当前位置:首页 » 网站资讯 » 网站数据分析怎么写
扩展阅读
用手机改网络电视 2025-01-31 12:52:16

网站数据分析怎么写

发布时间: 2022-05-30 02:40:31

① 一步步教你分析网站数据

一步步教你分析网站数据

可用性测试和数据分析是一对无敌好搭档,它们让我们更多地了解用户,跟踪我们的目标,解决意外的问题。说到解决问题,数据分析告诉我们哪些页面或者流程正在给用户造成麻烦,哪些领域需要我们在可用性测试中重点关注。接下来,可用性测试会告诉我们为什么用户会表现出某些特定的行为。在这两者之上,我们可以为网站拥有者提供重点明确、针对用户的建议。

在小红(和许许多多与之相似的用户体验从业人员)的例子中,数据分析能揭露用户到底是怎么访问网站的。虽然小红和客户在用户体验或顾客方面的经验可能让他们对于测试什么有了不错的假设,但对于人们是如何访问网站,数据分析展示给他们的是更为清晰、无偏见的方式。

对于任何希望通过学习一些简单的工具来读懂数据的人,数据分析可以帮助你:

识别网站上出问题的地方显露网站对于用户的吸引力测量设计上的改善带来的结果

在这两篇系列文章中,我将会解释如何利用数据分析来识别用户有问题的地方,以及网站的哪些地方会从可用性测试中受益最多。本篇文章的重点为——三个识别网站问题的参数:跳出和退出率(bounce and exit rate),页面平均时间(average time on page)和目标价值(page value)。在第二部分,我们会进一步利用这些参数来识别drop off points,然后我们会深入到数据分段(segmentation)来获取额外的细节信息。

辨认问题网页(组)

作为一名自由职业者和用户体验咨询师,我与各种各样不同领域的网站合作过,其过程非常一致,总是以数据分析为开端。最开始我会去辨认每天有多少用户访问这个网站,哪个页面最常用。这会给我一个大概的感觉,知道人们是如何访问这个网站的。然后我会进行下一步:辨认潜在的出问题的领域,继而知道我的用户体验建议将会着重在哪一块。

总体来说,我会观察三种类型的参数来辨认问题所在:

跳出和退出率(Bounce and exit rate)页面平均时间(Average time on page)目标价值(Page value)

跳出和退出率(Bounce and Exit Rate)

跳出率和退出率是两个可能造成混淆的参数。跳出率是只访问了网站的一个页面的用户的比例:在一个页面登陆,但是没有去访问任何其他页面就离开了网站。

【译者注:谷歌官方解释为“跳出率指单页访问次数(即访问者从入口页离开网站而未与网页互动的访问次数)所占的百分比”。】

退出率是从一个页面离开了网站的用户的比例(它包括了那些之前在该网站浏览了其他页面的人)。

【译者注:谷歌官方解释为“退出百分比指从某个或某组特定网页退出网站的次数所占的百分比”。】

如果我发现了网站的一部分出现了一个很高的跳出或者退出率,我会做上笔记,以防某些页面的什么东西造成了用户的离开。一个有着高跳出率的页面可能说明这个页面上的内容不是用户来到这个页面所期望看到的东西。一个高退出率的页面可能说明这个网页导致了用户在他们想要的流程中半途而废——从另一方面看,如果一个高退出率的页面是流程的最后一页,那么这个高退出率就不再是个问题了。

用谷歌分析(Google Analytics)中的“加权排序(weighted sort)”会让跳出率更加有用。根据谷歌分析,“加权排序把百分比数据根据重要程度排列,而不是序号排列”。举个例子,一个页面虽然有着100%的跳出率,但在过去的一个月中,只有一个用户访问,然后离开了该页面(另外一个更大的问题可能是没有任何人访问过这个页面!)。如果一个页面有80%的跳出率,但是是一个在流程中非常关键的起始页面,那么这个网站可能因此流失了大量的生意。为了更好地为页面可用性测试做准备,我们必须辨认出问题出现的原因:是因为没有人访问这个页面,还是每个访问的人都马上离开了网站?

