当前位置:首页 » 电脑故障 » 现有电脑密码技术总结
扩展阅读
游戏连接无线网络 2025-02-06 14:34:56
如何让手机增强网络信号 2025-02-06 14:24:15

现有电脑密码技术总结

发布时间: 2023-08-29 01:07:53

㈠ 电脑设置密码问题

一、BIOS密码

BIOS(Basic Input Output System)即基本输入/输出系统,它实际上是被固化到计算机主板上的ROM芯片中的一组程序,为计算机提供最低级的、最直接的硬件控制。和其它程序不同的是,BIOS是储存在BIOS芯片中的,而不是储存在磁盘中,由于它属于主板的一部分,因此大家有时就称呼它一个既不同于软件也不同于硬件的名字“Firmware”(固件),它主要用于存放自诊断测试程序(POST程序)、系统自举装入程序、系统设置程序和主要I/O设备的I/O驱动程序及中断服务程序。
如果你不希望别人用自己的电脑,可设置BIOS的密码功能给电脑加一把“锁”。

二、用户密码

关于用户密码,很多人都存在一个误区,即认为用户密码就是开机密码。事实上Windows在默认的情况下,是没有开机密码的。那么用户密码是用来干什么的呢?是用来保护“个性”的!系统允许设置多个用户,其目的并不是为了保护用户的隐私。而是为每一个用户保存了一组系统外观的配置,以适应不同用户不同的使用习惯,就像目前流行的“皮肤”一样,只不过要输入密码而已。所以这个密码根本起不到保密的作用,只是个摆设罢了。
用户密码可以在控制面板的“密码”或“用户”工具中设置:在控制面板中,双击“用户”图标,点击“新建”按钮,会出现“添加用户”窗口,点击“下一步”按钮,输入新添加的用户名,然后再点击“下一步”,在出现的窗口中输入新用户密码,接着点击“下一步”按钮,会出现“个性化设置”窗口,选择你需要的项目(不选也可以),然后再次点击“下一步”按钮,就可以为本机添加一个新用户。用同样的方法给每个可以使用此机器的用户建立一个用户名,然后你就可以输入密码了,当然也可以留到用户登录后自己修改密码。

三、屏保密码

接下来再说说屏保密码。它的作用主要是在你暂时离开计算机,不想关机,又怕此时有人趁机在你的电脑中看到你在干什么或乱动你的机子,此时屏保密码可以起到一定的保护作用,而且它比用户密码的口碑要比用户密码稍微好那么一点点。如果密码不对,是很难通过的。
我们先来看看屏保密码如何设置。首先在桌面空白处右击鼠标,从快捷菜单中选择“属性”命令,就会打开“显示属性”对话框,该对话框中有“背景”、“屏幕保护程序”、“外观”、“效果”、“Web”、“设置”六个标签项。点击“屏幕保护程序标签”就会打开“显示属性”,在该窗口的“屏幕保护程序”下拉列表框中有Windows附带的各种屏幕保护程序,当我们从中选择了某种屏幕保护程序后,点击“预览”就会出现屏幕保护程序的效果,单击“预览”还可以全屏显示(点击鼠标就会还原)。“设置”按钮可以对屏幕保护程序的显示效果进行设置,在“等待”微调框中可以输入或调整启动屏幕保护程序的时间。更诱人的是,屏幕保护程序还有一定的保密功能呢!如果你希望在自己在离开时他人无法使用计算机,那么最简单的一个方法就是启用屏幕保护程序的密码功能,勾选中“密码保护”框,单击“更改”按钮将出现一个“更改密码”对话框,然后把密码输入两次并确认就可以了。
总结:各个密码都有它自己的功能但最重要的还是能保护自己的系统·维护系统的安全·,保证自己的隐私不被泄露!

㈡ 密码技术(十一)之密钥

  ——秘密的精华

 在使用对称密码、公钥密码、消息认证码、数字签哗樱名等密码技术使用,都需要一个称为 密钥 的巨大数字。然而,数字本身的大小并不重要,重要的是 密钥空间的大小 ,也就是可能出现的密钥的总数量,因为密钥空间越大,进行暴力破解就越困难。密钥空间的大小是由 密钥长度 决定的。

 对称密码DES的密钥的实质长度为56比特(7个字节)。
例如,
一个DES密钥用二进制可以表示为:
01010001 11101100 01001011 00010010 00111101 01000010 00000011
用十六进制则可以表示为:
51 EC 4B 12 3D 42 03
而用十进制则可以表示为:
2305928028626269955

