① matlab中BP神经网络如何设置初始权重
因为初始值(初始权值和阀值)都在x这个向量中,x(n,1)的长度n为:n=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum
其中inputnum*hiddennum是输入层到隐含层的权值数量,hiddennum是隐含层神经元个数(即隐含层阀值个数),hiddennum*outputnum是隐含层到输出层权值个数,outputnum是输出层神经元个数(即输出层阀值个数);
② 神经网络的隐层数,节点数设置。
我自己总结的:
1、神经网络算法隐含层的选取
1.1 构造法
首先运用三种确定隐含层层数的方法得到三个隐含层层数,找到最小值和最大值,然后从最小值开始逐个验证模型预测误差,直到达到最大值。最后选取模型误差最小的那个隐含层层数。该方法适用于双隐含层网络。
1.2 删除法
单隐含层网络非线性映射能力较弱,相同问题,为达到预定映射关系,隐层节点要多一些,以增加网络的可调参数,故适合运用删除法。
1.3黄金分割法
算法的主要思想:首先在[a,b]内寻找理想的隐含层节点数,这样就充分保证了网络的逼近能力和泛化能力。为满足高精度逼近的要求,再按照黄金分割原理拓展搜索区间,即得到区间[b,c](其中b=0.619*(c-a)+a),在区间[b,c]中搜索最优,则得到逼近能力更强的隐含层节点数,在实际应用根据要求,从中选取其一即可。
③ 神经网络的隐含层节点数怎么设置啊比如要设置18层隐含节点数!跪求,工作急用!
隐层一般是一层或两层,很少会采用三层以上,至少隐层的节点数确定,一般有以下几种方法:1、有经验的人员根据以往的经验凑试出节点个数。2、某些学术研究出固定的求节点方法,如2m+1个隐层节点,m为输入个数。3、修剪法。刚开始建立足够多的节点数,在训练过程中,根据节点数的相关程度,删除重复的节点。
④ 人工神经网络是怎么学习的呢
1、神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等)。 2、这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用于解决不同的问题),使初始解根据这个方向和步长移动后,能使目标函数的输出(在神经网络中就是预测误差)下降。 3、然后将它更新为新的解,再继续寻找下一步的移动方向的步长,这样不断的迭代下去,目标函数(神经网络中的预测误差)也不断下降,最终就能找到一个解,使得目标函数(预测误差)比较小。 4、而在寻解过程中,步长太大,就会搜索得不仔细,可能跨过了优秀的解,而步长太小,又会使寻解过程进行得太慢。因此,步长设置适当非常重要。 5、学习率对原步长(在梯度下降法中就是梯度的长度)作调整,如果学习率lr = 0.1,那么梯度下降法中每次调整的步长就是0.1*梯度, 6、而在matlab神经网络工具箱里的lr,代表的是初始学习率。因为matlab工具箱为了在寻解不同阶段更智能的选择合适的步长,使用的是可变学习率,它会根据上一次解的调整对目标函数带来的效果来对学习率作调整,再根据学习率决定步长。
⑤ matlab中神经网络如何设置神经元的个数我想要设置5个神经元!
