① 大数据时代怎样保障信息安全
在当今大数据时代,数据中蕴藏的大量价值推动了数据信息获取渠道的挖掘.随着信息技术的发展,信息泄露事件越来越频繁.大数据时代如何保证信息安全?
1、网络应用在给用户带来便利的同时,也给信息安全带来了更多危险,照明和电线也有可能成为秘密盗窃者的攻击载体
如果在工作机上输入信息,秘密机就会原封不动地被偷走的照明被遮住,输入信息,秘密机就不会被偷走.两台计算机没有网络连接,但是可以获得在工作机上输入的信息.关闭电脑连接的外部设备输入信息,秘密机就不能被盗.鼎普科技副社长黄玉昆向记者展示了可见光的秘密和电线的秘密.
在同一束光下共享电线,也许你我的信息是透明的.现在的秘密技术越来越隐蔽,无法防止,照明、电线等看起来像普通的设备,有可能成为秘密者的攻击载体.黄玉昆表示,盗窃者在照明设备上安装了接收装置,通过可见光发出高频闪烁的传输信息,计算机连接该照明设备后,信息通过光波向外传送,同样,盗窃者在电力线上安装了盗窃装置,也可以无痕迹地盗窃同一个电网内的其他计算机信息.
其实,现在每个人都有窃听器.我们的GSM切断器只要输入目标的手机号码,就可以切断对方的通话.即使对方没有接通电源,也可以听到电池没有被拆除??香港电影《窃听风云》中演员吴彦祖的古典台词,也许大家都不知道.随着网络安全领域的攻防演变,现实生活中也出现了窃听手机的信扰档号屏蔽系统.各种隐藏、奇怪的病毒总是瞄准我们的手机,照片、邮件、二维码可能会马上瘫痪整个手机系统.卫士通信息产业株式会社战略市场部负责人李学斌说.
不仅如此,自动售货机也有可能被黑、共享充电设备泄露信息、背包银行卡的钱被偷??记者在不久前举办的2017年国家网络安全宣传周博览会上参观时,发现各种隐私泄露的场面使体验者惊讶.
中国工程院院士倪光南承认,随着大数据、移动互联网技术的进步,大量的互联网应用在迅速发展的同时,确实带掘游来了更多的个人信息安全危险.
2、个人信息过度采集、诱骗采集、隐私政策霸王条款等,不仅侵犯了缓散乱公民的权益,还引起了欺诈、恐吓等诸多社会问题
② 大数据时代信息安全现状以及对策建议
【导读】随着大数据的推行,我们的个人信息安全受到了很大的安全隐患,相信大家有过这样的感觉,自己手机总是可以莫名其妙的收到很多消息或电话,浏览淘宝,抖音时总是自己想的,其实这都是大数据的后台推算结果,今天我们就来聊聊大数据时代信息安全现状以及对策建议,希望对大家有所帮助。
鉴于大数据资源在国家安全中的战略价值,除加强基础软硬件设施建设、网络攻击监控、防护等方面外,对国内大数据服务和大数据应用提出以下建议。
对重要的大数据应用或服务进行国家网络安全审查。重要的大数据应用程序或服务涉及国民经济、人民生活和政府治理应该被包括在国家网络安全审查的范围,并明确安全评估规范应尽快制定确保这些大数据平台有严格的和可靠的安全措施,防止受到攻击和受到敌对势力。
合理限制敏感和重要部门使用社交网络工具。政府部门、中央企业和重要信息系统单位应避免或限制使用社交网络工具作为日常办公的通讯工具,将办公移动终端和个人移动终端分开使用,防止重要保密信息的泄露。
敏感和重要的部门应该谨慎使用第三方云计算服务。云计算服务是大数据的主要载体。越来越多的政府部门、企事业单位在第三方云计算平台上建立了电子政务和企业业务系统。然而,由于缺乏安全意识、安全专业知识和安全措施,第三方云计算平台本身的安全往往得不到保障。因此,政府、中央企业和重要信息系统单位应谨慎使用第三方云服务,避免使用公共云服务。同时,国家应尽快出台云服务安全评估和测试的相关规范和标准。
严格规范和限制境外机构数据跨境流动。在中国提供大数据应用或服务的海外机构应接受更严格的网络安全审计,以确保其数据存储在国内服务器上,并严格限制数据跨境流动。
以上就是小编今天给大家整理的关于“大数据时代信息安全现状以及对策建议”的相关内容,希望对大家有所帮助。总的来说,大数据的价值不可估量,未来发展前景也是非常可观的,因此有兴趣的小伙伴,尽早着手学习哦!