页面平均时间(Average Time on Page)

“页面平均时间”是指用户浏览某个页面所花费的平均时间。如果我发现有一个页面的“页面平均时间”很低,这可能意味着该页面没有引起用户足够的注意。从另一反面来看,如果用户在一个结账页面停留很久,那么可能是因为该页面过于复杂了。当然,所有的参数都必须放在具体的情境下分析;如果一个博客文章有一个很高的“页面平均时间”,那么总体来说是一个好的现象,因为这可能意味着用户真的在阅读整篇文章。

另外一个衡量页面表现的非常好的方式是利用“与网站平均数比较”的选项。这个图会显示某些页面在某个参数上是不是在很大程度上高于或者低于平均值。虽然这些页面仍然需要一页一页地分析,因为不同的页面有用不同的目标,但是低于平均浏览时间的页面总体来说可能会有问题,假设目标是为了让用户继续阅读的话。下面的例子清晰地表现出“联系(contact)”页面相对来说有比平均值更低的浏览时间,然而“博客(blog)”页面有高于平均值80%的时间。

再次强调下,情境是关键。用户可能来到联系页面来寻找一个公司的地址,或者联系电话。如果他们成功地找到了,那么他们就会离开该网站,因此较低的页面浏览时间在这里是一个好的现象,说明页面很有用。一个“博客”页面是用来吸引用户的注意的,因此一个高于平均值的时间可以被看做是一件好事。

页面价值(Page value)

“页面价值”是一个非常重要,但是很少被用到的参数,它可以用来发现表现欠佳的页面。目标价值,就如它的名字所示,是一种赋予页面直接的货币价值的方式。对于电子商务网站来说,它纳入了各种各样的交易收入总数和所有类型的网页的目标价值——这些参数都需要在谷歌分析中人工设置,才能计算出页面价值。一个高价值的页面往往显示出它是一个重要的页面,意味着该页面值得被纳入可用性测试中。

一个高价值但是展示出高退出率的页面是值得重视和改进的。意味着这些页面让用户在回话流程的关键位置离开了。在下面的的例子中(一个电子商务网站),我突出显示了三个有着类似的页面价值的品类。可以清楚地看到,“个性化化玩具(personalised-toys)”的产品页面有一个相当高的退出率。这说明这个高价值的页面正在让用户“流失”,并且应该在未来的用户体验设计工作中引起重视。

然而,单独的某个页面只能展示部分真相。“内容分组(content grouping)”这个功能很重要,我们可以利用它来观察网站的某个部分表现如何。内容分组可以把数据根据用户访问的页面种类来进行分类,因此十分必要。我们可以用各种各样的方式来分组。比如对于一个买衣服的网站来说,可以根据不同种类的服饰来分组,看看裤子是不是比衬衫的页面价值要高。

一旦发现某个页面或者某个组的页面价值很低,下一步我们要做的就是:找出背后的原因。在上面的例子中,衬衫相对来说有比较低的价值。我采取的第一步行动是,根据我的经验和判断力,看看在衬衫的页面上有没有任何明显的用户体验或者技术方面的问题。做完这个之后,我会和真实的用户一起来测试这些个页面,来看看为什么会有这些问题——并且寻找那些暗含了修复方式的线索。

内容分组是一个非常强大的工具,可以让你看到网站的不同部分的真实表现。

在实践中利用参数

这只是利用数据分析来发现网站问题的第一步。在本系列的第二部分中,我们会着眼于如何发现用户流程中的流失点,以及如何把用户分类来看到更多的细节信息。

与此同时,你尝试着利用在本篇文章中学到的方法来发现可能存在的问题:

调出跳出率,找出那些用户访问并且马上离开了的页面。浏览所有页面的退出率,找出在流程的哪些地方用户离开了网站。考虑到用户在页面平均停留时间的重要性——一个拥有着高跳出率的博客页面,同时拥有着很长的平均页面时间,这是一件好事!根据页面价值排序,观察页面。页面价值越高,那么就越值得被纳入可用性测试,从而最终修复用户在该页面遇到的问题。

在上一个客户的案例中,小红利用数据分析来发现那些需要进行可用性测试的地方。然而目前为止,小红只发现了网站中值得测试的单独的页面和页面组。她觉得她需要知道更多的关于最常见的用户行程(user journey)的信息。她还想更加深入地理解用户,看看不同类型的用户如何访问网站。为了能进行最佳的可用性测试,小红真心想要知道人们事实上是如何使用网站的。

