical Gradient Checking )方法。这种方法的思想是通过估计梯度值来检验我们计算的导数值是否真的是我们要求的。

对梯度的估计采用的方法是在代价函数上沿着切线的方向选择离两个非常近的点然后计算两个点的平均值用以估计梯度。即对于某个特定的 ,我们计算出在 !$ heta - epsilon$ 处和 !$ heta + epsilon$ 的代价值(是一个非常小的值,通常选取 0.001),然后求两个代价的平均,用以估计在 !$ heta$ 处的代价值。

当 !$ heta$ 是一个向量时,我们则需要对偏导数进行检验。因为代价函数的偏导数检验只针对一个参数的改变进行检验,下面是一个只针对 !$ heta_1$ 进行检验的示例:

如果上式成立,则证明网络中BP算法有效,此时关闭梯度校验算法(因为梯度的近似计算效率很慢),继续网络的训练过程。

‘柒’ 神经网络:卷积神经网络(CNN)

神经网络 最早是由心理学家和神经学家提出的,旨在寻求开发和测试神经的计算模拟。

粗略地说, 神经网络 是一组连接的 输入/输出单元 ,其中每个连接都与一个 权 相关联。在学习阶段,通过调整权值,使得神经网络的预测准确性逐步提高。由于单元之间的连接,神经网络学习又称 连接者学习。

神经网络是以模拟人脑神经元的数学模型为基础而建立的,它由一系列神经元组成,单元之间彼此连接。从信息处理角度看,神经元可以看作是一个多输入单输出的信息处理单元,根据神经元的特性和功能,可以把神经元抽象成一个简单的数学模型。

神经网络有三个要素: 拓扑结构、连接方式、学习规则

神经网络的拓扑结构 :神经网络的单元通常按照层次排列,根据网络的层次数,可以将神经网络分为单层神经网络、两层神经网络、三层神经网络等。结构简单的神经网络,在学习时收敛的速度快,但准确度低。

神经网络的层数和每层的单元数由问题的复杂程度而定。问题越复杂,神经网络的层数就越多。例如,两层神经网络常用来解决线性问题,而多层网络就可以解决多元非线性问题

神经网络的连接 :包括层次之间的连接和每一层内部的连接,连接的强度用权来表示。

根据层次之间的连接方式,分为:

1)前馈式网络:连接是单向的,上层单元的输出是下层单元的输入,如反向传播网络,Kohonen网络

2)反馈式网络:除了单项的连接外,还把最后一层单元的输出作为第一层单元的输入,如Hopfield网络

根据连接的范围,分为:

1)全连接神经网络:每个单元和相邻层上的所有单元相连

2)局部连接网络:每个单元只和相邻层上的部分单元相连

神经网络的学习

根据学习方法分:

感知器:有监督的学习方法,训练样本的类别是已知的,并在学习的过程中指导模型的训练

认知器:无监督的学习方法,训练样本类别未知,各单元通过竞争学习。

根据学习时间分:

离线网络:学习过程和使用过程是独立的

在线网络:学习过程和使用过程是同时进行的

根据学习规则分:

相关学习网络:根据连接间的激活水平改变权系数

纠错学习网络:根据输出单元的外部反馈改变权系数

自组织学习网络:对输入进行自适应地学习

摘自《数学之美》对人工神经网络的通俗理解:

神经网络种类很多,常用的有如下四种:

1)Hopfield网络,典型的反馈网络,结构单层,有相同的单元组成

2)反向传播网络,前馈网络,结构多层,采用最小均方差的纠错学习规则,常用于语言识别和分类等问题

3)Kohonen网络:典型的自组织网络,由输入层和输出层构成,全连接

4)ART网络:自组织网络

深度神经网络:

Convolutional Neural Networks(CNN)卷积神经网络

Recurrent neural Network(RNN)循环神经网络

Deep Belief Networks(DBN)深度信念网络

深度学习是指多层神经网络上运用各种机器学习算法解决图像,文本等各种问题的算法集合。深度学习从大类上可以归入神经网络,不过在具体实现上有许多变化。

深度学习的核心是特征学习,旨在通过分层网络获取分层次的特征信息,从而解决以往需要人工设计特征的重要难题。

Machine Learning vs. Deep Learning 

神经网络(主要是感知器)经常用于 分类

神经网络的分类知识体现在网络连接上,被隐式地存储在连接的权值中。

神经网络的学习就是通过迭代算法,对权值逐步修改的优化过程,学习的目标就是通过改变权值使训练集的样本都能被正确分类。

神经网络特别适用于下列情况的分类问题:

1) 数据量比较小,缺少足够的样本建立模型

2) 数据的结构难以用传统的统计方法来描述

3) 分类模型难以表示为传统的统计模型

缺点:

1) 需要很长的训练时间,因而对于有足够长训练时间的应用更合适。

2) 需要大量的参数,这些通常主要靠经验确定,如网络拓扑或“结构”。

3)  可解释性差 。该特点使得神经网络在数据挖掘的初期并不看好。

优点:

1) 分类的准确度高

2)并行分布处理能力强

3)分布存储及学习能力高

4)对噪音数据有很强的鲁棒性和容错能力

最流行的基于神经网络的分类算法是80年代提出的 后向传播算法 。后向传播算法在多路前馈神经网络上学习。 

定义网络拓扑

在开始训练之前,用户必须说明输入层的单元数、隐藏层数(如果多于一层)、每一隐藏层的单元数和输出层的单元数,以确定网络拓扑。

对训练样本中每个属性的值进行规格化将有助于加快学习过程。通常,对输入值规格化,使得它们落入0.0和1.0之间。

离散值属性可以重新编码,使得每个域值一个输入单元。例如,如果属性A的定义域为(a0,a1,a2),则可以分配三个输入单元表示A。即,我们可以用I0 ,I1 ,I2作为输入单元。每个单元初始化为0。如果A = a0,则I0置为1;如果A = a1,I1置1;如此下去。

一个输出单元可以用来表示两个类(值1代表一个类,而值0代表另一个)。如果多于两个类,则每个类使用一个输出单元。

隐藏层单元数设多少个“最好” ,没有明确的规则。

网络设计是一个实验过程,并可能影响准确性。权的初值也可能影响准确性。如果某个经过训练的网络的准确率太低,则通常需要采用不同的网络拓扑或使用不同的初始权值,重复进行训练。

后向传播算法学习过程:

迭代地处理一组训练样本,将每个样本的网络预测与实际的类标号比较。

每次迭代后,修改权值,使得网络预测和实际类之间的均方差最小。

这种修改“后向”进行。即,由输出层,经由每个隐藏层,到第一个隐藏层(因此称作后向传播)。尽管不能保证,一般地,权将最终收敛,学习过程停止。

算法终止条件:训练集中被正确分类的样本达到一定的比例,或者权系数趋近稳定。

后向传播算法分为如下几步:

1) 初始化权

网络的权通常被初始化为很小的随机数(例如,范围从-1.0到1.0,或从-0.5到0.5)。

每个单元都设有一个偏置(bias),偏置也被初始化为小随机数。

2) 向前传播输入

对于每一个样本X,重复下面两步:

向前传播输入,向后传播误差

计算各层每个单元的输入和输出。输入层:输出=输入=样本X的属性;即,对于单元j,Oj = Ij = Xj。隐藏层和输出层:输入=前一层的输出的线性组合,即,对于单元j, Ij =wij Oi + θj,输出=

3) 向后传播误差

计算各层每个单元的误差。

输出层单元j,误差:

Oj是单元j的实际输出,而Tj是j的真正输出。

隐藏层单元j,误差:

wjk是由j到下一层中单元k的连接的权,Errk是单元k的误差

更新 权 和 偏差 ,以反映传播的误差。

权由下式更新:

 其中,△wij是权wij的改变。l是学习率,通常取0和1之间的值。

 偏置由下式更新:

  其中,△θj是偏置θj的改变。

Example

人类视觉原理:

深度学习的许多研究成果,离不开对大脑认知原理的研究,尤其是视觉原理的研究。1981 年的诺贝尔医学奖,颁发给了 David Hubel(出生于加拿大的美国神经生物学家) 和Torsten Wiesel,以及Roger Sperry。前两位的主要贡献,是“发现了视觉系统的信息处理”, 可视皮层是分级的 。

人类的视觉原理如下:从原始信号摄入开始(瞳孔摄入像素Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只气球)。

对于不同的物体,人类视觉也是通过这样逐层分级,来进行认知的:

在最底层特征基本上是类似的,就是各种边缘,越往上,越能提取出此类物体的一些特征(轮子、眼睛、躯干等),到最上层,不同的高级特征最终组合成相应的图像,从而能够让人类准确的区分不同的物体。

可以很自然的想到:可以不可以模仿人类大脑的这个特点,构造多层的神经网络,较低层的识别初级的图像特征,若干底层特征组成更上一层特征,最终通过多个层级的组合,最终在顶层做出分类呢?答案是肯定的,这也是许多深度学习算法(包括CNN)的灵感来源。

卷积神经网络是一种多层神经网络,擅长处理图像特别是大图像的相关机器学习问题。卷积网络通过一系列方法,成功将数据量庞大的图像识别问题不断降维,最终使其能够被训练。

CNN最早由Yann LeCun提出并应用在手写字体识别上。LeCun提出的网络称为LeNet,其网络结构如下:

这是一个最典型的卷积网络,由 卷积层、池化层、全连接层 组成。其中卷积层与池化层配合,组成多个卷积组,逐层提取特征,最终通过若干个全连接层完成分类。

CNN通过卷积来模拟特征区分,并且通过卷积的权值共享及池化,来降低网络参数的数量级,最后通过传统神经网络完成分类等任务。

降低参数量级:如果使用传统神经网络方式,对一张图片进行分类,那么,把图片的每个像素都连接到隐藏层节点上,对于一张1000x1000像素的图片,如果有1M隐藏层单元,一共有10^12个参数,这显然是不能接受的。

但是在CNN里,可以大大减少参数个数,基于以下两个假设:

1)最底层特征都是局部性的,也就是说,用10x10这样大小的过滤器就能表示边缘等底层特征

2)图像上不同小片段,以及不同图像上的小片段的特征是类似的,也就是说,能用同样的一组分类器来描述各种各样不同的图像

基于以上两个假设,就能把第一层网络结构简化

用100个10x10的小过滤器,就能够描述整幅图片上的底层特征。

卷积运算的定义如下图所示:

如上图所示,一个5x5的图像,用一个3x3的 卷积核 :

   101

   010

   101

来对图像进行卷积操作(可以理解为有一个滑动窗口,把卷积核与对应的图像像素做乘积然后求和),得到了3x3的卷积结果。

这个过程可以理解为使用一个过滤器(卷积核)来过滤图像的各个小区域,从而得到这些小区域的特征值。在实际训练过程中, 卷积核的值是在学习过程中学到的。

在具体应用中,往往有多个卷积核,可以认为, 每个卷积核代表了一种图像模式 ,如果某个图像块与此卷积核卷积出的值大,则认为此图像块十分接近于此卷积核。如果设计了6个卷积核,可以理解为这个图像上有6种底层纹理模式,也就是用6种基础模式就能描绘出一副图像。以下就是24种不同的卷积核的示例:

池化 的过程如下图所示:

可以看到,原始图片是20x20的,对其进行采样,采样窗口为10x10,最终将其采样成为一个2x2大小的特征图。

之所以这么做,是因为即使做完了卷积,图像仍然很大(因为卷积核比较小),所以为了降低数据维度,就进行采样。

即使减少了许多数据,特征的统计属性仍能够描述图像,而且由于降低了数据维度,有效地避免了过拟合。

在实际应用中,分为最大值采样(Max-Pooling)与平均值采样(Mean-Pooling)。

LeNet网络结构:

注意,上图中S2与C3的连接方式并不是全连接,而是部分连接。最后,通过全连接层C5、F6得到10个输出,对应10个数字的概率。

卷积神经网络的训练过程与传统神经网络类似,也是参照了反向传播算法

第一阶段,向前传播阶段:

a)从样本集中取一个样本(X,Yp),将X输入网络;

b)计算相应的实际输出Op

第二阶段,向后传播阶段

a)计算实际输出Op与相应的理想输出Yp的差;

b)按极小化误差的方法反向传播调整权矩阵。

‘捌’ 关于MATLAB神经网络中的 时间延迟和时间不长的疑问

是步长吧?
时间延迟:所谓时间延迟,是指信号由发射到接收的时间差或指目标信号传播到接收阵列中各个不同传感器的时间差。利用传感器接收信号的时间差也就是时间差迟来计算声源的位置或者一些其他的量。

如果是步长的话:那么简单说就是每一次计时量长度。把1分钟分60份步长是1秒,分30份步长是2秒。

‘玖’ 循环神经网络

花书中关于RNN的内容记录于 https://www.jianshu.com/p/206090600f13 。

在前馈神经网络中,信息的传递是单向的,这种限制虽然使得网络变得更容易学习,但在一定程度上也减弱了神经网络模型的能力。在生物神经网络中,神经元之间的连接关系要复杂的多。 前馈神经网络可以看作是一个复杂的函数,每次输入都是独立的,即网络的输出只依赖于当前的输入。但是在很多现实任务中,网络的输入不仅和当前时刻的输入相关,也和其过去一段时间的输出相关 。因此,前馈网络难以处理时序数据,比如视频、语音、文本等。时序数据的长度一般是不固定的,而前馈神经网络要求输入和输出的维数都是固定的,不能任意改变。因此,当处理这一类和时序相关的问题时,就需要一种能力更强的模型。

循环神经网络(Recurrent Neural Network,RNN)是一类具有短期记忆能力的神经网络。在循环神经网络中,神经元不但可以接受其它神经元的信息,也可以接受自身的信息,形成具有环路的网络结构。 和前馈神经网络相比,循环神经网络更加符合生物神经网络的结构。循环神经网络已经被广泛应用在语音识别、语言模型以及自然语言生成等任务上。循环神经网络的参数学习可以通过 随时间反向传播算法 来学习。

