❶ 第五章 神经网络
神经网络 :神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。
神经网络中最基本的成分便是 神经元模型 。
M-P神经元模型:
感知机由两层神经元组成,分别为输入层、输出层。
以下是具体过程:
多层神经网络的拓扑结构如图:
如上图可知,多层网络由输入层、隐含层和输出层组成,顶层是输出层,底层是输入层,中间的便是隐含层。隐含层与输出层都具有功能神经元。
多层前馈神经网络的结构需要满足:
1、每层神经元必须与下一层完全互连
2、神经元之间不存在同层连接
3、神经元不可跨层连接
只需包含一个足够多神经元的隐层,就能以任意精度逼近任意复杂度的连续函数
BP神经网络由于学习能力太强大比较荣誉造成过拟合问题,故有两种策略来减缓过拟合的问题:
1、早停:将数据分成训练集和验证集,训练集学习,验证集评估性能,在训练过程中,若训练集的累积误差降低,而验证集的累积误差提高,则终止训练;
2、引入正则化:其基本思想是在误差目标函数中增加一个用于描述网络复杂程度的部分,有如连接权和阈值的平方和:
其中λ∈(0,1)用于对累积经验误差与网络复杂度这两项进行折中,常通过交叉验证法来估计。
神经网络的训练过程可看作一个参数寻优的过程,即寻找到适当的参数使得E最小。于是我们时常会谈及“全局最小”和“局部最小”。
1、全局最小:即全局最小解,在参数空间中,所有其他点的误差函数值均大于该点;
2、局部最小:即局部最小解,在参数空间中,其邻近的点的误差函数值均大于该点。
我们要达到局部极小点,很容易,只要满足梯度为零的点便是了,局部极小点可以有多个,但全局最小点只有一个。显然,我们追求的是全局最小,而非局部极小,于是人们通常采用以下策略来试图“跳出”局部极小,使其接近全局最小:
1、以多组不同参数值初始化多个神经网络,按标准方法训练,在迭代停止后,取其中误差最小的解作为最终参数;
2、使用随机梯度下降(在计算梯度时加入了随机因素),使得在局部最小时,计算的梯度仍可能不为0,从而可能跳出局部极小,继续进行迭代;
3、“模拟退火”技术,在每一步都以一定的概率接受比当前解更差的结果,但接受“次优解”的概率要随着迭代进行,时间推移而逐渐减低以确保算法的稳定。
1、RBF网络
单隐层前馈神经网络 ,使用径向基函数作为隐层神经元激活函数,输出层是对隐层神经元输出的线性组合。RBF网络可表示为:
2、ART网络
竞争型学习 (神经网络中一种常用的 无监督学习 策略),由 比较层、识别层、识别阈值和重置模块 组成。接收到比较层的输入信号后,识别层神经元相互竞争以产生获胜神经元,最简单的方式就是计算输入向量与每个识别层神经元所对应的模式类代表向量间的距离,距离小者获胜。若获胜神经元对应的代表向量与输入向量间 相似度大于识别阈值 ,则将输入样本归为该代表向量所属类别,网络 连接权 也会进行 更新 以保证后面接收到相似的输入样本时该模式类会计算出更大的相似度,使得这样的样本能够归于一类;如果 相似度不大于识别阈值 ,则 重置模块 会在 识别层 加一个神经元,其 代表向量 就 设置 为当前 输入向量 。
3、SOM网络
竞争型学习的无监督神经网络 ,将高维输入数据映射到低维空间(通常是二维),且保持输入数据在高维空间的拓扑结构。
4、级联相关网络
结构自适应网络 。
5、Elman网络
递归神经网络 。
6、Boltzmann机
基于能量的模型,其神经元分为显层与隐层,显层用于数据输入输出,隐层被理解为数据的内在表达。其神经元皆为布尔型,1为激活,0为抑制。
理论上,参数越多的模型其复杂程度越高,能完成更加复杂的学习任务。但是复杂模型的训练效率低下,容易过拟合。但由于大数据时代、云计算,计算能力大幅提升缓解了训练效率低下,而训练数据的增加则可以降低过拟合风险。
于是如何增加模型的复杂程度呢?
1、增加隐层数;
2、增加隐层神经元数.