简单来说,数据分析是一种用来发现可用性测试最佳测试页面的极好的方法。在本系列文章的第一部分,我讲解了如何利用数据分析来发现网站的问题所在之处。这么做可以让我们更好地理解目前的用户行为,并且帮助我们集中力量在将要测试的任务上。

在如何利用数据分析来指导可用性测试的这一系列文章的总结部分,我将更仔细地探讨如何通过识别用户行程、将用户分类来比较不同的用户组的行为。

识别流失点

知道用户是如何在整个网站中流转的可以增加单个页面状态的情境(context)。比如,分析用户行程中前一个页面的数据可以帮助我们识别为什么某个特定页面的退出率特别高。另外,找出最常见的用户行程对于谋划可用性测试很有好处。可用性测试可根据这些常见的用户行程来设计,从而确保在测试中用户的行为是和已经存在的用户行为是相符的。

谷歌分析尝试通过用户流程图(user flow)和行为流程图(behavior flow)报告来展示用户行程。他们可能比较难阅读,并且经常因为把多个页面组合在了一起而变得很麻烦。这意味着谷歌分析通常只能把最为普遍的几个页面单独展示,而把其他的页面组合在一起,显示为“大于100个页面”——这对我们一点帮助也没有。下面的截图显示出这种非常局限的信息是如何让分析变得困难的:只有几个页面在每个用户行程的阶段中是单独被显示的,剩下的页面都被组合在了一起。

尽管页面被组合造成了很多问题,花些时间分析这些报告仍然可以帮我们发现问题区域,根据的是流失率或意想不到的用户行程(比如,我们本来期待的是这样,但用户却走向了另一个方向?)。一旦我们发现了问题区域,我们就可以谋划可用性测试,来看看用户在整个行程中是如何思考的,了解他们为什么会有这些麻烦。

在谷歌分析的用户流程和行为流程报告中,所有的页面用了绿色的矩形来表示,灰色的连接线用来表示页面之间的用户行程。每个矩形还用红色表示了流失率的百分比(也就是说用户正离开网站)。它们可以说明常见的用户行程,以及用户在哪些地方离开了网站——也是另一种问题区域的迹象。

下面的例子来自于一个我曾经工作过的旅行网站。它在主页有一个特别明显的搜索框。

在这个简化了的并加上了笔记的图中,我们可以看到一个可能的问题。用户利用搜索框来找到某个旅行目的地,但之后又从搜索结果页面回到了主页(又名,弹簧跳(pogo sticking)),说明了搜索结果对用户来说不够满意。这可能归结于许多的理由:可能搜索功能经常搜不出结果,搜到太多结果,或者太少结果。也可能这个问题和搜索结果本身无关,而是其他的理由,比如搜索结果里的酒店的价格太高了。

数据显示最初的搜索是让用户不满意的,这让我决定针对搜索框来进行一些可用性测试。可用性测试的结果显示,问题的原因在于搜索结果太多太泛了,用户被大量的结果淹没了。根据这个测试结果,我建议引入一个多面搜索系统(faceted search system):在搜索结果页面让用户可以根据一些标准来过滤搜索结果,而不用返回到主页重新搜索。这个新的搜索系统让用户可以根据酒店提供的服务设施来过滤他们的搜索结果;比如是否有游泳池、健身房和其他的设施,这意味着用户可以发现对他们自身有用的结果。这个设计方案让搜索后又回到主页的用户数量大幅度下降,让更多的用户进入到他们行程的下一步。

上面的结果显示的是多面搜索系统被引进一个月后的分析数据。图中显示出,主页和搜索结果页面之间的“弹簧跳”现象减少了。虽然仍然还有改进的空间,但这个变化产生的积极效应是非常鼓舞人心的。

数据分段,更多的细节

数据分段为观察不同用户的不同行为提供了一个绝佳的方式。一个简单的例子就是比较新用户和回访用户。下面的图来自于一个在线找工作网站,它显示出新用户的数量在该月几乎是持平的,然而回访用户的数量却跟随了一个不同的模式:在周末的时候数量明显下降。

这使我想知道更多的细节,关于新用户和回访用户的不同点。其他关于这两种不同用户的数据显示出,回访用户倾向于在网站上花费更多的时间,每段时间会浏览更多的页面,并且更倾向于申请工作。