net=newff([x,y],[a1,a2,...,ak],{f1,f2,...,fk})
x,y分别为列向量,存储各个样本书ude最小值和最大值。[a1,a2,...,ak]是行向量,输入神经网络各层的结点数,也就是你题目的问题。k是指神经元隐层层数。{f1,f2,...,fk}输入变量为单元式数组,对应每层神经元的传输函数类型。
如果还有什么问题再联系我吧~
⑥ 第五章 神经网络
神经网络 :神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。
神经网络中最基本的成分便是 神经元模型 。
M-P神经元模型:
感知机由两层神经元组成,分别为输入层、输出层。
以下是具体过程:
多层神经网络的拓扑结构如图:
如上图可知,多层网络由输入层、隐含层和输出层组成,顶层是输出层,底层是输入层,中间的便是隐含层。隐含层与输出层都具有功能神经元。
多层前馈神经网络的结构需要满足:
1、每层神经元必须与下一层完全互连
2、神经元之间不存在同层连接
3、神经元不可跨层连接
只需包含一个足够多神经元的隐层,就能以任意精度逼近任意复杂度的连续函数
BP神经网络由于学习能力太强大比较荣誉造成过拟合问题,故有两种策略来减缓过拟合的问题:
1、早停:将数据分成训练集和验证集,训练集学习,验证集评估性能,在训练过程中,若训练集的累积误差降低,而验证集的累积误差提高,则终止训练;
2、引入正则化:其基本思想是在误差目标函数中增加一个用于描述网络复杂程度的部分,有如连接权和阈值的平方和:
其中λ∈(0,1)用于对累积经验误差与网络复杂度这两项进行折中,常通过交叉验证法来估计。
神经网络的训练过程可看作一个参数寻优的过程,即寻找到适当的参数使得E最小。于是我们时常会谈及“全局最小”和“局部最小”。
1、全局最小:即全局最小解,在参数空间中,所有其他点的误差函数值均大于该点;
2、局部最小:即局部最小解,在参数空间中,其邻近的点的误差函数值均大于该点。
我们要达到局部极小点,很容易,只要满足梯度为零的点便是了,局部极小点可以有多个,但全局最小点只有一个。显然,我们追求的是全局最小,而非局部极小,于是人们通常采用以下策略来试图“跳出”局部极小,使其接近全局最小:
1、以多组不同参数值初始化多个神经网络,按标准方法训练,在迭代停止后,取其中误差最小的解作为最终参数;
2、使用随机梯度下降(在计算梯度时加入了随机因素),使得在局部最小时,计算的梯度仍可能不为0,从而可能跳出局部极小,继续进行迭代;
3、“模拟退火”技术,在每一步都以一定的概率接受比当前解更差的结果,但接受“次优解”的概率要随着迭代进行,时间推移而逐渐减低以确保算法的稳定。
1、RBF网络
单隐层前馈神经网络 ,使用径向基函数作为隐层神经元激活函数,输出层是对隐层神经元输出的线性组合。RBF网络可表示为:
2、ART网络
竞争型学习 (神经网络中一种常用的 无监督学习 策略),由 比较层、识别层、识别阈值和重置模块 组成。接收到比较层的输入信号后,识别层神经元相互竞争以产生获胜神经元,最简单的方式就是计算输入向量与每个识别层神经元所对应的模式类代表向量间的距离,距离小者获胜。若获胜神经元对应的代表向量与输入向量间 相似度大于识别阈值 ,则将输入样本归为该代表向量所属类别,网络 连接权 也会进行 更新 以保证后面接收到相似的输入样本时该模式类会计算出更大的相似度,使得这样的样本能够归于一类;如果 相似度不大于识别阈值 ,则 重置模块 会在 识别层 加一个神经元,其 代表向量 就 设置 为当前 输入向量 。
3、SOM网络
竞争型学习的无监督神经网络 ,将高维输入数据映射到低维空间(通常是二维),且保持输入数据在高维空间的拓扑结构。
4、级联相关网络
结构自适应网络 。
5、Elman网络
递归神经网络 。
6、Boltzmann机
基于能量的模型,其神经元分为显层与隐层,显层用于数据输入输出,隐层被理解为数据的内在表达。其神经元皆为布尔型,1为激活,0为抑制。
理论上,参数越多的模型其复杂程度越高,能完成更加复杂的学习任务。但是复杂模型的训练效率低下,容易过拟合。但由于大数据时代、云计算,计算能力大幅提升缓解了训练效率低下,而训练数据的增加则可以降低过拟合风险。
于是如何增加模型的复杂程度呢?
1、增加隐层数;
2、增加隐层神经元数.
如何有效训练多隐层神经网络?
1、无监督逐层训练:每次训练一层隐节点,把上一层隐节点的输出当作输入来训练,本层隐结点训练好后,输出再作为下一层的输入来训练,这称为预训练,全部预训练完成后,再对整个网络进行微调。“预训练+微调”即把大量的参数进行分组,先找出每组较好的设置,再基于这些局部最优的结果来训练全局最优;
2、权共享:令同一层神经元使用完全相同的连接权,典型的例子是卷积神经网络。这样做可以大大减少需要训练的参数数目。
深度学习 可理解为一种特征学习或者表示学习,是通过 多层处理 ,逐渐将初始的 低层特征表示 转化为 高层特征表示 后,用 简单模型 即可完成复杂的分类等 学习任务 。