③ 大数据关系到网络信息安全,比较明显的影响主要表现在哪几个方面。
大数据关系到网络信息安全,比较明显的影响主要表现方面如下:
一、规模、实时性和分布式处理大数据的本质特征(使大数据解决超过以前数据管理系统的数据管理和处理需求,例如,在容量、实时性、分布式架构和并行处理等方面)
使得保障这些系统的安全更为困难。大数据集群具有开放性和羡凯自我组织性,并可以使用户与多个数据节点同时通信。
二、嵌入式安全:在涉及大数据的疯狂竞赛中,大部分的开发资源都用于改善大数据的可升级、易用性和分析功能没升上。只有很少的功能用于增加安全功能。
但是,你希望得到嵌入到大数据平台中的安全功能。你希望开发人员在设计和部署阶段能够支持所需要的功能。你希望安全功能就像大数据集群一样可升级、高性能、自组织。
三、应用程序:面向大数据集群的大多数应用都是Web应用它们利用基于Web的技术和无状态的基于REST的API。基于Web的应用程序和API给这些大数据集群带来了一种最重大的威胁。在遭受攻击或破坏后。
它们枯派老可以提供对大数据集群中所存储数据的无限制访问应用程序安全、用户访问管理及授权控制非常重要,与重点保障大数据集群安全的安全措施一样都不可或缺。
④ 如何看待大数据环境下的网络信息安全问题
大数据时代个人信息安全非常重要。可以说将来会成为制约行业发展的关健因素!因为个人信息泄露已经成为某些人盈利的手段!6月1号起实施的《网络安全法》或许可以规范一下大数据时代的个人信息安全!为大家的网络信息安全带来一定的保障。必须强制网络企业强化个人信息安全意识,信息由哪家企业泄漏的就应该由哪家企业来承担责任,而不是不痛不痒的口头警告。
⑤ 大数据时代下网络安全的重要性
随着互联网的飞速发展,出现了海量的数据信息,人类 社会 也逐步迈进了大数据时代。大数据时代可以为人们带来更多的关于时代发展的实时信息,使人类的思想能够跟上时代发展的脚步,为人们之间的交流与沟通带来便利。即使大数据时代互联网技术自身拥有诸多的优点,但是在应用过程中依然存在很多的网络信息安全风险,这将会导致信息数据不真实,同时又会对人们使用信息的时效性造成不良影响。所以,在大数据时代,我们应该更加重视网络信息的安全性,依托科学合理的网络信息安全管理方案来防止网络安全问题的发生,从而加快中国现代化信息建设的脚步。
大数据时代网络存在的安全问 题
由于网络具有较强的开放性特质,能够实现跨越时空的交流与互动,但于此同时,也容易遭受不同空间与主题的入侵和攻击,这就会导致数据信息发生泄露,继而造成严重的网络安全问题。其次就是人为操作失误,由于网民在上网过程中没有清晰的安全意识,容易下载并点击危险的软件和网站,导致手机或电脑遭受病毒的袭击,进而丢失私人信息、账户信息等。再次就是网络黑客问题,黑客能够通过窃取网络信息或网络密钥的方式,破坏用户的网络系统,使用户的私人信息受到威胁,甚至会导致整个网络系统出现故障或瘫痪。
大数据时代下网络安全的防护措施
1、使用安全的杀毒软件和加强监管工作
计算机不仅需要采用适当的防火墙技术,营造优良的网络运营氛围,且还需要安装杀毒软件。这样一来便可详细检查计算机当中的数据信息,全面提高计算机的安全性,防止因为病毒入侵带来的安全隐患。另一方面,企业也需要做好计算机网络安全的监管工作,集中管理企业现有账号,强化自身安全管理的意识。
2、加强网络安全意识
相关工作人员应深入了解计算机的操作步骤和注意事项,注意可能存在的危险,不下载、不点击来源不明的链接,提升自身的网络安全意识。此外,还需要强化学习,拓展知识面,提升防范能力,养成正确的使用计算机的习惯。
3、加强网络管控能力
