⑴ 网络信息安全的模型框架
通信双方在网络上传输信息,需要先在发收之间建立一条逻辑通道。这就要先确定从发送端到接收端的路由,再选择该路由上使用的通信协议,如TCP/IP。
为了在开放式的网络环境中安全地传输信息,需要对信息提供安全机制和安全服务。信息的安全传输包括两个基本部分:一是对发送的信息进行安全转换,如信息加密以便达到信息的保密性,附加一些特征码以便进行发送者身份验证等;二是发送双方共享的某些秘密信息,如加密密钥,除了对可信任的第三方外,对其他用户是保密的。
为了使信息安全传输,通常需要一个可信任的第三方,其作用是负责向通信双方分发秘密信息,以及在双方发生争议时进行仲裁。
一个安全的网络通信必须考虑以下内容:
·实现与安全相关的信息转换的规则或算法
·用于信息转换算法的密码信息(如密钥)
·秘密信息的分发和共享
·使用信息转换算法和秘密信息获取安全服务所需的协议 网络信息安全可看成是多个安全单元的集合。其中,每个单元都是一个整体,包含了多个特性。一般,人们从三个主要特性——安全特性、安全层次和系统单元去理解网络信息安全。
1)安全特性
安全特性指的是该安全单元可解决什么安全威胁。信息安全特性包括保密性、完整性、可用性和认证安全性。
保密性安全主要是指保护信息在存储和传输过程中不被未授权的实体识别。比如,网上传输的信用卡账号和密码不被识破。
完整性安全是指信息在存储和传输过程中不被为授权的实体插入、删除、篡改和重发等,信息的内容不被改变。比如,用户发给别人的电子邮件,保证到接收端的内容没有改变。
可用性安全是指不能由于系统受到攻击而使用户无法正常去访问他本来有权正常访问的资源。比如,保护邮件服务器安全不因其遭到DOS攻击而无法正常工作,是用户能正常收发电子邮件。
认证安全性就是通过某些验证措施和技术,防止无权访问某些资源的实体通过某种特殊手段进入网络而进行访问。
2)系统单元
系统单元是指该安全单元解决什么系统环境的安全问题。对于现代网络,系统单元涉及以下五个不同环境。
·物理单元:物理单元是指硬件设备、网络设备等,包含该特性的安全单元解决物理环境安全问题。
·网络单元:网络单元是指网络传输,包含该特性的安全单元解决网络协议造成的网络传输安全问题。
·系统单元:系统单元是指操作系统,包含该特性的安全单元解决端系统或中间系统的操作系统包含的安全问题。一般是指数据和资源在存储时的安全问题。
·应用单元:应用单元是指应用程序,包含该特性的安全单元解决应用程序所包含的安全问题。
·管理单元:管理单元是指网络安全管理环境,网络管理系统对网络资源进行安全管理。 网络信息安全往往是根据系统及计算机方面做安全部署,很容易遗忘人才是这个网络信息安全中的脆弱点,而社会工程学攻击则是这种脆弱点的击破方法。社会工程学是一种利用人性脆弱点、贪婪等等的心理表现进行攻击,是防不胜防的。国内外都有在对此种攻击进行探讨,比较出名的如《黑客社会工程学攻击2》等。
⑵ 网络安全模型是什么意思
网络安全模型:是动态网络安全过程的抽象描述,通过对安全模型的研究,通过对安全模型的研究,了解安全动态过程的构成因素,是构建合理而实用的安全策略体系的前提之一。为了达到安全防范的目标,需要建立合理的网络安全模型,立合理的网络安全模型,以指导网络安全工作的 部署和管理。
⑶ 【网络安全基础】网络参考模型分为哪几层
网络参考模型分为7层,分别是物理层,数据链路层,网络层,传输层,会话层,表示层和应用层。
⑷ P2DR的名词解释
