计算机网络方面OSPE 是计算机网络里面的路由器的一个协议。OSPF英文全称Open Shortest Path First,开放式最短路径优先,是一个内部网关协议(Interior Gateway Protocol,简称IGP),用于在单一自治系统(autonomous system,AS)内决策路由。是对链路状态路由协议的一种实现,隶属内部网关协议(IGP),故运作于自治系统内部。OSPF分为OSPFv2和OSPFv3两个版本,其中OSPFv2用在IPv4网络,OSPFv3用在IPv6网络。OSPFv2是由RFC 2328定义的,OSPFv3是由RFC 5340定义的。与RIP相比,OSPF是链路状态协议,而RIP是距离矢量协议。
‘贰’ 计算机网络之五层协议
一:概述
计算机网络 (网络)把许多 计算机 连接在一起,而 互联网 则把许多网络连接在一起,是 网络的网络 。因特网是世界上最大的互联网。
以小写字母i开始的internet( 互联网或互连网 )是 通用 名词,它泛指由多个计算机网络互连而成的网络。在这些网络之间的通信协议(通信规则)可以是 任意 的。
以大写字母I开始的Interent( 因特网 )是 专有 名词,它指当前全球最大的、开放的、由众多网络相互连接而成的特定计算机网络,它采用的是 TCP/IP 协议族 作为通信规则,且其前身是美国的 ARPANET 。
因特网现在采用 存储转发 的 分组交换 技术,以及三层因特网服务提供者(ISP)结构。
因特网按 工作方式 可以划分为 边缘 部分和 核心 部分,主机在网络的边缘部分,作用是进行信息处理。 路由器 是在网络的核心部分,作用是:按存储转发方式进行 分组交换 。
计算机通信是计算机的 进程 (运行着的程序)之间的通信,计算机网络采用 通信方式 :客户–服务器方式和对等连接方式(P2P方式)
按作用 范围 不同,计算机网络分为:广域网WAN,城域网MAN,局域网LAN和个人区域网PAN。
五层协议 的体系结构由:应用层,运输层,网络层,数据链路层和物理层。
<1>:应用层 : 是体系结构中的最高层,应用层的任务是 通过应用进程间的交互来完成特定网络应用 。应用层协议定义的是 应用进程间通信和交互的规则 。
<2>:运输层 :任务是负责向 两个主机中的进程之间的通信提供可靠的端到端服务 ,应用层利用该服务传送应用层报文。
TCP :提供面向连接的,可靠的数据传输服务,其数据传输的单位是报文段。
UDP :提供无连接的,尽最大努力的数据传输服务,不保证数据传输的可靠性。
<3>网络层: 网络层的任务就是要选择合适的路由,在发送数据时, 网络层把运输层产生的报文段或者用户数据报 封装 成分组或包进行交付给目的站的运输层。
<4>数据链路层: 数据链路层的任务是在两个相邻结点间的线路上无差错地传送以帧(frame)为单位的数据。每一帧包括数据和必要的控制信息。
<5>:物理层: 物理层的任务就是 透明 地传送比特流,物理层还要确定连接电缆插头的 定义 及 连接法 。
运输层最重要的协议是:传输控制协议 TCP 和用户数据报协议 UDP ,而网络层最重要的协议是网络协议 IP 。
分组交换的优点:高效、灵活、迅速、可靠。
网络协议主要由三个要素组成: (1)语法:即数据和控制信息的结构或者格式; (2)语义:即需要发出何种控制信息,完成何种动作以及做出何种响应。 (3)同步:即事件实现顺序的详细说明。
二:物理层
物理层的主要任务:描述为确定与 传输媒体 的 接口 有关的一些特性。
机械特性 :接口所用接线器的形状和尺寸,引脚数目和排列,固定和锁定装置等,平时常见的各种规格的插件都有严格的 标准化的规定 。
电气特性 :接口电缆上的各条线上出现的电压 范围 。
功能特性 :某条线上出现的某一电平的点电压表示何种 意义 ;
过程特性 :指明对不同功能的各种可能事件的出现 顺序 。
通信的目的 是: 传送消息 , 数据 是运送消息的 实体 。 信号 是数据的电气或电磁的表现。
根据信号中代表 参数 的取值方式不同。 信号分为 : 模拟信号 (连续无限)+ 数字信号 (离散有限)。代表数字信号不同的离散数值的基本波形称为 码元 。
通信 的双方信息交互的方式来看,有三中 基本方式 :
单向 通信(广播)
双向交替 通信(**半双工**_对讲机)
双向同时 通信( 全双工 _电话)
调制 :来自信源的信号常称为基带信号。其包含较多低频成分,较多信道不能传输低频分量或直流分量,需要对其进行调制。
调制分为 两大类 : 基带调制 (仅对波形转换,又称 编码 ,D2D)+ 带通调制 (基带信号频率范围搬移到较高频段, 载波 调制,D2M)。
编码方式 :
不归零制 (正电平1/负0)
归零制度 (正脉冲1/负0)
曼彻斯特编码 (位周期中心的向上跳变为0/下1)
差分曼彻斯特编码 (每一位中心处有跳变,开始辩解有跳变为0,无跳变1)