如何有效训练多隐层神经网络?
1、无监督逐层训练:每次训练一层隐节点,把上一层隐节点的输出当作输入来训练,本层隐结点训练好后,输出再作为下一层的输入来训练,这称为预训练,全部预训练完成后,再对整个网络进行微调。“预训练+微调”即把大量的参数进行分组,先找出每组较好的设置,再基于这些局部最优的结果来训练全局最优;
2、权共享:令同一层神经元使用完全相同的连接权,典型的例子是卷积神经网络。这样做可以大大减少需要训练的参数数目。
深度学习 可理解为一种特征学习或者表示学习,是通过 多层处理 ,逐渐将初始的 低层特征表示 转化为 高层特征表示 后,用 简单模型 即可完成复杂的分类等 学习任务 。
❷ 神经网络(Neural Network)
(1)结构:许多树突(dendrite)用于输入,一个轴突 (axon)用于输出。
(2)特性:兴奋性和传导性。兴奋性是指当信号量超过某个阈值时,细胞体就会被激活,产生电脉冲。传导性是指电脉冲沿着轴突并通过突触传递到其它神经元。
(3)有两种状态的机器:激活时为“是”,不激活时为“否”。神经细胞的状态取决于从其他神经细胞接收到的信号量,以及突触的性质(抑制或加强)。
(1)神经元——不重要
① 神经元是包含权重和偏置项的 函数 :接收数据后,执行一些计算,然后使用激活函数将数据限制在一个范围内(多数情况下)。
② 单个神经元:线性可分的情况下,本质是一条直线, ,这条直线将数据划分为两类。而线性分类器本身就是一个单层神经网络。
③ 神经网络:非线性可分的情况下,神经网络通过多个隐层的方法来实现非线性的函数。
(2)权重/参数/连接(Weight)——最重要
每一个连接上都有一个权重。一个神经网络的训练算法就是让权重的值调整到最佳,以使得整个网络的预测效果最好。
(3)偏置项(Bias Units)——必须
① 如果没有偏置项,所有的函数都会经过原点。
② 正则化偏置会导致欠拟合:若对偏置正则化,会导致激活变得更加简单,偏差就会上升,学习的能力就会下降。
③ 偏置的大小度量了神经元产生激励(激活)的难易程度。
(1)定义:也称为转换函数,是一种将输入 (input) 转成输出 (output) 的函数。
(2)作用:一般直线拟合的精确度要比曲线差很多,引入激活函数能给神经网络 增加一些非线性 的特性。
(3)性质:
① 非线性:导数不是常数,否则就退化成直线。对于一些画一条直线仍然无法分开的问题,非线性可以把直线变弯,就能包罗万象;
② 可微性:当优化方法是基于梯度的时候,处处可导为后向传播算法提供了核心条件;
③ 输出范围:一般限定在[0,1],使得神经元对一些比较大的输入会比较稳定;
④ 非饱和性:饱和就是指,当输入比较大的时候输出几乎没变化,会导致梯度消失;
⑤ 单调性:导数符号不变,输出不会上蹿下跳,让神经网络训练容易收敛。
(1)线性函数 (linear function)—— purelin()
(2)符号函数 (sign function)—— hardlim()
① 如果z值高于阈值,则激活设置为1或yes,神经元将被激活。
② 如果z值低于阈值,则激活设置为0或no,神经元不会被激活。
(3)对率函数 (sigmoid function)—— logsig()
① 优点:光滑S型曲线连续可导,函数阈值有上限。
② 缺点:❶ 函数饱和使梯度消失,两端梯度几乎为0,更新困难,做不深;
❷ 输出不是0中心,将影响梯度下降的运作,收敛异常慢;
❸ 幂运算相对来讲比较耗时
(4)双曲正切函数(hyperbolic tangent function)—— tansig()
① 优点:取值范围0中心化,防止了梯度偏差
② 缺点:梯度消失现象依然存在,但相对于sigmoid函数问题较轻
(5)整流线性单元 ReLU 函数(rectified linear unit)
① 优点:❶ 分段线性函数,它的非线性性很弱,因此网络做得很深;
❷ 由于它的线性、非饱和性, 对于随机梯度下降的收敛有巨大的加速作用;
② 缺点:❶ 当x<0,梯度都变成0,参数无法更新,也导致了数据多样化的丢失;
❷ 输出不是0中心
(6)渗漏型整流线性单元激活函数 Leaky ReLU 函数
① 优点:❶ 是为解决“ReLU死亡”问题的尝试,在计算导数时允许较小的梯度;
❷ 非饱和的公式,不包含指数运算,计算速度快。
② 缺点:❶ 无法避免梯度爆炸问题; (没有体现优于ReLU)