P2DR模型是美国ISS公司提出的动态网络安全体系的代表模型,也是动态安全模型的雏形。根据风险分析产生的安全策略描述了系统中哪些资源要得到保护,实现对它们的保护等。策略是模型的核心,所有的防护、检测和响应都是依据安全策略实施的。网络安全策略一般包括总体安全策略和具体安全策略2个部分。
主要部分
P2DR模型包括四个主要部分:Policy(安全策略)、Protection(防护)、Detection(检测)和 Response。
(1)策略:定义系统的监控周期、确立系统恢复机制、制定网络访问控制策略和明确系统的总体安全规划和原则。
(2)防护:通过修复系统漏洞、正确设计开发和安装系统来预防安全事件的发生;通过定期检查来发现可能存在的系统脆弱性;通过教育等手段,使用户和操作员正确使用系统,防止意外威胁;通过访问控制、监视等手段来防止恶意威胁。采用的防护技术通常包括数据加密、身份认证、访问控制、授权和虚拟专用网(VPN)技术、防火墙、安全扫描和数据备份等。
(3)检测:是动态响应和加强防护的依据,通过不断地检测和监控网络系统,来发现新的威胁和弱点,通过循环反馈来及时做出有效的响应。当攻击者穿透防护系统时,检测功能就发挥作用,与防护系统形成互补。
(4)响应:系统一旦检测到入侵,响应系统就开始工作,进行事件处理。响应包括紧急响应和恢复处理,恢复处理又包括系统恢复和信息恢复
⑸ 如何描述网络信息安全系统模型
信息安全主要涉及到信息传输的安全、信息存储的安全以及对网络传输信息内容的审计三方面。 鉴别 鉴别是对网络中的主体进行验证的过程,通常有三种方法验证主体身份。一是只有该主体了解的秘密,如口令、密钥;二是主体携带的物品,如智能卡和令牌卡;三是只有该主体具有的独一无二的特征或能力,如指纹、声音、视网膜或签字等。 口令机制:口令是相互约定的代码,假设只有用户和系统知道。口令有时由用户选择,有时由系统分配。通常情况下,用户先输入某种标志信息,比如用户名和ID号,然后系统询问用户口令,若口令与用户文件中的相匹配,用户即可进入访问。口令有多种,如一次性口令,系统生成一次性口令的清单,第一次时必须使用X,第二次时必须使用Y,第三次时用Z,这样一直下去;还有基于时间的口令,即访问使用的正确口令随时间变化,变化基于时间和一个秘密的用户钥匙。这样口令每分钟都在改变,使其更加难以猜测。 智能卡:访问不但需要口令,也需要使用物理智能卡。在允许其进入系统之前检查是否允许其接触系统。智能卡大小形如信用卡,一般由微处理器、存储器及输入、输出设施构成。微处理器可计算该卡的一个唯一数(ID)和其它数据的加密形式。ID保证卡的真实性,持卡人就可访问系统。为防止智能卡遗失或被窃,许多系统需要卡和身份识别码(PIN)同时使用。若仅有卡而不知PIN码,则不能进入系统。智能卡比传统的口令方法进行鉴别更好,但其携带不方便,且开户费用较高。 主体特征鉴别:利用个人特征进行鉴别的方式具有很高的安全性。目前已有的设备包括:视网膜扫描仪、声音验证设备、手型识别器。 数据传输安全系统 数据传输加密技术 目的是对传输中的数据流加密,以防止通信线路上的窃听、泄漏、篡改和破坏。如果以加密实现的通信层次来区分,加密可以在通信的三个不同层次来实现,即链路加密(位于OSI网络层以下的加密),节点加密,端到端加密(传输前对文件加密,位于OSI网络层以上的加密)。 一般常用的是链路加密和端到端加密这两种方式。链路加密侧重与在通信链路上而不考虑信源和信宿,是对保密信息通过各链路采用不同的加密密钥提供安全保护。链路加密是面向节点的,对于网络高层主体是透明的,它对高层的协议信息(地址、检错、帧头帧尾)都加密,因此数据在传输中是密文的,但在中央节点必须解密得到路由信息。