带通调制方法 : 调 幅 ( AM ):(0, f1) 。调 频 ( FM ):(f1, f2) 。调 相 ( PM ):(0 , 180度) 。
正交振幅调制(QAM)物理层 下面 的 传输媒体 (介质): 不属于任何一层 。包括有: 引导性传输媒体 :双绞、同轴电缆、光缆 、 非引导性传输媒体 :短波、微波、红外线。
信道复用技术 : 频分复用 :(一样的时间占有不不同资源) ; 时分复用 :(不同时间使用同样资源) ;统计时分复用、波分复用(WDM)、码分复用(CDM)。
宽带接入技术 : 非对称数字用户线 ADSL (Asymmetric Digital Subcriber Line)(用数字技术对现有的模拟电话用户线进行改造)
三:数据链路层
数据链路层使用的 信道 有 两种类型: * 点对点(PPP) 信道+ 广播*信道
点对点信道的数据链路层的协议数据单元- -帧
数据链路层协议有许多, 三个基本问题 是共同的
封装成桢
透明传输
差错检测
局域网的数据链路层拆成两个子层,即 逻辑链路层(LLC) 子层+ 媒体接入控制(MAC) 子层;
适配器的作用:
计算机与外界局域网的连接是通过通信适配器,适配器本来是主机箱内插入的一块网络接口板,又称网络接口卡,简称( 网卡 )。
以太网采用 无连接 的工作方式,对发送的数据帧 不进行编号 ,也不要求对方发回确认,目的站收到差错帧就丢掉。
以太网采用的协议是:具有 冲突检测 的 载波监听多点接入 ( CSMA/CD )。协议的要点是: 发送前先监听,边发送边监听,一旦发现总线出现了碰撞,就立即停止发送。
以太网的硬件地址 , MAC 地址实际上就是适配器地址或者适配器标识符。 48位长 , 以太网最短帧长:64字节。争用期51.2微秒。
以太网适配器有 过滤 功能:只接收 单播帧,广播帧,多播帧 。
使用 集线器 可以在 物理层 扩展以太网(半双工),使用 网桥 可以在 数据链路层 扩展以太网(半双工),网桥转发帧时, 不改变帧 的源地址。网桥 优点 :对帧进行转发过滤,增大 吞吐量 。扩大网络物理范围,提高 可靠 性,可 互连 不同物理层,不同MAC子层和不同速率的以太网。 网桥 缺点 :增加时延,可能产生广播风暴。
透明网桥 : 自学习 办法处理接收到的帧。
四:网络层
TCP/IP 体系中的网络层向上只提供简单灵活的、无连接,尽最大努力交付的数据报服务。网络层不提供服务质量的承诺,不保证分组交付的时限, 进程 之间的通信的 可靠性 由 运输层 负责。
一个IP地址在整个因特网范围内是唯一的,分类的 IP地址 包括A类( 1~126 )、B类( 128~191 )、C类( 192~223 单播地址)、D类( 多播 地址)。
分类的IP地址由 网络号字段 和 主机号字段 组成。
物理地址(硬件地址)是数据链路层和物理层使用的地址,而 IP 地址是网络层和以上各层使用的地址,是一种 逻辑地址 ,数据链路层看不见数据报的IP地址。
IP首部中的 生存时间 段给出了IP数据报在因特网中经过的 最大路由器数 ,可防止IP数据报在互联网中无限制的 兜圈 子。
地址解析协议 ARP(Address Resolution Protocol) 把IP地址解析为 硬件地址 ,它解决 同一个局域网的主机或路由器的IP地址和硬件地址的映射问题 ,是一种解决地址问题的协议。以目标IP地址为线索,用来定位一个下一个应该接收数据分包的网络设备对应的MAC地址。如果目标主机不再同一链路上时,可以通过ARP查找下一跳路由器的MAC地址,不过ARP只适用于IPV4,不能用于IPV6,IPV6中可以用ICMPV6替代ARP发送邻居搜索消息。
路由选择协议有两大类: 内部网关 协议(RIP和OSPE)和 外部网关 协议(BGP-4)。
网际控制报文协议 ICMP (Internet Control Message Protocol )控制报文协议。是IP层协议,ICMP报文作为IP数据报的数据,加上首部后组成IP数据报发送出去,使用ICMP并不是实现了可靠传输。ICMP允许主机或者路由器 报告差错 情况和 提供有关异常 的情况报告。
ICMP是一个重要应用是分组网间探测 PING
与单播相比,在一对多的通信中,IP多播可大大节约网络资源, IP多播使用D类地址,IP多播需要使用 网际组管理协议IGMP 和多播路由选择协议。
五: 运输层
网络层为主机之间提供逻辑通信,运输层为应用进程之间提供端到端的逻辑通信。
运输层有两个协议 TCP和UDP
运输层用一个 16位 端口号来标志一个端口。
UDP特点 :无连接、尽最大努力交付、面向报文、无拥塞控制、支持一对一,多对一,一对多,多对多的交互通信。首部开销小。
TCP特点: 面向连接,每一条TCP连接只能是点对点、提供可靠的交付服务,提供全双工通信、面向字节流。
