㈠ 如何理解卷积神经网络中的权值共享
简单谈谈自己的理解吧。池化:把很多数据用最大值或者平均值代替。目的是降低数据量。卷积:把数据通过一个卷积核变化成特征,便于后面的分离。计算方式与信号系统中的相同。
㈡ 人工智能CNN卷积神经网络如何共享权值
首先权值共享就是滤波器共享,滤波器的参数是固定的,即是用相同的滤波器去扫一遍图像,提取一次特征特征,得到feature map。在卷积网络中,学好了一个滤波器,就相当于掌握了一种特征,这个滤波器在图像中滑动,进行特征提取,然后所有进行这样操作的区域都会被采集到这种特征,就好比上面的水平线。
㈢ 神经网络权值是啥意思
神经网络的权值是通过对网络的训练得到的。如果使用MATLAB的话不要自己设定,newff之后会自动赋值。也可以手动:net.IW{}= ; net.bias{}=。一般来说输入归一化,那么w和b取0-1的随机数就行。神经网络的权值确定的目的是为了让神经网络在训练过程中学习到有用的信息,这意味着参数梯度不应该为0。
网络是由若干节点和连接这些节点的链路构成,表示诸多对象及其相互联系。
在1999年之前,人们一般认为网络的结构都是随机的。但随着Barabasi和Watts在1999年分别发现了网络的无标度和小世界特性并分别在世界着名的《科学》和《自然》杂志上发表了他们的发现之后,人们才认识到网络的复杂性。
网络会借助文字阅读、图片查看、影音播放、下载传输、游戏、聊天等软件工具从文字、图片、声音、视频等方面给人们带来极其丰富的生活和美好的享受。
汉语中,“网络”一词最早用于电学《现代汉语词典》(1993年版)做出这样的解释:“在电的系统中,由若干元件组成的用来使电信号按一定要求传输的电路或这种电路的部分,叫网络。”
在数学上,网络是一种图,一般认为专指加权图。网络除了数学定义外,还有具体的物理含义,即网络是从某种相同类型的实际问题中抽象出来的模型。在计算机领域中,网络是信息传输、接收、共享的虚拟平台,通过它把各个点、面、体的信息联系到一起,从而实现这些资源的共享。网络是人类发展史来最重要的发明,提高了科技和人类社会的发展。
㈣ 如何理解卷积神经网络中的权值共享
权值共享的通俗理解就是整张图片或者整组feature map共用一个卷积核,卷积核在图片上慢慢滑动,所以图片上每个区域都是利用了卷积核内的参数,这就是权值共享。
㈤ 如何理解卷积神经网络中的权值共享
所谓的权值共享就是说,给一张输入图片,用一个filter去扫这张图,filter里面的数就叫权重,这张图每个位置是被同样的filter扫的,所以权重是一样的,也就是共享。 这么说可能还不太明白,如果你能理解什么叫全连接神经网络的话,那么从一个尽量减少参数个数的角度去理解就可以了。 对于一张输入图片,大小为W*H,如果使用全连接网络,生成一张X*Y的feature map,需要W*H*X*Y个参数,如果原图长宽是10^2级别的,而且XY大小和WH差不多的话,那么这样一层网络需要的参数个数是10^8~10^12级别。 这么多参数肯定是不行的,那么我们就想办法减少参数的个数对于输出层feature map上的每一个像素,他与原图片的每一个像素都有连接,每一个链接都需要一个参数。但注意到图像一般都是局部相关的,那么如果输出层的每一个像素只和输入层图片的一个局部相连,那么需要参数的个数就会大大减少。假设输出层每个像素只与输入图片上F*F的一个小方块有连接,也就是说输出层的这个像素值,只是通过原图的这个F*F的小方形中的像素值计算而来,那么对于输出层的每个像素,需要的参数个数就从原来的W*H减小到了F*F。如果对于原图片的每一个F*F的方框都需要计算这样一个输出值,那么需要的参数只是W*H*F*F,如果原图长宽是10^2级别,而F在10以内的话,那么需要的参数的个数只有10^5~10^6级别,相比于原来的10^8~10^12小了很多很多。
㈥ 如何理解人工智能神经网络中的权值共享问题
权值(权重)共享这个词是由LeNet5模型提出来的。以CNN为例,在对一张图偏进行卷积的过程中,使用的是同一个卷积核的参数。比如一个3×3×1的卷积核,这个卷积核内9个的参数被整张图共享,而不会因为图像内位置的不同而改变卷积核内的权系数。说的再直白一些,就是用一个卷积核不改变其内权系数的情况下卷积处理整张图片(当然CNN中每一层不会只有一个卷积核的,这样说只是为了方便解释而已)。
㈦ 卷积神经网络权值共享怎么体现的
- 用局部连接而不是全连接,同时权值共享。
局部连接的概念参考局部感受域,即某个视神经元仅考虑某一个小区域的视觉输入,因此相比普通神经网络的全连接层(下一层的某一个神经元需要与前一层的所有节点连接),卷积网络的某一个卷积层的所有节点只负责前层输入的某一个区域(比如某个3*3的方块)。这样一来需要训练的权值数相比全连接而言会大大减少,进而减小对样本空间大小的需求。
权值共享的概念就是,某一隐藏层的所有神经元共用一组权值。
这两个概念对应卷积层的话,恰好就是某个固定的卷积核。卷积核在图像上滑动时每处在一个位置分别对应一个“局部连接”的神经元,同时因为“权值共享”的缘故,这些神经元的参数一致,正好对应同一个卷积核。
顺便补充下,不同卷积核对应不同的特征,比如不同方向的边(edge)就会分别对应不同的卷积核。
- 激活函数f(x)用ReLU的话避免了x过大梯度趋于0(比如用sigmoid)而影响训练的权值的情况(即GradientVanishing)。同时结果会更稀疏一些。
- 池化之后(例如保留邻域内最大或~~平均以舍弃一些信息)一定程度也压制了过拟合的情况。
综述
总体来说就是重复卷积-relu来提取特征,进行池化之后再作更深层的特征提取,实质上深层卷积网络的主要作用在于特征提取。最后一层直接用softmax来分类(获得一个介于0~1的值表达输入属于这一类别的概率)。