端到端加密则指信息由发送端自动加密,并进入TCP/IP数据包回封,然后作为不可阅读和不可识别的数据穿过互联网,当这些信息一旦到达目的地,将自动重组、解密,成为可读数据。端到端加密是面向网络高层主体的,它不对下层协议进行信息加密,协议信息以明文形式传输,用户数据在中央节点不需解密。 数据完整性鉴别技术 目前,对于动态传输的信息,许多协议确保信息完整性的方法大多是收错重传、丢弃后续包的办法,但黑客的攻击可以改变信息包内部的内容,所以应采取有效的措施来进行完整性控制。 报文鉴别:与数据链路层的CRC控制类似,将报文名字段(或域)使用一定的操作组成一个约束值,称为该报文的完整性检测向量ICV(Integrated Check Vector)。然后将它与数据封装在一起进行加密,传输过程中由于侵入者不能对报文解密,所以也就不能同时修改数据并计算新的ICV,这样,接收方收到数据后解密并计算ICV,若与明文中的ICV不同,则认为此报文无效。 校验和:一个最简单易行的完整性控制方法是使用校验和,计算出该文件的校验和值并与上次计算出的值比较。若相等,说明文件没有改变;若不等,则说明文件可能被未察觉的行为改变了。校验和方式可以查错,但不能保护数据。 加密校验和:将文件分成小快,对每一块计算CRC校验值,然后再将这些CRC值加起来作为校验和。只要运用恰当的算法,这种完整性控制机制几乎无法攻破。但这种机制运算量大,并且昂贵,只适用于那些完整性要求保护极高的情况。 消息完整性编码MIC(Message Integrity Code):使用简单单向散列函数计算消息的摘要,连同信息发送给接收方,接收方重新计算摘要,并进行比较验证信息在传输过程中的完整性。这种散列函数的特点是任何两个不同的输入不可能产生两个相同的输出。因此,一个被修改的文件不可能有同样的散列值。单向散列函数能够在不同的系统中高效实现。 防抵赖技术 它包括对源和目的地双方的证明,常用方法是数字签名,数字签名采用一定的数据交换协议,使得通信双方能够满足两个条件:接收方能够鉴别发送方所宣称的身份,发送方以后不能否认他发送过数据这一事实。比如,通信的双方采用公钥体制,发方使用收方的公钥和自己的私钥加密的信息,只有收方凭借自己的私钥和发方的公钥解密之后才能读懂,而对于收方的回执也是同样道理。另外实现防抵赖的途径还有:采用可信第三方的权标、使用时戳、采用一个在线的第三方、数字签名与时戳相结合等。 鉴于为保障数据传输的安全,需采用数据传输加密技术、数据完整性鉴别技术及防抵赖技术。因此为节省投资、简化系统配置、便于管理、使用方便,有必要选取集成的安全保密技术措施及设备。这种设备应能够为大型网络系统的主机或重点服务器提供加密服务,为应用系统提供安全性强的数字签名和自动密钥分发功能,支持多种单向散列函数和校验码算法,以实现对数据完整性的鉴别。 数据存储安全系统 在计算机信息系统中存储的信息主要包括纯粹的数据信息和各种功能文件信息两大类。对纯粹数据信息的安全保护,以数据库信息的保护最为典型。而对各种功能文件的保护,终端安全很重要。 数据库安全:对数据库系统所管理的数据和资源提供安全保护,一般包括以下几点。一,物理完整性,即数据能够免于物理方面破坏的问题,如掉电、火灾等;二,逻辑完整性,能够保持数据库的结构,如对一个字段的修改不至于影响其它字段;三,元素完整性,包括在每个元素中的数据是准确的;四,数据的加密;五,用户鉴别,确保每个用户被正确识别,避免非法用户入侵;六,可获得性,指用户一般可访问数据库和所有授权访问的数据;七,可审计性,能够追踪到谁访问过数据库。 