当前位置:首页 » 手机软件 » 共享介质型网络使用哪一种技术
扩展阅读
武侯网站策划怎么选 2024-12-24 12:46:54
手机拍珠宝用什么软件 2024-12-24 12:33:15

共享介质型网络使用哪一种技术

发布时间: 2023-04-19 08:00:50

A. 什么是享介质式局域网什么是交换式局域网各有何特点

共享介质局域网一般是指原来早期的同轴电缆局域网,属于总线型的,使用一根电缆链接局域网内所有的计算机,线的两端安装终端适配器。这种传输方式的带宽是单绩厕啃丿救搽寻敞默共享的,也就是所有计算机评分10M带宽,非常容易发生数据包碰撞。
交换式局域网就是我们平常使用的双绞线到交换机的局域网,这种网络任意两个节点之间通信是独享带宽的,不会影响网内的其他机器。
需要说明的是,如果用一根交叉双绞线直接连接两台计算机,那样也属于共享介质。这个是特殊情况。

B. 在共享介质以太网中,采用的介质访问控制方法是

控制方法是CSMA/CD方法。

在传统的共享以太网中,所有的节点共享传输介质。为了保证传输介质有序、高效地为许多节点提供传输服务,就需要以太网的介质访问控制协议解决问题。

CSMA/CD是一种争用型的介质访问控制协议。它起源于美国夏威夷大学开发的ALOHA网所采用的争用型协议,并进行了改进,使之具有比ALOHA协议更高的介质利用率。主要应用于现场总线Ethernet中物销闷。另一个改进是,对于每一个站而言,一旦它检测到有冲突,它就放弃它当前的传送任务。

因为需要使用CSMA/CD协议来控制以太网的介质访问,所以答案是(D )CSMA/CD方法。

(2)共享介质型网络使用哪一种技术扩展阅读:

CSMA/CD控制方式的优点是:

原理比较简单,技术上易实现,网络中各工作站处于平等罩弯地位 ,不需集中控制,不提供优先级控制。但在网络负载增大时,发送时间增长,发送效率急剧下降。

它的工作原理是: 发送数据前 先侦听信道是否空闲 ,若空闲,则立即发送数据。若信道忙碌,则等待一段时间至信道中的信息传输结束后再发送数据;若在上一段信息发送结束后,同时有两个或两个以上的节点都斗知提出发送请求,则判定为冲突。若侦听到冲突,则立即停止发送数据,等待一段随机时间,再重新尝试。

C. 局域网共享上网的工具 是怎样实现的 用到了哪些技术

买跟你机子网卡型号相通的双绞线,连接两台机子的网卡,即可共享上网,但是记住,只有两台机子一起上才可以,这是最简单的局域网连接。
局域网网络中的计算机等设备要实现互联,就需要以一定的结构方式进行连接,这种连接方式就叫做“拓扑结构”,通俗地讲这些网络设备如何连接在一起的。目前常见的网络拓扑结构主要有以下四大类:
[4]1. 星型结构
这种结构是目前在局域网中应用得最为普遍的一种,在企业网络中几乎都是采用这一方式。星型网络几乎是Ethernet(以太网)网络专用,它是因网络中的各工作站节点设备通过一个网络集中设备(如集线器或者交换机)连接在一起,各节点呈星状分布而得名。这类网络目前用的最多的传输介质是双绞线,如常见的五类线、超五类双绞线等。
这种拓扑结构网络的基本特点主要有如下几点:
(1)容易实现:它所采用的传输介质一般都是采用通用的双绞线,这种传输介质相对来说比较便宜,如目前正品五类双绞线每米也仅1.5元左右,而同轴电缆最便宜的也要2.00元左右一米,光缆那更不用说了。这种拓扑结构主要应用于IEEE 802.2、IEEE 802.3标准的以太局域网中;
(2)节点扩展、移动方便:节点扩展时只需要从集线器或交换机等集中芦衫设备中拉一条线即可,而要移动一个节点只需要把相应节点设备移到新节点即可,而不会像环型网络那样“牵其一而动全局”;
(3)维护容易;一个节点出现故障不会影响其它节点的连接,可任意拆走故障节点;
(4)采用广播信息传送方式:任何一个节点发送信息在整个网中的节点都可以收到,这在网络方面存在一定的隐患,但这在局域网中使用影响不大;
(5)网络传输数据快:这一点可以从目前最新的1000Mbps到10G以太网接入速度可以看出。
其实它的主要特点远不止这些,但因为后面我们还要具体讲一颂缺下各类网络接入设备,而网络的特点主要是受这些设备的特点来制约的,所以其它一些方面的特点等我们在后面讲到相应网络设备时再补充。
2. 环型结构
这种结构的网络形式主要应用于令牌网中,在这种网络结构中各设备是直接通过电缆来串接的,最后形成一个闭环,整个网络发送的信息就是在这个环中传递,通常把这类网络称之为“令牌环网”。实际上大多数情况下这种拓扑结构的网络不会是所有计算机真的要连接成物理上的环型,一般情况下,环的两端是通过一个阻抗匹配器来实现环的封闭的,因为在实际组网过程中因地理位置的限制不方便真的做到环的两端物理连接。
这种拓扑结构的网络主要有如下几个特点:
(1)这种网络结构一般仅适用于IEEE 802.5的令牌网(Token ring network),在这种网络中,“令牌”是在环型连接中依次传递。所用的传输介质一般是同轴电缆。
(2)这种网络实现也非常简单,投资最小。可以从其网络结构示意图中看出,组成这个网络除了各工作站就是传输介质--同轴电缆,以及一些连接器材,没有价格昂贵的节点集中设备,如集线器和交换机。但也正因为这样,所以这种网络所能实现的功能最为简单,仅能当作一般的文件服务模式;
(3)传输速度较快:在令牌网中允许有16Mbps的传输速度,它比普通的10Mbps以太网要快许多。当然随着以太网的广泛应用和以太网技术的发展,以太网的速度也得到了极大提高,目前普遍都能提供100Mbps的网速,远比16Mbps要高。
(4)维护困难:从其网络结构可以看到,整个网络各节点间是直接串联,这样任何一个节点出了故障都会造成整个网络的中断、瘫痪,维护起来非常不便。另一方面因为同轴电缆所采用的是插针式的接触方式,所以非常容易造成接触不良野哗辩,网络中断,而且这样查找起来非常困难,这一点相信维护过这种网络的人都会深有体会。
(5)扩展性能差:也是因为它的环型结构,决定了它的扩展性能远不如星型结构的好,如果要新添加或移动节点,就必须中断整个网络,在环的两端作好连接器才能连接。
3. 总线型结构
这种网络拓扑结构中所有设备都直接与总线相连,它所采用的介质一般也是同轴电缆(包括粗缆和细缆),不过现在也有采用光缆作为总线型传输介质的,如后面我们将要讲的ATM网、Cable Modem所采用的网络等都属于总线型网络结构。