根据这个数据我可以做出假设:回访用户更可能是真正找工作的人,但新用户访问网站的时候更随意。因此我推荐网站做一些个性化的设计——对待新用户,展示更多的保证信息,说明该找工作的网站是合法的、值得信赖的,并且引导他们简单快速地做出行动,比如注册工作提醒。对待回访用户,展示更精确、细节的搜索工作的选项,并且提供信息鼓励他们申请工作。

新用户和回访用户不同的行为可以透露许多事情,取决于网站的类型。比如,对一个电子商务网站来说,它显示回到这个网站的人更倾向于下单。如果这是真的话,那么我们可以把重点放到帮助第一次访问网站的用户下单。

这种数据分段分析还可以帮助可用性测试的招募。如果在新用户和回访用户之间有明显的行为区别,那么可能最好同时招募已有用户和尚未访问过该网站的用户来进行测试。测试不同的用户类型可以帮助解释为什么他们在网站上有迥然不同的行为。

除了上说例子中的新用户和回访用户,在谷歌分析上还有一些现成的数据分段方式来帮助我们分隔数据,包括:

不同的流量来源——可以用来发现那些通过搜索和链接来到网站的用户的区别。使用不同设备类型的用户——可以用来比较使用手机、平板和桌面电脑用户的参数。

根据自己的需求来改造分段方式也是很好的方法,这可以使分段方式可以和整个网站重要的用户及角色更好地相符合。通过这种方法,我们可以分析这些不同的用户群所采取的不同的用户行程,例如,比较已有用户和第一次购买的用户的行程。

数据分段可以被用来观察使用不同设备的用户的行程。根据手平板和桌面电脑来分段可以提供三个不同的行为流程供研究。这种方法对于发现使用不同设备的用户可能存在的问题特别有帮助。手机用户的行为流程图可能会在用户流程中显示出一个重大的流失点,但在平板和桌面电脑中却不是问题。这应当引出相应的手机端的可用性测试,重点放在找出手机用户在流程中的该点流失的原因。

现在该怎么办?

在利用数据分析识别问题区域后,下一步就是找到为什么用户会有这些问题。数据分析能够提供一些关键的地方,需要我们在可用性测试中特别关注,或者拆分出特别的测试。作为用户体验的职业人,我们自然而然地想要和我们的用户在一起,在可用性测试中从他们身上学到东西。数据分析只是帮助我们更好地进行测试。

尝试一下——提取一些这里提到的方法,把它们应用到某个项目中。你会惊奇地发现,我们竟然可以从数据分析中发现这么多东西。、

以上是小编为大家分享的关于一步步教你分析网站数据的相关内容,更多信息可以关注环球青藤分享更多干货

② 怎样分析网站数据

分析网站数据,需要借助网站分析工具,免费的有GA,但是这个需要有专业的知识,付费系统和工具也比较多,我们正在用的就是99click旗下的siteflow系统,按流量收费,价格也合理,有专门的客户服务,你可以试试。

③ 网站数据分析的基本内容有哪些

1、独立访问者数量


规定时间范围内(一般指1天)独立客户访问网站的数量,一个客户无论浏览多少个页面,都是一个独立的uv,通过该数据可以分析出规定的时间内网站的访问量。


2、重复访问者数量


重复访问者数量反映了网站用户忠诚度,网站的质量,网站的质量越高,网站的用户忠诚度越高,网站的重复访问数量就越大。


3、页面浏览数


在规定时间范围内(一般指1天),所有浏览者访问的所有页面之和,页面浏览数反应了页面的质量是否是读者满意的内容,网站的页面质量越高,页面浏览量就越大。


4、跳出率


只浏览一页便离开的用户的比例,通过分析网站跳出率,可以判断网站内容的质量,如果网站跳出率比较高,说明网站的内容质量不高,用户体验不够好。


5、退出率


用户从某个页面离开次数占总浏览量的比例。


6、用户停留时间


用户停留时间反映了网站粘性及用户对网站内容质量的判断。

④ 网站运营数据分析报告怎么写

描述当前的数据状态,网站整体情况,针对平时的 数据变化记录,比较哪些项目是有变化的,是上升了还是下降了,下降的原因是什么,进行纠正调整,以及上升的原因,然后此方法可以接着用,特别是你做了调整的地方要着重监测。