TCP用主机的IP地址加上主机上的端口号作为TCP连接的端点,这样的端点就叫 套接字 。
流量控制 是一个 端到端 的问题,是接收端抑制发送端发送数据的速率,以方便接收端来得及接收。 拥塞控制 是一个全局性过程,涉及到所有的主机,所有的路由器,以及与降低网络传输性能有关的所有因素。
TCP拥塞控制采用四种算法: 慢开始、拥塞避免、快重传、快恢复 。
传输有 三个连接 :连接建立、数据传送、连接释放。
TCP连接建立采用三次握手机制,连接释放采用四次握手机制。
六:应用层
文件传送协议FTP 使用 TCP 可靠传输服务。FTP使用客户服务器方式,一个FTP服务器进程可同时为多个客户进程提供服务。在进行文件传输时,FTP的客户和服务器之间要建立两个并行的TCP连接,控制连接和数据连接,实际用于传输文件的是 数据连接 。
万维网 WWW 是一个大规模,联机式的信息储藏所,可以方便从因特网上一个站点链接到另一个站点。
万维网使用 统一资源定位符URL 来标志万维网上的各种文档,并使每一个文档在整个因特网的范围内具有唯一的标识符 URL 。
‘叁’ ospe动态路由协议有哪些特点
1 OSPF的基本概念
开放最短路径优先协议(Open Shortest Path First)简称OSPF,它是路由选择协议中非常重要的一种协议,这是一种典型的链路状态(Link-state)路由协议,是由Internet工程任务组开发的内部网关(IGP)路由协议,其主要用在一个路由域内。路由域是指一个网络自治系统(Autonomous System),所谓自治系统是指一组路由器都使用同一种路由协议交换路由信息,网络中每个路由器都有一个唯一的标识,用于在链路状态数据库(LSDB)中标识自己。LSDB描述的是整个网络的拓扑结构,包括网络内所有的路由器,作为一种链路状态的路由协议,OSPF将链路状态广播数据包LSA(Link State Advertisement)传送给在某一区域内的所有路由器,OSPF协议使用最短路径优先算法,利用LSA通告得来的信息计算每一个目标网络的最短路径,以自身为根生成一个树,包含了到达每个目的网络的完整路径。
OSPF的路由标示是一个32位的数字,它在自治系统中被用来唯一识别路由器。默认地使用最高回送地址,若回送地址没有被配置,则使用物理接口上最高的IP地址作为路由标示。OSPF在相邻路由器间建立邻接关系,使它们能利用HELLO包维护关系并交换信息。OSPF使用区域来为自治系统分段,区域0是一个主干区域,每一个OSPF网络必须具有,其他的区域通过区域0互连到一起。
2 OSPF的特点
OSPF路由协议主要用在大型自治系统内,这是一种链路状态的路由协议,,而距离矢量路由协议RIP(Routing Information Protocol)则主要用在小型自治系统内,两个路由协议都具有重要的作用,RIP作为静态路由协议,具有适于小型网络,管理员可手工配置,精确控制路由选择,改进网络性能等优点,但它特别不适合于大型网络自治系统。而OSPF路由协议与RIP相比,具有如下优点:1、RIP路由协议中用跳(HOP)来表示到达目的网络所要经过的路由器个数,RIP跳数最高为15,超过15跳的路由被认为不可达,而OSPF不受路由跳数的限制,它只受限于带宽和网络延迟,因而OSPF更适合应用于大型网络中。2、RIP在规划网络时是不支持可变长子网掩码(VLSM),这将导致IP地址分配的低效率,而OSPF路由协议支持VLSM,现在IPV4资源短缺,我们在划分大型网络的子网时,往往采用VLSM,这样划分子网效率更高,更节约IP资源,所以OSPF更适合大型网络。3、RIP必须每30秒就要周期性的广播整个路由表,才能使网络运行正常,如果RIP用在大型网络中,它会产生很多广播信息,而这些广播会占用较多的网络带宽资源,较频繁的更新有可能导致网络拥塞,其结果就是RIP用在大型网络中收敛速度较慢,甚至无法收敛。而OSPF使用组播发送链路状态更新,在链路状态变化时才进行更新,这样提高了带宽的利用率, 收敛速度也大幅提高,能够在最短的时间内将路由变化传递到整个自治系统。4、RIP没有网络延迟和链路开销的概念,拥有较少跳数的路由总是被选为最佳路由,即使较长的路径有低的延迟和开销,并且RIP没有区域的概念,不能在任意比特位进行路由汇总。而在OSPF路由协议中,往往把一个路由域划分为很多个区域area,每一个区域都通过OSPF边界路由器相连,区域间可以通过路由总结(Summary)来减少路由信息,从而减小路由表,提高路由器的运算速度。
OSPF路由协议拥有很多优点,特别适合用于大型网络,提高网络的运行速度,但它也有缺点:①使用OSPF路由协议,需要网络管理员事前先进行区域规划和路由器各端口IP属性的设置,所以配置相对于静态路由RIP来说显得较为复杂,对网络管理员的网络知识水平要求较高。②对路由器的CPU及内存要求较高。