为了处理这些时序数据并利用其历史信息,我们需要让网络具有短期记忆能力。而前馈网络是一个静态网络,不具备这种记忆能力。

一种简单的利用历史信息的方法是建立一个额外的延时单元,用来存储网络的历史信息(可以包括输入、输出、隐状态等)。比较有代表性的模型是延时神经网络。

延时神经网络是在前馈网络中的非输出层都添加一个延时器,记录最近几次神经元的输出。在第 个时刻,第 层神经元和第 层神经元的最近 次输出相关,即:

延时神经网络在时间维度上共享权值,以降低参数数量。因此对于序列输入来讲,延时神经网络就相当于卷积神经网络

自回归模型(Autoregressive Model,AR) 是统计学上常用的一类时间序列模型,用一个变量 的历史信息来预测自己:

其中 为超参数, 为参数, 为第 个时刻的噪声,方差 和时间无关。

有外部输入的非线性自回归模型(Nonlinear Autoregressive with ExogenousInputs Model,NARX) 是自回归模型的扩展,在每个时刻 都有一个外部输入 ,产生一个输出 。NARX通过一个延时器记录最近几次的外部输入和输出,第 个时刻的输出 为:

其中 表示非线性函数,可以是一个前馈网络, 和 为超参数。

循环神经网络通过使用带自反馈的神经元,能够处理任意长度的时序数据。

给定一个输入序列 ,循环神经网络通过下面
公式更新带反馈边的隐藏层的活性值 :

其中 , 为一个非线性函数,也可以是一个前馈网络。

从数学上讲,上式可以看成一个动力系统。动力系统(Dynamical System)是一个数学上的概念,指 系统状态按照一定的规律随时间变化的系统 。具体地讲,动力系统是使用一个函数来描述一个给定空间(如某个物理系统的状态空间)中所有点随时间的变化情况。因此, 隐藏层的活性值 在很多文献上也称为状态(State)或隐状态(Hidden States) 。理论上,循环神经网络可以近似任意的非线性动力系统。

简单循环网络(Simple Recurrent Network,SRN)是一个非常简单的循环神经网络,只有一个隐藏层的神经网络。

在一个两层的前馈神经网络中,连接存在相邻的层与层之间,隐藏层的节点之间是无连接的。而 简单循环网络增加了从隐藏层到隐藏层的反馈连接

假设在时刻 时,网络的输入为 ,隐藏层状态(即隐藏层神经元活性值) 不仅和当前时刻的输入 相关,也和上一个时刻的隐藏层状态 相关:

其中 为隐藏层的净输入, 是非线性激活函数,通常为Logistic函数或Tanh函数, 为状态-状态权重矩阵, 为状态-输入权重矩阵, 为偏置。上面两式也经常直接写为:

如果我们把每个时刻的状态都看作是前馈神经网络的一层的话,循环神经网络可以看作是在时间维度上权值共享的神经网络 。下图给出了按时间展开的循环神经网络。

由于循环神经网络具有短期记忆能力,相当于存储装置,因此其计算能力十分强大。 前馈神经网络可以模拟任何连续函数,而循环神经网络可以模拟任何程序。

定义一个完全连接的循环神经网络,其输入为 ,输出为 :

其中 为隐状态, 为非线性激活函数, 和 为网络参数。

这样一个完全连接的循环神经网络可以近似解决所有的可计算问题

循环神经网络可以应用到很多不同类型的机器学习任务。根据这些任务的特点可以分为以下几种模式: 序列到类别模式、同步的序列到序列模式、异步的序列到序列模式

序列到类别模式主要用于序列数据的分类问题:输入为序列,输出为类别。比如在文本分类中,输入数据为单词的序列,输出为该文本的类别。

假设一个样本 为一个长度为 的序列,输出为一个类别 。我们可以将样本 按不同时刻输入到循环神经网络中,并得到不同时刻的隐藏状态 。我们可以将 看作整个序列的最终表示(或特征),并输入给分类器 进行分类:

其中 可以是简单的线性分类器(比如Logistic 回归)或复杂的分类器(比如多层前馈神经网络)

除了将最后时刻的状态作为序列表示之外,我们还可以对整个序列的所有状态进行平均,并用这个平均状态来作为整个序列的表示:

同步的序列到序列模式 主要用于序列标注(Sequence Labeling)任务,即每一时刻都有输入和输出,输入序列和输出序列的长度相同 。比如词性标注(Partof-Speech Tagging)中,每一个单词都需要标注其对应的词性标签。

输入为序列 ,输出为序列 。样本 按不同时刻输入到循环神经网络中,并得到不同时刻的隐状态 。每个时刻的隐状态 代表当前和历史的信息,并输入给分类器 得到当前时刻的标签 。

异步的序列到序列模式也称为 编码器-解码器(Encoder-Decoder)模型,即输入序列和输出序列不需要有严格的对应关系,也不需要保持相同的长度。 比如在机器翻译中,输入为源语言的单词序列,输出为目标语言的单词序列。