 在对称密码三重DES中,包括使用两个DES密钥的DES-EDE2和使用三个DES密钥的DES-EDE3这两种方式。
DES-EDE2的密钥长度实质长度为112比特(14字节),比如:
51 EC 4B 12 3D 42 03 30 04 D8 98 95 93 3F
DES-EDE3的密钥的实质长度为168比特(21字节),比如:
51 EC 4B 12 3D 42 03 30 04 D8 98 95 93 3F 24 9F 61 2A 2F D9 96

 对称密码AES的密钥长度可以从128、192和256比特中进行选择,当密钥长度为256比特时,比如:
51 EC 4B 12 3D 42 03 30 04 D8 98 95 93 3F 24 9F 61 2A 2F D9 96
B9 42 DC FD A0 AE F4 5D 60 51 F1

密钥和明文是等价的 。假设明文具有100万的价值,那么用来加密这段明文的密钥也就是具有100万元的价值;如果明文值1亿元,密钥也就值1亿元;如果明文的内容是生死攸关的,那么密钥也同样是生死攸关的。

 在对称密码中,加密和解密使用同一个密钥。由于发送者和接收者需要共享密钥,因此对称密码又称为共享密钥密码。对称密码中所使用的密钥必须对发送者和接收者以外的人保密,否则第三方就能够解密了。

 在消息认证码中,发送者和接收者使用共享的密钥来进行认证。消息认证码只能由持有合法密钥的人计算出来。将消息认证码附加在通信报文后面,就可以识别通信内容是否被篡改或伪装,由于“持有合法的密钥”就是发送者和接收者合法身份的证明,因此消息认证码的密钥必须对发送者以外的人保密,否则就会产生篡改和伪装的风险。

 在数字签名中,签名生成和验证使用不同的密钥,只有持有私钥的本人才能够生成签名,但由于验证签名使用的是公钥,因此任何人都能够验证签名。

 对称密码和公钥密码的密钥都是用于确保机密性的密钥。如果不知道用于解密的合法密钥,就无法得知明文的内容。
 相对地,消息认证码和数字签名所使用的密钥,则是用于认证的密钥。如果不知道合法的密钥,就无法篡改数据,也无法伪装本人的身份。

 当我们访问以https://开头的网页时,Web服务器和浏览器之间会进行基于SSL/TLS的加密通信。在这样的通信中所使用的密钥是仅限于本次通信的一次密钥,下次通信时就不能使用了,想这样每次通信只能使用一次的密钥称为 会话密钥
 由于会话密钥只在本次通信中有效,万一窃听者获取了本次通信的会话密钥,也只能破译本次通信的内容。
 虽然每次乱轿丛通信都会更换会话密钥,但如果用来生成密钥的伪随机数生成器品质不好,窃听帆纳者就有可能预测出下次生成会话密钥,这样就会产生通信内容被破译的风险。
 相对于每次通信更换的会话密钥,一直被重复使用的密钥称为 主密钥

 一般来说,加密的对象是用户直接使用的信息,这样的情况下所使用的密钥称为CEK(Contents Encryting Key,内容加密密钥);相对地,用于加密密钥的密钥则称为KEK(Key Encryting Key,密钥加密密钥)。

 在很多情况下,之前提到的会话密钥都是被作为CEK使用的,而主密钥则是被作为KEK使用的。

 生成密钥的最好方法就是使用随机数,因为米哟啊需要具备不易被他人推测的性质。在可能的情况下最好使用能够生成密码学上的随机数的硬件设备,但一般我们都是使用伪随机数生成器这一专门为密码学用途设计的软件。
 在生成密钥时,不能自己随便写出一些像“3F 23 52 28 E3....”这样的数字。因为尽管你想生成的是随机的数字,但无论如何都无法避免人为偏差,而这就会成为攻击者的目标。
 尽管生成伪随机数的算法有很多种,但密码学用途伪随机生成器必须是专门针对密码学用途而设计的。例如,有一些伪随机数生成器可以用于游戏和模拟算法,尽管这些伪随机数生成器所生成的数列看起也是随机的,但只要不是专门为密码学用途设计的,就不能用来生成密钥,因为这些伪随机数生成器不具备不可预测性这一性质。

 有时候我们也会使用人类的可以记住的口令(pasword或passphrase)来生成密钥。口令指的是一种由多个单词组成的较长的password。
 严格来说,我们很少直接使用口令来作为密钥使用,一般都是将口令输入单向散列函数,然后将得到的散列值作为密钥使用。
 在使用口令生成密钥时,为了防止字典攻击,需要在口令上附加一串称为盐(salt)的随机数,然后在将其输入单向散列函数。这种方法称为“基于口令的密码(Password Based Encryption,PBE)”。

 在使用对称密码时,如何在发送者和接收者之间共享密钥是一个重要的问题,要解决密钥配送问题,可以采用事先共享密钥,使用密钥分配中心,使用公钥密码等方法,除了上述方法,之前还提到一种解决密钥配送的问题的方法称为Diffie-Hellman密钥交换。