影响计算机安全的主要原因是工作人员对网络维护的重视程度不够,只是计算机安全受到影响。网络管理者应加强对信息安全的维护力度,构建出相应的网络管控机制。可通过相关的防控软件对网络病毒、黑客入侵的行为进行监控,同时该系统也能够对用户所参与的网络活动进行分析和把控,及时弹出安全弹窗,以此避免网络安全问题的发生。
4、加强网络安全管理
加强网络安全管理,注重技术应用,为网络安全提供基础保障。即通过网络维护,定期检查网络安全问题,提升对网络安全及数据安全的管理力度,保障信息网络的正常运作。在这个过程中,网络管理者需要定期检查系统漏洞,及时地更新杀毒软件的病毒库等。
结语
⑥ 信息与网络安全需要大数据安全分析
信息与网络安全需要大数据安全分析
毫无疑问,我们已经进入了大数据(Big Data)时代。人类的生产生活每天都在产生大量的数据,并且产生的速度越来越快。根据IDC和EMC的联合调查,到2020年全球数据总量将达到40ZB。2013年,Gartner将大数据列为未来信息架构发展的10大趋势之首。Gartner预测将在2011年到2016年间累计创造2320亿美元的产值。
大数据早就存在,只是一直没有足够的基础实施和技术来对这些数据进行有价值的挖据。随着存储成本的不断下降、以及分析技术的不断进步,尤其是云计算的出现,不少公司已经发现了大数据的巨大价值:它们能揭示其他手段所看不到的新变化趋势,包括需求、供给和顾客习惯等等。比如,银行可以以此对自己的客户有更深入的了解,提供更有个性的定制化服务;银行和保险公司可以发现诈骗和骗保;零售企业更精确探知顾客需求变化,为不同的细分客户群体提供更有针对性的选择;制药企业可以以此为依据开发新药,详细追踪药物疗效,并监测潜在的副作用;安全公司则可以识别更具隐蔽性的攻击、入侵和违规。
当前网络与信息安全领域,正在面临着多种挑战。一方面,企业和组织安全体系架构的日趋复杂,各种类型的安全数据越来越多,传统的分析能力明显力不从心;另一方面,新型威胁的兴起,内控与合规的深入,传统的分析方法存在诸多缺陷,越来越需要分析更多的安全信息、并且要更加快速的做出判定和响应。信息安全也面临大数据带来的挑战。安全数据的大数据化
安全数据的大数据化主要体现在以下三个方面:
1) 数据量越来越大:网络已经从千兆迈向了万兆,网络安全设备要分析的数据包数据量急剧上升。同时,随着NGFW的出现,安全网关要进行应用层协议的分析,分析的数据量更是大增。与此同时,随着安全防御的纵深化,安全监测的内容不断细化,除了传统的攻击监测,还出现了合规监测、应用监测、用户行为监测、性能检测、事务监测,等等,这些都意味着要监测和分析比以往更多的数据。此外,随着APT等新型威胁的兴起,全包捕获技术逐步应用,海量数据处理问题也日益凸显。
2) 速度越来越快:对于网络设备而言,包处理和转发的速度需要更快;对于安管平台、事件分析平台而言,数据源的事件发送速率(EPS,Event per Second,事件数每秒)越来越快。
3) 种类越来越多:除了数据包、日志、资产数据,安全要素信息还加入了漏洞信息、配置信息、身份与访问信息、用户行为信息、应用信息、业务信息、外部情报信息等。
安全数据的大数据化,自然引发人们思考如何将大数据技术应用于安全领域。
传统的安全分析面临挑战
安全数据的数量、速度、种类的迅速膨胀,不仅带来了海量异构数据的融合、存储和管理的问题,甚至动摇了传统的安全分析方法。
当前绝大多数安全分析工具和方法都是针对小数据量设计的,在面对大数据量时难以为继。新的攻击手段层出不穷,需要检测的数据越来越多,现有的分析技术不堪重负。面对天量的安全要素信息,我们如何才能更加迅捷地感知网络安全态势?