在异步的序列到序列模式中,输入为长度为 的序列 ,输出为长度为 的序列 。经常通过 先编码后解码 的方式来实现。先将样本 按不同时刻输入到一个循环神经网络(编码器)中,并得到其编码 。然后再使用另一个循环神经网络(解码器)中,得到输出序列 。为了建立输出序列之间的依赖关系,在解码器中通常使用非线性的自回归模型。

其中 分别为用作编码器和解码器的循环神经网络, 为分类器, 为预测输出 的向量表示。

循环神经网络的参数可以通过梯度下降方法来进行学习。给定一个训练样本 ,其中 为长度是 的输入序列, 是长度为 的标签序列。即在每个时刻 ,都有一个监督信息 ,我们定义时刻 的损失函数为:

其中 为第 时刻的输出, 为可微分的损失函数,比如交叉熵。那么整个序列上损失函数为:

整个序列的损失函数 关于参数 的梯度为:

即每个时刻损失 对参数 的偏导数之和。

循环神经网络中存在一个递归调用的函数 ,因此其计算参数梯度的方式和前馈神经网络不太相同。在循环神经网络中主要有两种计算梯度的方式: 随时间反向传播(BPTT)和实时循环学习(RTRL)算法。

随时间反向传播(Backpropagation Through Time,BPTT) 算法的主要思想是通过类似前馈神经网络的错误反向传播算法来进行计算梯度。

BPTT算法将循环神经网络看作是一个展开的多层前馈网络,其中“每一层”对应循环网络中的“每个时刻”。在“展开”的前馈网络中,所有层的参数是共享的,因此参数的真实梯度是将所有“展开层”的参数梯度之和

因为参数 和隐藏层在每个时刻 的净输入 有关,因此第 时刻的损失函数 关于参数 的梯度为:

其中 表示“直接”偏导数,即公式 中保持 不变,对 求偏导数,得到:

其中 为第 时刻隐状态的第 维; 除了第 个值为 外,其余都为 的行向量。

定义误差项 为第 时刻的损失对第 时刻隐藏神经层的净输入 的导数,则:

从而:

写成矩阵形式为:

由此得到整个序列的损失函数 关于参数 的梯度:

同理可得, 关于权重 和偏置 的梯度为:

在BPTT算法中,参数的梯度需要在一个完整的“前向”计算和“反向”计算后才能得到并进行参数更新。如下图所示。

与反向传播的BPTT算法不同的是,实时循环学习(Real-Time Recurrent Learning)是通过前向传播的方式来计算梯度。

假设循环神经网络中第 时刻的状态 为:

其关于参数 的偏导数为:

RTRL算法从第1 个时刻开始,除了计算循环神经网络的隐状态之外,还依次前向计算偏导数 。

两种学习算法比较:

RTRL算法和BPTT算法都是基于梯度下降的算法,分别通过前向模式和反向模式应用链式法则来计算梯度。 在循环神经网络中,一般网络输出维度远低于输入维度,因此BPTT算法的计算量会更小,但BPTT算法需要保存所有时刻的中间梯度,空间复杂度较高。RTRL算法不需要梯度回传,因此非常适合于需要在线学习或无限序列的任务中

循环神经网络在学习过程中的主要问题是由于 梯度消失或爆炸问题 ,很难建模长时间间隔(Long Range)的状态之间的依赖关系。

在BPTT算法中,我们有:

如果定义 ,则:

若 ,当 时, ,会造成系统不稳定,称为梯度爆炸问题;相反,若 ,当 时, ,会出现和深度前馈神经网络类似的梯度消失问题。

虽然简单循环网络理论上可以建立长时间间隔的状态之间的依赖关系,但是由于梯度爆炸或消失问题,实际上只能学习到短期的依赖关系。这样,如果t时刻的输出 依赖于 时刻的输入 ,当间隔 比较大时,简单神经网络很难建模这种长距离的依赖关系,称为 长程依赖问题(Long-Term dependencies Problem)

一般而言,循环网络的梯度爆炸问题比较容易解决,一般 通过权重衰减或梯度截断来避免。 权重衰减是通过给参数增加 或 范数的正则化项来限制参数的取值范围,从而使得 。梯度截断是另一种有效的启发式方法,当梯度的模大于一定阈值时,就将它截断成为一个较小的数。

梯度消失是循环网络的主要问题。除了使用一些优化技巧外,更有效的方式就是改变模型,比如让 ,同时使用 ,即:

其中 是一个非线性函数, 为参数。

上式中, 和 之间为线性依赖关系,且权重系数为1,这样就不存在梯度爆炸或消失问题。但是,这种改变也丢失了神经元在反馈边上的非线性激活的性质,因此也降低了模型的表示能力。

为了避免这个缺点,我们可以采用一种更加有效的改进策略:

这样 和 之间为既有线性关系,也有非线性关系,并且可以缓解梯度消失问题。但这种改进依然存在两个问题:

为了解决这两个问题,可以通过引入 门控机制 来进一步改进模型。

为了改善循环神经网络的长程依赖问题,一种非常好的解决方案是引入门控机制来控制信息的累积速度,包括 有选择地加入新的信息,并有选择地遗忘之前累积的信息 。这一类网络可以称为基于门控的循环神经网络(Gated RNN)。本节中,主要介绍两种基于门控的循环神经网络: 长短期记忆网络和门控循环单元网络。

长短期记忆(Long Short-Term Memory,LSTM)网络 是循环神经网络的一个变体,可以有效地解决简单循环神经网络的梯度爆炸或消失问题。

在 基础上,LSTM网络主要改进在以下两个方面:

其中 和 三个门(gate)来控制信息传递的路径; 为向量元素乘积; 为上一时刻的记忆单元; 是通过非线性函数得到的候选状态:

在每个时刻 ,LSTM网络的内部状态 记录了到当前时刻为止的历史信息。

在数字电路中,门(Gate)为一个二值变量{0, 1},0代表关闭状态,不许任何信息通过;1代表开放状态,允许所有信息通过。LSTM网络中的“门”是一种“软”门,取值在(0, 1) 之间,表示 以一定的比例运行信息通过 。LSTM网络中三个门的作用为:

(1)遗忘门 控制上一个时刻的内部状态 需要遗忘多少信息。
(2)输入门 控制当前时刻的候选状态 有多少信息需要保存。
(3)输出门

‘拾’ 神经网络模型-27种神经网络模型们的简介

​ 

【1】Perceptron(P) 感知机

【1】感知机 

感知机是我们知道的最简单和最古老的神经元模型,它接收一些输入,然后把它们加总,通过激活函数并传递到输出层。

【2】Feed Forward(FF)前馈神经网络

 【2】前馈神经网络

前馈神经网络(FF),这也是一个很古老的方法——这种方法起源于50年代。它的工作原理通常遵循以下规则:

1.所有节点都完全连接

2.激活从输入层流向输出,无回环

3.输入和输出之间有一层(隐含层)

在大多数情况下,这种类型的网络使用反向传播方法进行训练。

【3】Radial Basis Network(RBF) RBF神经网络

 【3】RBF神经网络

RBF 神经网络实际上是 激活函数是径向基函数 而非逻辑函数的FF前馈神经网络(FF)。两者之间有什么区别呢?

逻辑函数--- 将某个任意值映射到[0 ,... 1]范围内来,回答“是或否”问题。适用于分类决策系统,但不适用于连续变量。

相反, 径向基函数--- 能显示“我们距离目标有多远”。 这完美适用于函数逼近和机器控制(例如作为PID控制器的替代)。

简而言之,RBF神经网络其实就是, 具有不同激活函数和应用方向的前馈网络 。

【4】Deep Feed Forword(DFF)深度前馈神经网络

【4】DFF深度前馈神经网络 

DFF深度前馈神经网络在90年代初期开启了深度学习的潘多拉盒子。 这些依然是前馈神经网络,但有不止一个隐含层 。那么,它到底有什么特殊性?

在训练传统的前馈神经网络时,我们只向上一层传递了少量的误差信息。由于堆叠更多的层次导致训练时间的指数增长,使得深度前馈神经网络非常不实用。 直到00年代初,我们开发了一系列有效的训练深度前馈神经网络的方法; 现在它们构成了现代机器学习系统的核心 ,能实现前馈神经网络的功能,但效果远高于此。

【5】Recurrent Neural Network(RNN) 递归神经网络

【5】RNN递归神经网络 

RNN递归神经网络引入不同类型的神经元——递归神经元。这种类型的第一个网络被称为约旦网络(Jordan Network),在网络中每个隐含神经元会收到它自己的在固定延迟(一次或多次迭代)后的输出。除此之外,它与普通的模糊神经网络非常相似。

当然,它有许多变化 — 如传递状态到输入节点,可变延迟等,但主要思想保持不变。这种类型的神经网络主要被使用在上下文很重要的时候——即过去的迭代结果和样本产生的决策会对当前产生影响。最常见的上下文的例子是文本——一个单词只能在前面的单词或句子的上下文中进行分析。

【6】Long/Short Term Memory (LSTM) 长短时记忆网络

【6】LSTM长短时记忆网络 

LSTM长短时记忆网络引入了一个存储单元,一个特殊的单元,当数据有时间间隔(或滞后)时可以处理数据。递归神经网络可以通过“记住”前十个词来处理文本,LSTM长短时记忆网络可以通过“记住”许多帧之前发生的事情处理视频帧。 LSTM网络也广泛用于写作和语音识别。