⑤ 如何进行网站数据分析

1、网站服务器的运行状况及影响


通过对网站日志及监控工具的分析与观察,我们可以了解到网站在每个时段中的运行状态,网站是否被攻击、服务器是否出现问题,出现的这些问题是否影响访客的来访,网站在每个地区的运行是否都正常。


2、网站程序是否有利于搜索引擎


搜索引擎访问网站的爬行轨迹都会被服务器记录,观察总结搜索引擎对网站各个部分的访问情况,可以查看到网站程序中是否有死循环,网站是否有利于蜘蛛的爬行收录,网站程序代码是否需要精简,去除无用的代码。


3、网站哪些内容收录


网站的在搜索引擎的的收录,影响着整个网站的流量,收录越多,流量的来源越广,流量也就越多。通过对各个搜索引擎的收录分析,我们可以总结观察出网站在搜索引擎的表现主题,搜索引擎对网站的整体的定位,关键词与整体内容的表现含义越相近,排名也就越高。


4、网站的访客情况与分析


通过对网站流量数据的分析,我们可以获知网站的主体访问人群以及访客来自的地区,是否是我们想要的访问者,而这些访问者又需要什么样的内容,有什么需求,网站哪些部分吸引他们。


5、网站各种关键词的表现情况


网站的关键词是流量来源的根本(排除品牌网站),所以对各种关键词在搜索引擎的表现情况的研究分析就变得尤为的重要。总结分析网站流量来源前列的关键词排名,然后针对流量大的关键词及有很大提升空间的关键词加以优化,使得网站能够有更好的流量。

⑥ 网页数据分析如何做

看你怎么采集网页数据,一般来说自己后台可以进行原始数据的统计,即看日志,然后开发出可视化的页面。另外一种方式就是通过第三方插件进行统计,例如网络统计等。

采集完上述数据后,基本上最有效的就是pv、uv、停留时长等数据,对于这些数据有一些公式的算法你需要进行分析,例如pv/uv、留存、tad等。

pv、uv、日留存、三日留存等数据可以做成按时、按日的线性趋势图,用来找到比例关系及冰点期、热点期等。

上述的基本分析做完后,可根据子目录、页面转化进行分析,即你想让用户从哪里进入到哪里,但实际的数据是否达到你的预期值等。这些基本性质的数据做完后,个人认为已经可以达到一般运营的需求了,更深层次的挖掘分析及机器学习在此处意义不大,因为操作起来复杂且波动性大会造成结论不准确。

⑦ 网站优化之数据分析

网站优化之数据分析

网站优化最重要的就是分析,不仅要分析自己的网站,还需要分析竞争对手的网站,更需要分析搜索引擎。那么我们分析什么呢?在所有的分析中只有数据是最直观、最有效、最有说服力、最具依据性的。所以说网站优化数据分析能力是衡量一个网站优化人员的重要参考标准。

网站优化需要分析哪些数据

一般来说常见的数据包括网站收录情况、网页快照、外链数量变化情况、友情链接情况、关键词排名变化、pr值、流量变化、权重等。有些人可能认为这无关紧要,随便看看了解一下就可以了,其实不然,建议大家最好将这些数据详细的实时地记录下来,对于网站优化是很有帮助的,也是研究分析的重要标准依据,可以了解到搜索引擎更新的时间,长时间积累可以根据推算了解到搜索引擎算法的大更新及小更新时间,较好的了解动向,以至于更好的做好前期准备。如果是一个优化团队就需要要求每一位成员必须详细的记录网站优化数据情况,以供优化策略分析参考,另外团队内部人员也会互相分享优化经验,网站优化不是闭门造车,是团队工作,只有经验的共享交流,才能有更大的进步。

实际上除了上文提到的数据,我们还需要注意对手网站的数据变化。及时的调整自己网站优化的策略,取对手之长处,避其短。另外我们还需要对网站日志进行分析,分析把握搜索引擎蜘蛛的爬行规律和特点,以及较早的发展自己的网站所存在的问题。最后提醒大家需要分析的数据是关键词的分析,尽可能的分析用户会如何进行搜索,分析用户通过什么词搜索到我们的网站,还有我们的网站中哪些页面的排名比较好,权重比较高,这些信息都需要分析数据抽调出来,着重优化,因为一个网站你可能有几十万甚至上百万的页面,但是可能为你带来流量的也就是其中的100个页面,所以你需要分析出来那些页面,哪些关键词可以为你带来流量。