传统的分析方法大都采用基于规则和特征的分析引擎,必须要有规则库和特征库才能工作,而规则和特征只能对已知的攻击和威胁进行描述,无法识别未知的攻击,或者是尚未被描述成规则的攻击和威胁。面对未知攻击和复杂攻击如APT等,需要更有效的分析方法和技术!如何做到知所未知?
面对天量安全数据,传统的集中化安全分析平台(譬如SIEM,安全管理平台等)也遭遇到了诸多瓶颈,主要表现在以下几方面:
——高速海量安全数据的采集和存储变得困难
——异构数据的存储和管理变得困难
——威胁数据源较小,导致系统判断能力有限
——对历史数据的检测能力很弱
——安全事件的调查效率太低
——安全系统相互独立,无有效手段协同工作
——分析的方法较少
——对于趋势性的东西预测较难,对早期预警的能力比较差
——系统交互能力有限,数据展示效果有待提高
从上世纪80年代入侵检测技术的诞生和确立以来,安全分析已经发展了很长的时间。当前,信息与网络安全分析存在两个基本的发展趋势:情境感知的安全分析与智能化的安全分析。
Gartner在2010年的一份报告中指出,“未来的信息安全将是情境感知的和自适应的”。所谓情境感知,就是利用更多的相关性要素信息的综合研判来提升安全决策的能力,包括资产感知、位置感知、拓扑感知、应用感知、身份感知、内容感知,等等。情境感知极大地扩展了安全分析的纵深,纳入了更多的安全要素信息,拉升了分析的空间和时间范围,也必然对传统的安全分析方法提出了挑战。
同样是在2010年,Gartner的另一份报告指出,要“为企业安全智能的兴起做好准备”。在这份报告中,Gartner提出了安全智能的概念,强调必须将过去分散的安全信息进行集成与关联,独立的分析方法和工具进行整合形成交互,从而实现智能化的安全分析与决策。而信息的集成、技术的整合必然导致安全要素信息的迅猛增长,智能的分析必然要求将机器学习、数据挖据等技术应用于安全分析,并且要更快更好地的进行安全决策。
信息与网络安全需要大数据安全分析
安全数据的大数据化,以及传统安全分析所面临的挑战和发展趋势,都指向了同一个技术——大数据分析。正如Gartner在2011年明确指出,“信息安全正在变成一个大数据分析问题”。
于是,业界出现了将大数据分析技术应用于信息安全的技术——大数据安全分析(Big Data Security Analysis,简称BDSA),也有人称做针对安全的大数据分析(Big Data Analysis for Security)。
借助大数据安全分析技术,能够更好地解决天量安全要素信息的采集、存储的问题,借助基于大数据分析技术的机器学习和数据挖据算法,能够更加智能地洞悉信息与网络安全的态势,更加主动、弹性地去应对新型复杂的威胁和未知多变的风险。
⑦ 网络信息安全和大数据安全一样吗
不一样的,大数据主要是数据的整理和统计。
网络信息安全一般指的是Web安全,也就是网页安全,这方面考察的更多的是工具的熟练使用。这是两个完全不一样的方向哦。