❷ 神经网络不学习 α 值。
(7)指数线性单元 ELU (Exponential Linear Units)
① 优点:❶ 能避免“死亡 ReLU” 问题;
❷ 能得到负值输出,这能帮助网络向正确的方向推动权重和偏置变化;
❸ 在计算梯度时能得到激活,而不是让它们等于 0。
② 缺点:❶ 由于包含指数运算,所以计算时间更长;
❷ 无法避免梯度爆炸问题; (没有体现优于ReLU)
❸ 神经网络不学习 α 值。
(8)Maxout(对 ReLU 和 Leaky ReLU的一般化归纳)
① 优点:❶ 拥有ReLU的所有优点(线性和不饱和)
❷ 没有ReLU的缺点(死亡的ReLU单元)
❸ 可以拟合任意凸函数
② 缺点 :参数数量增加了一倍。难训练,容易过拟合
(9)Swish
① 优点:❶ 在负半轴也有一定的不饱和区,参数的利用率更大
❷ 无上界有下界、平滑、非单调
❸ 在深层模型上的效果优于 ReLU
每个层都包含一定数量的单元(units)。增加层可增加神经网络输出的非线性。
(1)输入层:就是接收原始数据,然后往隐层送
(2)输出层:神经网络的决策输出
(3)隐藏层:神经网络的关键。把前一层的向量变成新的向量,让数据变得线性可分。
(1)结构:仅包含输入层和输出层,直接相连。
(2)作用:仅能表示 线性可分 函数或决策,且一定可以在有限的迭代次数中收敛。
(3)局限:可以建立与门、或门、非门等,但无法建立更为复杂的异或门(XOR),即两个输入相同时输出1,否则输出0。 (“AI winter”)
(1)目的:拟合某个函数 (两层神经网络可以逼近任意连续函数)
(2)结构:包含输入层、隐藏层和输出层 ,由于从输入到输出的过程中不存在与模型自身的反馈连接,因此被称为“前馈”。 (层与层之间全连接)
(3)作用: 非线性 分类、聚类、预测等,通过训练,可以学习到数据中隐含的知识。
(4)局限:计算复杂、计算速度慢、容易陷入局部最优解,通常要将它们与其他网络结合形成新的网络。
(5)前向传播算法(Forward Propagation)
① 方法:从左至右逐级依赖的算法模型,即网络如何根据输入X得到输出Y,最终的输出值和样本值作比较, 计算出误差 。
② 目的:完成了一次正反向传播,就完成了一次神经网络的训练迭代。通过输出层的误差,快速求解对每个ω、b的偏导,利用梯度下降法,使Loss越来越小。
② 局限:为使最终的误差达到最小,要不断修改参数值,但神经网络的每条连接线上都有不同权重参数,修改这些参数变得棘手。
(6)误差反向传播(Back Propagation)
① 原理:梯度下降法求局部极值
② 方法:从后往前,从输出层开始计算 L 对当前层的微分,获得各层的误差信号,此误差信号即作为修正单元权值的依据。计算结束以后,所要的两个参数矩阵的 梯度 就都有了。
③ 局限:如果激活函数是饱和的,带来的缺陷就是系统迭代更新变慢,系统收敛就慢,当然这是可以有办法弥补的,一种方法是使用 交叉熵函数 作为损失函数。
(1)原理:随着网络的层数增加,每一层对于前一层次的抽象表示更深入。在神经网络中,每一层神经元学习到的是前一层神经元值的更抽象的表示。通过抽取更抽象的特征来对事物进行区分,从而获得更好的区分与分类能力。
(2)方法:ReLU函数在训练多层神经网络时,更容易收敛,并且预测性能更好。
(3)优点:① 易于构建,表达能力强,基本单元便可扩展为复杂的非线性函数
② 并行性号,有利于在分布是系统上应用
(4)局限:① 优化算法只能获得局部极值,性能与初始值相关
② 调参理论性缺乏
③ 不可解释,与实际任务关联性模糊
(1)原理:由手工设计卷积核变成自动学习卷积核
(2)卷积(Convolutional layer): 输入与卷积核相乘再累加 (内积、加权叠加)
① 公式:
② 目的:提取输入的不同特征,得到维度很大的 特征图(feature map)
③ 卷积核:需要训练的参数。一般为奇数维,有中心像素点,便于定位卷积核
④ 特点:局部感知、参数变少、权重共享、分层提取
(3)池化(Pooling Layer):用更高层的抽象表达来表示主要特征,又称“降采样”
① 分类: 最大 (出现与否)、平均(保留整体)、随机(避免过拟合)
② 目的:降维,不需要训练参数,得到新的、维度较小的特征
(4)步长(stride):若假设输入大小是n∗n,卷积核的大小是f∗f,步长是s,则最后的feature map的大小为o∗o,其中