网站优化为什么要分析数据

可以这么说,没有分析就没有优化,一个网站优化人员如果你懂得分析那就不是网站优化人员了。我们只有分析数据才能从中获得有价值的东西,才能更好的调整网站优化策略、网站优化方向。不能否认,在网站优化中有时候需要我们的特殊创意,以及一些创造性的改变,但是数据是最有依据性的。这一点我们忽视不得。我们只有从这些数据中发现规律,发现搜索引擎的特点,才能更好、更有效的进行优化工作。通过分析这些数据你才能更好的发现什么是有利于优化,什么是不利于优化的,及时的调整你的网站,才能让你的网站更受搜索引擎的欢迎。

以上是小编为大家分享的关于网站优化之数据分析的相关内容,更多信息可以关注环球青藤分享更多干货

⑧ 网站常用的数据分析方法介绍

网站常用的数据分析方法介绍

本篇文章我们介绍4种网站分析中最常用,也是最有效的分析方法。他们分别是细分分析,对比分析,对比分析,质与量分析。这些分析方法在实际工作中经常组合使用。我们先来看下细分分析。

1,细分分析

单一的指标数据或大维度下的指标数据是没有意义的,只有当指标与维度配合使用时才有意义。细分也叫下钻,是网站分析中最常用的一种方法。原理就是通过对汇总数据进行多个维度对指标进行分解。逐步找到有问题的部分。在整个的Google Analytics报告的中,随处都充满了细分方法。

汇总数据是一个极其笼统的大维度数据。而平均数数据则可能会掩盖很多问题。这里是一个平均数的计算方法:访问者A浏览了10个页面,访问者B浏览了2个页面。网站每次访问页面浏览量6个页面。看似表现不错的平均数据其实包含很很多问题。但我们仅从平均数中无法看到这些问题。细分的主要目的就是对汇总数据和平均值数据进行剖析,发现这些问题并加以改进。

1.1如何使用Google Analytics进行细分

我们如何使用Google Analytics来对指标进行细分?Google Analytics报告本身的结构就是一个支持细分的结构。不用我们进行特别的设置就可以对指标进行细分。下面我们来看下如何使用Google Analytics报告中的这些简单的默认细分功能和高级细分功能。

默认细分功能

在Google Analytics的四类报告中,都提供了细分功能。展开每一类的报告,概述报告,而下面的各个子报告都是对概述报告的一个细分。

同时在子报告中,也提供了更进一步的细分。我们所要做的就是找到感兴趣的维度,并且点进去进一步查看。

自定义细分功能

除了Google Analytics的默认细分功能外,还有三种更灵活的自定义细分功能。他们分别是次级维度细分,高级细分和自定义细分。自定义细分与默认细分功能最大的差别在于,默认细分是在一个大的维度下逐级深入细分。例如,流量来源,搜索引擎,Google,自然搜索,关键词。而自定义细分则可以完整更复杂的跨越多个维度的细分。例如:流量来源,搜索引擎,地理位置。

次级维度

第一个自定义细分功能是次级维度,在大部分Google Analytics报告中,都可以实现次级维度的细分。以下是次级维度的截图。我们可以很容易的使用次级维度来查看同一个指标在两个不同维度中的表现如何。例如:北京地区的Google搜索引擎。

高级细分

第二个自定义细分是自定义报告,使用自定义报告进行细分要比次级维度灵活的多。细分的层级也要深入的多。自定义报告的的实质是对指标和维度的重组。

自定义报告

第三个自定义细分是高级细分,与自定义报告相比,高级细分的主要优势在于细分结果的广度。当我们设置了一个自定义细分的维度后,这个维度将应用于整个Google Analytics报告中。

2,对比分析

除了使用细分以外,我们还可以使用对比分析来观察指标的变化趋势,例如,本月的访问量是300万,那么和上个月相比怎么样呢?和去年同一时期又如何呢?这就是我们介绍的第二个方法,对比分析。对比分析的设置很简单,在时间里设置好要对比的时间段,报告会自动给出指标的变化结果。这里有一个需要注意的问题是,当使用Google Analytics自带的与上一个时期进行对比时,时间段内周末的数量可能会不相同。而这也将直接影响指标的对比结果。