 有一种提供通信机密性的技术称为 密钥更新 (key updating),这种方法就是在使用共享密钥进行通信的过程中,定期更改密钥。当然,发送者和接收者必须同时用同样的方法来改变密钥才行。
 在更新密钥时,发送者和接收者使用单向散列函数计算当前密钥的散列值,并将这个散列值用作新的密钥。简单说,就是 用当前密钥散列值作为下一个密钥
 我们假设在通信过程中的某个时间点上,密钥被窃听者获取了,那么窃听者就可以用这个密钥将之后的通信内容全部解密。但是,窃听者却无法解密更新密钥这个时间点之前的内容,因为这需要用单向散列函数的输出反算出单向散列函数的输入。由于单向散列函数具有单向性,因此就保证了这样的反算是非常困难的。
 这种防止破译过去的通信内容机制,称为 后向安全 (backward security)。

 由于会话密钥在通信过程中仅限于一次,因此我们不需要保存这种秘密。然而,当密钥需要重复使用时,就必须要考虑保存密钥的问题了。

 人类是 无法记住具有实用长度的密钥 的。例如,像下面这样一个AES的128比特的密钥,一般人是很难记住的。
51 EC 4B 12 3D 42 03 30 04 DB 98 95 93 3F 24 9F
就算勉强记住了,也只过不是记住一个密钥而已。但如果要记住多个像这样的密钥并且保证不忘记,实际上是非常困难的。

 我们记不住密钥,但如果将密钥保存下来又可能会被窃取。这真是一个头疼的问题。这个问题很难得到彻底解决,但我们可以考虑一些合理的解决方法。
 将密钥保存生文件,并将这个文件保存在保险柜等安全地方。但是放在保险柜里的话,出门就无法使用了。这种情况,出门时就需要随身携带密钥。而如果将密钥放在存储卡随身携带的话,就会产生存储卡丢失、被盗等风险。
 万一密钥被盗,为了能够让攻击者花更多的时间才能真正使用这个密钥,我们可以使用将密钥加密后保存的方法,当然,要将密钥加密,必须需要另一个密钥。像这样用于密码加密的密钥,一般称为KEK。
 对密钥进行加密的方法虽然没有完全解决机密性的问题,但在现实中却是一个非常有效地方法,因为这样做可以减少需要保管密钥的数量。
 假设计算机上有100万个文件,分别使用不同的密钥进行加密生成100万个密文,结果我们手上就产生了100万个密钥,而要保管100万个密钥是很困难的。
 于是,我们用一个密钥(KEK)将这100万个密钥进行加密,那么现在我们只要保管者一个KEK就可以了,这一个KEK的价值相当于签名的100万个密钥的价值的总和。
 用1个密钥来代替多个密钥进行保管的方法,和认证机构的层级化非常相似。在后者中,我们不需要信任多个认证机构,而只需要信任一个根CA就可以了。同样的,我们也不需要确保多个密钥的机密性,而只需要确保一个KEK的机密性就可以了。

 密钥的作废和生成是同等重要的,这是因为密钥和明文是等价的。

 假设Alice向Bob发送了一封加密邮件。Bob在解密之后阅读了邮件的内容,这时本次通信所使用的密钥对于Alice和Bob来说就不需要了。不在需要的密钥必须妥善删除,因为如果被窃听者Eve获取,之前发送的加密邮件就会被解密。

 如果密钥是计算机上的一个文件,那么仅仅删除这个文件是不足以删除密钥的,因为有一些技术能够让删除的文件“恢复”。此外,很多情况下文件的内容还会残留在计算机的内存中,因此必须将这些痕迹完全抹去。简而言之,要完全删除密钥,不但要用到密码软件,还需要在设计计算机系统时对信息安全进行充分的考虑

 如果包含密钥的文件被误删或者保管密钥的笔记本电脑损坏了,会怎么样?
 如果丢失了对称密钥密码的共享密钥,就无法解密密文了。如果丢失了消息认证码的密钥,就无法向通信对象证明自己的身份了。
 公钥密码中,一般不太会发送丢失公钥的情况,因为公钥是完全公开的,很有可能在其他电脑上存在副本。
 最大的问题是丢失公钥密码的私钥。如果丢失了公钥密码的私钥,就无法解密用公钥密码加密的密文了。此外,如果丢失了数字签名的私钥,就无法生成数字签名了。

 Diffie-Hellman密钥交换(Diffie-Hellman key exchange)是1976年由Whitfield Diffie和Martin Hellman共同发明的一种算法。使用这种算法,通信双方仅通过交换一些可以公开的信息就能够生成共享秘密数字,而这一秘密数字就可以被用作对称密码的密钥。IPsec 中就使用了经过改良的Diffie-Hellman密钥交换。