(5)填充(zero-padding)
① Full模式:即从卷积核(fileter)和输入刚相交开始做卷积,没有元素的部分做补0操作。
② Valid模式:卷积核和输入完全相交开始做卷积,这种模式不需要补0。
③ Same模式:当卷积核的中心C和输入开始相交时做卷积。没有元素的部分做补0操作。
(7)激活函数:加入非线性特征
(8)全连接层(Fully-connected layer)
如果说卷积层、池化层和激活函数层等是将原始数据映射到隐层特征空间(决定计算速度),全连接层则起到将学到的“分布式特征表示”映射到样本标记空间的作用(决定参数个数)。
参考:
[1] 神经网络(入门最详细)_ruthy的博客-CSDN博客_神经网络算法入门
[2] 神经网络(容易被忽视的基础知识) - Evan的文章 - 知乎
[3] 人工神经网络——王的机器
[4] 如何简单形象又有趣地讲解神经网络是什么? - 舒小曼的回答 - 知乎
[5] 神经网络15分钟入门!足够通俗易懂了吧 - Mr.括号的文章 - 知乎
[6] 神经网络——最易懂最清晰的一篇文章_illikang的博客-CSDN博客_神经网络
[7] 直觉化深度学习教程——什么是前向传播——CSDN
[8] “反向传播算法”过程及公式推导(超直观好懂的Backpropagation)_aift的专栏-CSDN
[9] 卷积、反卷积、池化、反池化——CSDN
[10] 浙大机器学习课程- bilibili.com
❸ 一文看懂四种基本的神经网络架构
原文链接:
http://blackblog.tech/2018/02/23/Eight-Neural-Network/
更多干货就在我的个人博客 http://blackblog.tech 欢迎关注
刚刚入门神经网络,往往会对众多的神经网络架构感到困惑,神经网络看起来复杂多样,但是这么多架构无非也就是三类,前馈神经网络,循环网络,对称连接网络,本文将介绍四种常见的神经网络,分别是CNN,RNN,DBN,GAN。通过这四种基本的神经网络架构,我们来对神经网络进行一定的了解。
神经网络是机器学习中的一种模型,是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
一般来说,神经网络的架构可以分为三类:
前馈神经网络:
这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。如果有多个隐藏层,我们称之为“深度”神经网络。他们计算出一系列改变样本相似性的变换。各层神经元的活动是前一层活动的非线性函数。
循环网络:
循环网络在他们的连接图中定向了循环,这意味着你可以按照箭头回到你开始的地方。他们可以有复杂的动态,使其很难训练。他们更具有生物真实性。
循环网络的目的使用来处理序列数据。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。
循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。
对称连接网络:
对称连接网络有点像循环网络,但是单元之间的连接是对称的(它们在两个方向上权重相同)。比起循环网络,对称连接网络更容易分析。这个网络中有更多的限制,因为它们遵守能量函数定律。没有隐藏单元的对称连接网络被称为“Hopfield 网络”。有隐藏单元的对称连接的网络被称为玻尔兹曼机。
其实之前的帖子讲过一些关于感知机的内容,这里再复述一下。
首先还是这张图
这是一个M-P神经元
一个神经元有n个输入,每一个输入对应一个权值w,神经元内会对输入与权重做乘法后求和,求和的结果与偏置做差,最终将结果放入激活函数中,由激活函数给出最后的输出,输出往往是二进制的,0 状态代表抑制,1 状态代表激活。
可以把感知机看作是 n 维实例空间中的超平面决策面,对于超平面一侧的样本,感知器输出 1,对于另一侧的实例输出 0,这个决策超平面方程是 w⋅x=0。 那些可以被某一个超平面分割的正反样例集合称为线性可分(linearly separable)样例集合,它们就可以使用图中的感知机表示。
与、或、非问题都是线性可分的问题,使用一个有两输入的感知机能容易地表示,而异或并不是一个线性可分的问题,所以使用单层感知机是不行的,这时候就要使用多层感知机来解决疑惑问题了。
如果我们要训练一个感知机,应该怎么办呢?