存储单元实际上由一些元素组成,称为门,它们是递归性的,并控制信息如何被记住和遗忘。

【7】Gated Recurrent Unit (GRU)

 【7】GRU是具有不同门的LSTM

GRU是具有不同门的LSTM。

听起来很简单,但缺少输出门可以更容易基于具体输入重复多次相同的输出,目前此模型在声音(音乐)和语音合成中使用得最多。

实际上的组合虽然有点不同:但是所有的LSTM门都被组合成所谓的更新门(Update Gate),并且复位门(Reset Gate)与输入密切相关。

它们比LSTM消耗资源少,但几乎有相同的效果。

【8】Auto Encoder (AE) 自动编码器

 【8】AE自动编码器

Autoencoders自动编码器用于分类,聚类和特征压缩。

当您训练前馈(FF)神经网络进行分类时,您主要必须在Y类别中提供X个示例,并且期望Y个输出单元格中的一个被激活。 这被称为“监督学习”。

另一方面,自动编码器可以在没有监督的情况下进行训练。它们的结构 - 当隐藏单元数量小于输入单元数量(并且输出单元数量等于输入单元数)时,并且当自动编码器被训练时输出尽可能接近输入的方式,强制自动编码器泛化数据并搜索常见模式。

【9】Variational AE (VAE)  变分自编码器

 【9】VAE变分自编码器

变分自编码器,与一般自编码器相比,它压缩的是概率,而不是特征。

尽管如此简单的改变,但是一般自编码器只能回答当“我们如何归纳数据?”的问题时,变分自编码器回答了“两件事情之间的联系有多强大?我们应该在两件事情之间分配误差还是它们完全独立的?”的问题。

【10】Denoising AE (DAE) 降噪自动编码器

 【10】DAE降噪自动编码器

虽然自动编码器很酷,但它们有时找不到最鲁棒的特征,而只是适应输入数据(实际上是过拟合的一个例子)。

降噪自动编码器(DAE)在输入单元上增加了一些噪声 - 通过随机位来改变数据,随机切换输入中的位,等等。通过这样做,一个强制降噪自动编码器从一个有点嘈杂的输入重构输出,使其更加通用,强制选择更常见的特征。

【11】Sparse AE (SAE) 稀疏自编码器

【11】SAE稀疏自编码器 

稀疏自编码器(SAE)是另外一个有时候可以抽离出数据中一些隐藏分组样试的自动编码的形式。结构和AE是一样的,但隐藏单元的数量大于输入或输出单元的数量。

【12】Markov Chain (MC) 马尔科夫链

 【12】Markov Chain (MC) 马尔科夫链

马尔可夫链(Markov Chain, MC)是一个比较老的图表概念了,它的每一个端点都存在一种可能性。过去,我们用它来搭建像“在单词hello之后有0.0053%的概率会出现dear,有0.03551%的概率出现you”这样的文本结构。

这些马尔科夫链并不是典型的神经网络,它可以被用作基于概率的分类(像贝叶斯过滤),用于聚类(对某些类别而言),也被用作有限状态机。

【13】Hopfield Network (HN) 霍普菲尔网络

【13】HN霍普菲尔网络 

霍普菲尔网络(HN)对一套有限的样本进行训练,所以它们用相同的样本对已知样本作出反应。

在训练前,每一个样本都作为输入样本,在训练之中作为隐藏样本,使用过之后被用作输出样本。

在HN试着重构受训样本的时候,他们可以用于给输入值降噪和修复输入。如果给出一半图片或数列用来学习,它们可以反馈全部样本。

【14】Boltzmann Machine (BM) 波尔滋曼机

【14】 BM 波尔滋曼机 

波尔滋曼机(BM)和HN非常相像,有些单元被标记为输入同时也是隐藏单元。在隐藏单元更新其状态时,输入单元就变成了输出单元。(在训练时,BM和HN一个一个的更新单元,而非并行)。

这是第一个成功保留模拟退火方法的网络拓扑。

多层叠的波尔滋曼机可以用于所谓的深度信念网络,深度信念网络可以用作特征检测和抽取。

【15】Restricted BM (RBM) 限制型波尔滋曼机

【15】 RBM 限制型波尔滋曼机 

在结构上,限制型波尔滋曼机(RBM)和BM很相似,但由于受限RBM被允许像FF一样用反向传播来训练(唯一的不同的是在反向传播经过数据之前RBM会经过一次输入层)。

【16】Deep Belief Network (DBN) 深度信念网络

【16】DBN 深度信念网络 

像之前提到的那样,深度信念网络(DBN)实际上是许多波尔滋曼机(被VAE包围)。他们能被连在一起(在一个神经网络训练另一个的时候),并且可以用已经学习过的样式来生成数据。