3 ,聚合分析

第三种分析方法是聚合分析,聚合分析常用于对网站内容的分析上。网站有大量的页面访问数据,而每一个页面又都拥有自己的指标数据。对于如此庞大和细碎内容数据,我们该如何下手呢?答案是使用聚合分析。

3.1应用场合

聚合分析通常用来对网站的分类和导航系统进行分析。例如:关注A频道的访问者是否也浏览了B频道的信息?他们如何在这两类信息间流动。使用列表筛选的功能是否中途也会使用站内搜索?这些在基于页面的数据中是很难发现的,因为数据的颗粒度太细小了。需要我们对网站中不同的内容进行聚合。

3.2内容组介绍

聚合内容的方法很简单,就是将内容相关,或者你关注的信息进行分类,我们称为内容组。而分类的粒度取决于你分析的最终粒度。

聚合内容的维度也有很多种,完全看我们的分析需求。最简单的方法,我们可以按网站的频道划分内容组,或者按网站的功能来划分。例如首页,站内搜索功能,列表筛选功能,产品展示功能,购物结算功能。注册登录功能。等等。

3.3路径分析

创建的内容组主要用于进行访问者路径分析。也就是Google Analytics的访问者流报告,和导航摘要报告中。通过访问者在各内容组间的路径来验证网站逻辑和不同产品间的设计是否合理。

4,质与量分析

最后介绍的质与量的分析方法。质与量与细分一样,也始终贯穿于Google Analytics的各个报告中。

在流量来源报告中,访问次数是一个量的标,跳出率是一个质的指标。通过这两个指标可以有效的衡量不同渠道流量与网站内容的匹配度。

在内容报告中,浏览量是一个量的指标,退出百分比是一个质的指标,通过这两个指标可以衡量页面的质量。

4.1什么是量

什么是网站的量?通常来说,量是一个绝对值,用来衡量事物的多少。例如,网站来了多少人,访问了多少次,看了多少个页面,产生了多少订单等等。这些绝对值数据都可以归为网站的量指标。但也并不绝对。

4.2什么是质

什么是网站的质?通常来说,质是一个比率。用来衡量效果。例如:跳出率,转化率,平均停留时间,每次访问浏览页面数,平均订单价值等等。这些比率都可以归为网站的质指标。

4.3主要应用场景及报告

质与量在网站分析中的应用比较广泛,任何的流量,网站页面及访问者行为都可以通过质与量两个维度进行有效的分析。例如,进入次数与跳出率,页面浏览量与关键行为点击率,等等等等。

以上是小编为大家分享的关于网站常用的数据分析方法介绍的相关内容,更多信息可以关注环球青藤分享更多干货

⑨ 网站数据分析是什么

1.网站营销的角度


网站数据剖析能够协助看清网站里发生了什么事情、访问者来自哪里、他们在网站中寻找什么、网站中哪些信息最受欢迎等等。在这里首要的剖析对象是访问者,访问者在网站中的行为以及不同流量渠道之间的关系。(本图表使用Data Analytics数据可视化软件制造,原数据已做脱敏处理,下同)。


2.产品和架构的角度


网站数据剖析能够了解到网站健康状况,网站页面的体现怎么、哪个功能呈现了问题、哪里需要进行调整、页面布局是否合理、导航是否清晰等等。在这里首要的剖析对象是网站的逻辑和结构,网站的导航结构是否合理,注册及购买的逻辑流程是否顺畅。


3.网站运营的角度


网站剖析让我们在完结方针的过程中合理分配资源和预算,并通过优化不断提高网站的体现。在这里首要的剖析对象是出资回报率(ROI),也就是说,在现有的情况下,怎么合理地分配预算和资源以完结网站的方针。

⑩ 网站数据分析的十个要点

网站数据分析的十个要点

随着数据量的大量产生及很容易获取,许多网站分析人员通过与专家、社会媒体、同等进行交流讨论分析什么样的数据才能产生有意义/价值的信息。

作为艺术与技术结合的网站分析师,不能仅依靠关键指标或者依赖于一个很炫的仪表盘。而真正的价值体现在于不断的细分网站用户,从而更好的分析用户,为他们提供个性化的服务进而实现其商业价值。