我们会从随机的权值开始,反复地应用这个感知机到每个训练样例,只要它误分类样例就修改感知机的权值。重复这个过程,直到感知机正确分类所有的样例。每一步根据感知机训练法则来修改权值,也就是修改与输入 xi 对应的权 wi,法则如下:
这里 t 是当前训练样例的目标输出,o 是感知机的输出,η 是一个正的常数称为学习速率。学习速率的作用是缓和每一步调整权的程度,它通常被设为一个小的数值(例如 0.1),而且有时会使其随着权调整次数的增加而衰减。
多层感知机,或者说是多层神经网络无非就是在输入层与输出层之间加了多个隐藏层而已,后续的CNN,DBN等神经网络只不过是将重新设计了每一层的类型。感知机可以说是神经网络的基础,后续更为复杂的神经网络都离不开最简单的感知机的模型,
谈到机器学习,我们往往还会跟上一个词语,叫做模式识别,但是真实环境中的模式识别往往会出现各种问题。比如:
图像分割:真实场景中总是掺杂着其它物体。很难判断哪些部分属于同一个对象。对象的某些部分可以隐藏在其他对象的后面。
物体光照:像素的强度被光照强烈影响。
图像变形:物体可以以各种非仿射方式变形。例如,手写也可以有一个大的圆圈或只是一个尖头。
情景支持:物体所属类别通常由它们的使用方式来定义。例如,椅子是为了让人们坐在上面而设计的,因此它们具有各种各样的物理形状。
卷积神经网络与普通神经网络的区别在于,卷积神经网络包含了一个由卷积层和子采样层构成的特征抽取器。在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接。在CNN的一个卷积层中,通常包含若干个特征平面(featureMap),每个特征平面由一些矩形排列的的神经元组成,同一特征平面的神经元共享权值,这里共享的权值就是卷积核。卷积核一般以随机小数矩阵的形式初始化,在网络的训练过程中卷积核将学习得到合理的权值。共享权值(卷积核)带来的直接好处是减少网络各层之间的连接,同时又降低了过拟合的风险。子采样也叫做池化(pooling),通常有均值子采样(mean pooling)和最大值子采样(max pooling)两种形式。子采样可以看作一种特殊的卷积过程。卷积和子采样大大简化了模型复杂度,减少了模型的参数。
卷积神经网络由三部分构成。第一部分是输入层。第二部分由n个卷积层和池化层的组合组成。第三部分由一个全连结的多层感知机分类器构成。
这里举AlexNet为例:
·输入:224×224大小的图片,3通道
·第一层卷积:11×11大小的卷积核96个,每个GPU上48个。
·第一层max-pooling:2×2的核。
·第二层卷积:5×5卷积核256个,每个GPU上128个。
·第二层max-pooling:2×2的核。
·第三层卷积:与上一层是全连接,3*3的卷积核384个。分到两个GPU上个192个。
·第四层卷积:3×3的卷积核384个,两个GPU各192个。该层与上一层连接没有经过pooling层。
·第五层卷积:3×3的卷积核256个,两个GPU上个128个。
·第五层max-pooling:2×2的核。
·第一层全连接:4096维,将第五层max-pooling的输出连接成为一个一维向量,作为该层的输入。
·第二层全连接:4096维
·Softmax层:输出为1000,输出的每一维都是图片属于该类别的概率。
卷积神经网络在模式识别领域有着重要应用,当然这里只是对卷积神经网络做了最简单的讲解,卷积神经网络中仍然有很多知识,比如局部感受野,权值共享,多卷积核等内容,后续有机会再进行讲解。
传统的神经网络对于很多问题难以处理,比如你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。RNN之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。理论上,RNN能够对任何长度的序列数据进行处理。
这是一个简单的RNN的结构,可以看到隐藏层自己是可以跟自己进行连接的。
那么RNN为什么隐藏层能够看到上一刻的隐藏层的输出呢,其实我们把这个网络展开来开就很清晰了。
从上面的公式我们可以看出,循环层和全连接层的区别就是循环层多了一个权重矩阵 W。
如果反复把式2带入到式1,我们将得到:
在讲DBN之前,我们需要对DBN的基本组成单位有一定的了解,那就是RBM,受限玻尔兹曼机。
首先什么是玻尔兹曼机?