【17】Deep Convolutional Network (DCN) 深度卷积网络

【17】 DCN 深度卷积网络

当今,深度卷积网络(DCN)是人工神经网络之星。它具有卷积单元(或者池化层)和内核,每一种都用以不同目的。

卷积核事实上用来处理输入的数据,池化层是用来简化它们(大多数情况是用非线性方程,比如max),来减少不必要的特征。

他们通常被用来做图像识别,它们在图片的一小部分上运行(大约20x20像素)。输入窗口一个像素一个像素的沿着图像滑动。然后数据流向卷积层,卷积层形成一个漏斗(压缩被识别的特征)。从图像识别来讲,第一层识别梯度,第二层识别线,第三层识别形状,以此类推,直到特定的物体那一级。DFF通常被接在卷积层的末端方便未来的数据处理。

【18】Deconvolutional Network (DN) 去卷积网络

 【18】 DN 去卷积网络

去卷积网络(DN)是将DCN颠倒过来。DN能在获取猫的图片之后生成像(狗:0,蜥蜴:0,马:0,猫:1)一样的向量。DNC能在得到这个向量之后,能画出一只猫。

【19】Deep Convolutional Inverse Graphics Network (DCIGN) 深度卷积反转图像网络

【19】 DCIGN 深度卷积反转图像网络

深度卷积反转图像网络(DCIGN),长得像DCN和DN粘在一起,但也不完全是这样。

事实上,它是一个自动编码器,DCN和DN并不是作为两个分开的网络,而是承载网路输入和输出的间隔区。大多数这种神经网络可以被用作图像处理,并且可以处理他们以前没有被训练过的图像。由于其抽象化的水平很高,这些网络可以用于将某个事物从一张图片中移除,重画,或者像大名鼎鼎的CycleGAN一样将一匹马换成一个斑马。

【20】Generative Adversarial Network (GAN) 生成对抗网络

 【20】 GAN 生成对抗网络

生成对抗网络(GAN)代表了有生成器和分辨器组成的双网络大家族。它们一直在相互伤害——生成器试着生成一些数据,而分辨器接收样本数据后试着分辨出哪些是样本,哪些是生成的。只要你能够保持两种神经网络训练之间的平衡,在不断的进化中,这种神经网络可以生成实际图像。

【21】Liquid State Machine (LSM) 液体状态机

 【21】 LSM 液体状态机

液体状态机(LSM)是一种稀疏的,激活函数被阈值代替了的(并不是全部相连的)神经网络。只有达到阈值的时候,单元格从连续的样本和释放出来的输出中积累价值信息,并再次将内部的副本设为零。

这种想法来自于人脑,这些神经网络被广泛的应用于计算机视觉,语音识别系统,但目前还没有重大突破。

【22】Extreme  Learning Machine (ELM) 极端学习机

【22】ELM 极端学习机 

极端学习机(ELM)是通过产生稀疏的随机连接的隐藏层来减少FF网络背后的复杂性。它们需要用到更少计算机的能量,实际的效率很大程度上取决于任务和数据。

【23】Echo State Network (ESN) 回声状态网络

【23】 ESN 回声状态网络

回声状态网络(ESN)是重复网络的细分种类。数据会经过输入端,如果被监测到进行了多次迭代(请允许重复网路的特征乱入一下),只有在隐藏层之间的权重会在此之后更新。

据我所知,除了多个理论基准之外,我不知道这种类型的有什么实际应用。。。。。。。

【24】Deep Resial Network (DRN) 深度残差网络

​【24】 DRN 深度残差网络 

深度残差网络(DRN)是有些输入值的部分会传递到下一层。这一特点可以让它可以做到很深的层级(达到300层),但事实上它们是一种没有明确延时的RNN。

【25】Kohonen Network (KN) Kohonen神经网络

​ 【25】 Kohonen神经网络

Kohonen神经网络(KN)引入了“单元格距离”的特征。大多数情况下用于分类,这种网络试着调整它们的单元格使其对某种特定的输入作出最可能的反应。当一些单元格更新了, 离他们最近的单元格也会更新。

像SVM一样,这些网络总被认为不是“真正”的神经网络。

【26】Support Vector Machine (SVM)

​【26】 SVM 支持向量机 

支持向量机(SVM)用于二元分类工作,无论这个网络处理多少维度或输入,结果都会是“是”或“否”。

SVM不是所有情况下都被叫做神经网络。

【27】Neural Turing Machine (NTM) 神经图灵机

​【27】NTM 神经图灵机 

神经网络像是黑箱——我们可以训练它们,得到结果,增强它们,但实际的决定路径大多数我们都是不可见的。

神经图灵机(NTM)就是在尝试解决这个问题——它是一个提取出记忆单元之后的FF。一些作者也说它是一个抽象版的LSTM。

记忆是被内容编址的,这个网络可以基于现状读取记忆,编写记忆,也代表了图灵完备神经网络。