2 Alice 生成一个随机数A
 A是一个1 ~ P-2之间的整数。这个数是一个只有Alice知道的密码数字,没有必要告诉Bob,也不能让Eve知道。

Alice计算出的密钥=Bob计算出的密钥

  在步骤1-7中,双方交换数字一共有4个,P、G、G A mod P 和 G B mod P。根据这4个数字计算出Alice和Bob的共享密钥是非常困难的。
 如果Eve能欧知道A和B的任意一个数,那么计算G A*B 就很容易了,然而仅仅根据上面的4个数字很难求出A和B的。
 根据G A mod P 计算出A的有效算法到现在还没有出现,这问题成为有限域(finite field) 的 离散对数问题

 Diffie-Hellman密钥交换是利用了“离散对数问题”的复杂度来实现密钥的安全交换的,如果将“离散对数问题”改为“椭圆曲线上离散对数问题”,这样的算法就称为 椭圆曲线Diffie-Hellman 密钥交换。
 椭圆曲线Diffie-Hellman密钥交换在总体流程上是不变的,只是所利用的数学问题不同而已。椭圆曲线Diffie-Hellman密钥交换能够用较短的密钥长度实现较高的安全性。

 基于口令密码(password based encryption,PBE)就是一种根据口令生成密钥并用该密钥进行加密的方法。其中加密和解密使用同一个密钥。
 PBE有很多种实现方法。例如RFC2898和RFC7292 等规范中所描述的PBE就通过Java的javax.crypto包等进行了实现。此外,在通过密码软件PGP保存密钥时,也会使用PBE。
PBE的意义可以按照下面的逻辑来理解。

想确保重要消息的机制性。
  ↓
将消息直接保存到磁盘上的话,可能被别人看到。
  ↓
用密钥(CEK)对消息进行加密吧。
  ↓
但是这次又需要确保密钥(CEK)的机密性了。
  ↓
将密钥(CEK)直接保存在磁盘上好像很危险。
  ↓
用另一个密钥(KEK)对密钥进行加密(CEK)吧。
  ↓
等等!这次又需要确保密钥(KEK)的机密性了。进入死循环了。
  ↓
既然如此,那就用口令来生成密钥(KEK)吧。
  ↓
但只用口令容易遭到字典攻击
  ↓
那么就用口令和盐共同生成密钥(KEK)吧。
  ↓
盐可以和加密后的密钥(CEK)一切保存在磁盘上,而密钥(KEK)可以直接丢弃。
  ↓
口令就记在自己的脑子里吧。

PBE加密包括下列3个步骤:

  盐是由伪随机数生成器生成的随机数,在生成密钥(KEK)时会和口令一起被输入单向散列函数。
 密钥(KEK)是根据秘密的口令生成的,加盐好像没有什么意义,那么盐到底起到什么作用呢?
盐是用来防御字典攻击的 。字典攻击是一种事先进行计算并准备好候选密钥列表的方法。
 我们假设在生成KEK的时候没有加盐。那么主动攻击者Mallory就可以根据字典数据事先生成大量的候选KEK。
 在这里,事先是很重要的一点。这意味着Mallory可以在窃取到加密会话的密钥之前,就准备好了大量的候选KEK。当Mallory窃取加密的会话密钥后,就需要尝试将它解密,这是准备好了大量事先生成的候选KEK,就能够大幅度缩短尝试的时间,这就是 字典攻击 (dictionary attack)。
 如果在生成KEK时加盐,则盐的长度越大,候选KEK的数量也会随之增大,事先生成的的候选KEK就会变得非常困难。只要Mallory还没有得到盐,就无法生成候选KEK。这是因为加盐之后,候选KEK的数量会变得非常巨大。

 具有充足长度的密钥是无法用人脑记忆的。口令也是一样,我们也无法记住具有充足比特数的口令。
 在PBE中,我们通过口令生成密钥(KEK),在用这个密钥来加密会话密钥(CEK)。由于通过口令生成的密钥(KEK)强度不如由伪随机数生成器生成的会话密钥(CEK),这就好像是将一个牢固的保险柜的钥匙放在了一个不怎么牢固的保险柜保管,因此在使用基于口令的密钥时,需要将盐和加密后的CEK通过物理方法进行保护。例如将盐和加密后的CEK保存到存储卡随身携带。

 在生成KEK时,通过多次使用单向散列函数就可以提高安全性。例如,将盐和口令输入单向散列函数,进行1000次的散列函数所得到的散列值作为KEK来使用,是一个不错的方法。
 像这样将单向散列函数进行多次迭代的方法称为 拉伸 (stretching)。

该系列的主要内容来自《图解密码技术第三版》
我只是知识的搬运工
文章中的插图来源于原着