[图片上传失败...(image-d36b31-1519636788074)]
如图所示为一个玻尔兹曼机,其蓝色节点为隐层,白色节点为输入层。
玻尔兹曼机和递归神经网络相比,区别体现在以下几点:
1、递归神经网络本质是学习一个函数,因此有输入和输出层的概念,而玻尔兹曼机的用处在于学习一组数据的“内在表示”,因此其没有输出层的概念。
2、递归神经网络各节点链接为有向环,而玻尔兹曼机各节点连接成无向完全图。
而受限玻尔兹曼机是什么呢?
最简单的来说就是加入了限制,这个限制就是将完全图变成了二分图。即由一个显层和一个隐层构成,显层与隐层的神经元之间为双向全连接。
h表示隐藏层,v表示显层
在RBM中,任意两个相连的神经元之间有一个权值w表示其连接强度,每个神经元自身有一个偏置系数b(对显层神经元)和c(对隐层神经元)来表示其自身权重。
具体的公式推导在这里就不展示了
DBN是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型仅仅而已评估了后者,也就是P(Label|Observation)。
DBN由多个限制玻尔兹曼机(Restricted Boltzmann Machines)层组成,一个典型的神经网络类型如图所示。这些网络被“限制”为一个可视层和一个隐层,层间存在连接,但层内的单元间不存在连接。隐层单元被训练去捕捉在可视层表现出来的高阶数据的相关性。
生成对抗网络其实在之前的帖子中做过讲解,这里在说明一下。
生成对抗网络的目标在于生成,我们传统的网络结构往往都是判别模型,即判断一个样本的真实性。而生成模型能够根据所提供的样本生成类似的新样本,注意这些样本是由计算机学习而来的。
GAN一般由两个网络组成,生成模型网络,判别模型网络。
生成模型 G 捕捉样本数据的分布,用服从某一分布(均匀分布,高斯分布等)的噪声 z 生成一个类似真实训练数据的样本,追求效果是越像真实样本越好;判别模型 D 是一个二分类器,估计一个样本来自于训练数据(而非生成数据)的概率,如果样本来自于真实的训练数据,D 输出大概率,否则,D 输出小概率。
举个例子:生成网络 G 好比假币制造团伙,专门制造假币,判别网络 D 好比警察,专门检测使用的货币是真币还是假币,G 的目标是想方设法生成和真币一样的货币,使得 D 判别不出来,D 的目标是想方设法检测出来 G 生成的假币。
传统的判别网络:
生成对抗网络:
下面展示一个cDCGAN的例子(前面帖子中写过的)
生成网络
判别网络
最终结果,使用MNIST作为初始样本,通过学习后生成的数字,可以看到学习的效果还是不错的。
本文非常简单的介绍了四种神经网络的架构,CNN,RNN,DBN,GAN。当然也仅仅是简单的介绍,并没有深层次讲解其内涵。这四种神经网络的架构十分常见,应用也十分广泛。当然关于神经网络的知识,不可能几篇帖子就讲解完,这里知识讲解一些基础知识,帮助大家快速入(zhuang)门(bi)。后面的帖子将对深度自动编码器,Hopfield 网络长短期记忆网络(LSTM)进行讲解。