本文提供了10点细分的建议,让你的数据直接变成有价值的信息。

1、一滤、二组、三细分

虽然网站(流量)分析的数据量是海量(译者注:UV超过10万UV/天的网站网站日志、订单数据、商品数据、会员数据等每天产生的数据一般都是以G为单位原始数据。),但往往也会很容易导致一些错误的结论(译者注:大数据量意味数据内容多,但如果对于数据的收集过程或者数据本身是否有偏/不足不了解,就很容易在分析的时候做出的决定是错的)。由于JS代码的执行是在客户端(浏览器加载网页的过程中),所以有很多固有的错误是无法避免的,除非你对这些数据进行过滤处理。另外,如果不对数据进行细分,那么往往top10与TOP50列表内容各个时间段都并不太会有太大改变(译者注:对于一个流量相对稳定的公司来说,排名前面几位的一般变化不大。所以分析时候,最好看每个大类下面的TOP50,更容易发现一些数据的异常)。

2、细分客户类型

常规的用户类型:新访者、潜在用户(多次访问过访问,但没有注册)、会员、联盟客户、公司员工。不同类型的用户访问网站的行业差异性很大。会员的行为与潜在用户可能完全不一样(译者注:因为不同类型的用户来网站的目的是不一样的,会员来购买可能注是为了购买某种商品,而潜在用户可能只是来看看或者进行比比价)。会员有时候会让转化率这个指标出现虚高,往往公司内部员工的转化率会比较高。

3、对渠道类型进行划时代

渠道类型主要分为:付费与自然流量;付费媒体与免费媒体,内部与外部广告,以及联盟。很多网站分析工具提供的基本的流量细分报告,但如果没有另外再加入跟踪代码,可能很难超越的三种基本类型。

一些关键流量渠道细分必须考虑加入一些代码包括:如果一些社会化渠道来源(一些人分析你网站的内容的转贴或者发贴),自有社会化媒体的渠道(像在youtube或者facebook上官方主页之类;付费或者自然搜索;自然的引用链接(像别的网站转载你的内容然后会加上原文链接),一般网站链接的交换。否则这些渠道的流量跟踪可能会无法统计。

4、仔细检查自然流量加的代码

许多网站的自然流量往往是不可信因为加入的代码往往质量很差。请仔细检验你的邮箱、社会媒体、重定位或者手机流量的监测代码是否准备且完全正确的,这样才能对更准备去判断是否统计的自然输入是真的直接输入。

5、通过意向对内容进行细分

网站的用户可以分为:研究、购买、重复购买、谈判、推荐。不对的人对于内容的印象是不一样的,所以利用这些相同的内容定位命名为你的网站分析报告。随着时间的推移,通过构建一个好的购买流程漏斗:包括:研究、游客,购买,交易和/或更新,从而不断的够优化用户体验。

6、利用有意义的的方法划分产品类型

就像你通过内容来细分目的,为了更好追求从而更好的分析/识别业务上产品的配置便于作的扩展分析。

7、跨平台的整合数据

网站分析数据不应该被交易数据所替代,整合不同的数据源用于理解的分析或者记录的信息的区别。从记录的信息中得出结果,二者并不相等,信息并表示结论。

8、更贴近你的客户

许多在报告中呈现的专业术语与科学术语似乎与商业股东的利益没有明显的相关。转变报告的内容表达从而更好走向你的“听众”,让他们更好的理解报告。

9、为每一个推测建议目标并检验这些预测

一个好的网站分析师通过假设、以及从数据中发现的规则来对未来的趋势做出预测,基于对于整个市场的趋势做出研判。一个伟大的网站分析师可以给猜测一个合适的解释,从而可以为下一步月度、季度、年度去评估这些预测的目标。

10、把商业驱动与细分&指标联系在一起

您的业务主要集中在积极的收购重点产品?开始分割你的数据,包括关键的发现,围绕该焦点。

你报告的听众是否持续深入的进一步你的用户服务行为,而不是仅仅把焦点集中的新用户服务、潜在客户的细分上。与业务相一致,以及注意各类细节,从而让你的分析你的听众愿意接受分析,并保持开放。

总结

虽然很少人可以完全掌握并使用这些要点,然后对于是作为艺术与技术结合的网站分析师来说,我们应该都要知道每一项细分都影响商业价值的实现。

以上是小编为大家分享的关于网站数据分析的十个要点的相关内容,更多信息可以关注环球青藤分享更多干货