要实现对数据库的安全保护,一种选择是安全数据库系统,即从系统的设计、实现、使用和管理等各个阶段都要遵循一套完整的系统安全策略;二是以现有数据库系统所提供的功能为基础构作安全模块,旨在增强现有数据库系统的安全性。 终端安全:主要解决微机信息的安全保护问题,一般的安全功能如下。基于口令或(和)密码算法的身份验证,防止非法使用机器;自主和强制存取控制,防止非法访问文件;多级权限管理,防止越权操作;存储设备安全管理,防止非法软盘拷贝和硬盘启动;数据和程序代码加密存储,防止信息被窃;预防病毒,防止病毒侵袭;严格的审计跟踪,便于追查责任事故。 信息内容审计系统 实时对进出内部网络的信息进行内容审计,以防止或追查可能的泄密行为。因此,为了满足国家保密法的要求,在某些重要或涉密网络,应该安装使用此系统。
⑹ 一种网络安全防护模型_最常用的网络安全模型pdrr是指
1 引言 网络安全问题日益掘租严重地威胁着我们的正常生活,给经济和社会发展带来巨大损失,网络安全隐患主要是网络自身弱点和外部入侵等,目前最常用的网络安全策略有数据备份、防火墙、入侵检测、数据签名和加密、漏洞扫描、安全响应等几种策略。
2 网络安全防护模型
根据网络信息安全需求的特点, 以及目前存在的各种安全措施,对它们的优点进行有效的突出,对它们的缺点进行规避,本人设计了一个网络安全模型,简称MRFDR,其中M-management是网络安全管理、R-recovery是网络安全恢复、F-firewall是防火墙策略、D-detection是入侵检测机制、R-reaction是安全响应机制,将五个部分有机地结合起来,能对网络安全起到很好的作用。
图1 网络安全防护模型MRFDR原理图
该模型详细介绍如下:
(1) 网络安全管理包括安全技术和设备的管理、安全管理制度、部返散敬门与人员的组织规则等。使用安全管理平台、统一配置网络设备及安全设备、严格的安全管理制度、明确的部门安全职责划分、合理的人员角色配置都可以在很大程度上降低其他层次的安全漏洞。
(2) 目前市面上的防火墙产品都比较成熟了,它可以对所有进、出网络的数据进行安全过滤,对进、出网络的访问行为进行管理,可以禁止对不良网站的访问,可以对通过防火墙的信息内容和活动进行记录,可以对网络攻击进行检测和破坏报警等。
(3) 作为防火墙的合理补充,入侵检测技术能够帮助系统对付网络攻击,监测并分析用户和系统的活动,核查系统配置和漏洞,评估系统关键资源和数据文件的完整性,识别已知的攻击行为,统计分析异常行为,识别违反安全策略的用户活动等,极大地扩展了系统管理员的安全管理能力(包括安全审计、监视、攻击识别和响应),提高了信息安全基础结构的完整性。
(4) 网络安全恢复主要通过冗余备份等方式,确保在被保护网络信漏慎息系统发生了意想不到的安全事故之后,被破坏的网络信息业务系统和关键数据能够迅速得到恢复,从而达到降低网络信息系统遭受灾难性破坏的风险的目的。备份的对象包括重要业务数据、系统配置信息以及网络环境信息等。
(5) 安全响应机制是在发生安全隐患后,管理员对危害网络信息系统的安全事件、行为、过程及时做出响应和处理,包括快速、自动切断入侵来源地的网络攻击,隔离和抑制病毒,对可能发生的入侵行为进行限制,杜绝危害进一步蔓延扩大,避免业务中断等安全事故。
3 总结
我们首先要认识到网络安全技术不是单一的技术问题, 而是多种技术的融合,只有多种技术共同合并使用,才能构筑坚固的网络安全系统。我们提出的MRFDR安全模型采用多种安全技术,能对网络起到好的防护作用!