总之,局域网就是利用一些串联设备,将一台电脑上的资源取走一部分给另一台用(在不影响第一台机子使用的前提下)

D. 以太网技术的共享介质

带冲突检测的载波侦听多路访问(CSMA/CD)技术规定了多台电脑共享一个信道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网要简单。当某台电脑要发送信息时,必须遵守以下规则:
开始 - 如果线路空闲,则启动传输,否则转到第4步 发送 - 如果检测到冲突,继续发送数据直到达到最小报文时间 (保证所有其他转发器和终端检测到冲突),再转悔态山到第4步. 成功传输 - 向更高层的网络协议报告发送成功,退出传输模式。 线路忙 - 等待,直到线路空闲 线路进入空闲状态 - 等待一个随机的时间,转到第1步,除非超过最大尝试次数 超过最大尝试传输次数 - 向更高层的网络协议报告发送失败,退出传输模式 就像在没有主持人的座谈会中,所有的参加者都通过一个共同的媒介(空气)来相互交谈。每个参加者在讲话前,都礼貌地等待别人把话讲完。如果闭尘两个客人同时开始讲话,那么他们都停下来,分别随机等待一段时间再碧中开始讲话。这时,如果两个参加者等待的时间不同,冲突就不会出现。如果传输失败超过一次,将采用退避指数增长时间的方法(退避的时间通过截断二进制指数退避算法(truncated binary exponential backoff)来实现)。
最初的以太网是采用同轴电缆来连接各个设备的。电脑通过一个叫做附加单元接口(Attachment Unit Interface,AUI)的收发器连接到电缆上。一根简单网线对于一个小型网络来说还是很可靠的,对于大型网络来说,某处线路的故障或某个连接器的故障,都会造成以太网某个或多个网段的不稳定。
因为所有的通信信号都在共用线路上传输,即使信息只是发给其中的一个终端(destination),某台电脑发送的消息都将被所有其他电脑接收。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。

E. 图解TCP/IP

计算机使用模式的演变:
20世纪50年代 批处理时代
20世纪60年代 分时系统时代
20世纪70年代 计算机间通信时代
20世纪80年代 计算机网络时代
20世纪90年代 互联网普及时代
2000年 以互联网为中心的时代
2010年 无论何时何地地一切皆TCP/IP的网络时代

在计算机网络与信息通信领域,人们经常提及 “协议” 。简单来说。 协议 就是计算机与计算机之间通过网络实现通信时事先达成的一种“约定”。这种“约定”使那些由不同厂商的设备、不同的CPU以及不同的操作系统组成的计算机之间,只要遵循相同的协议就能实现通信。换句话说, 协议 就是计算机之氏猜此间的通信语言,只有支持相同的协议,计算机之间才能相互通信。

计算机通信也会在每一个分组中附加上源主机地址和目标主机地址送给通信线路。这些发送端地址、接收端地址以及分组序号写入的部分称为 “报文首部”

TCP/IP协议并非ISO(国际标准化组织)所制定的某种国际标准,而是由IETF(Internet Engineering Task Force国际互联网工程任务组)所建议的、致力于推进器标准化作业的一种协议。

OSI参考模型
应用层 :针对特定应用的协议。以电子邮件为例,用户A在主机A上新建一封电子邮件,指定收件人为B,并输入邮件内容为“早上好”。应用层协议会在所要传递数据的前端附加一个首部(标签)信息,该首部标明了邮件内容为“早上好”和收件人为B。

表示层 :设备固有数据格式和网络标准数据格式的转换。用户A和用户B使用的邮件客户端一致,便能够顺利收取和阅读邮件,不一致时表示层就发挥作用了:将数据从“某个计算机特定的数据格式”转换为“网络通用的标准数据格式”后再发送出去,接收端也进行相应处理。表示层与表示层之间为了识别编码格式也会附加首部信息,从而将实际传输的数据转交给下一层处理。

会话层 :通信管理。负责建立和断开通信连接(数据流动的逻辑通路)。管理传输层以下的分层。假定用户A新建了5封电子邮件准备发送给用户B,是建立一次连歼迅接一起发送,还是分别建立5次连接各自发送,都是会话层决定的,会话层和表示层一样,也会在数据前段附加首部或标签信息再转发给下一层。而这些首部或标签中兆和记录着数据传送顺序的信息。

传输层 :管理两个节点之间的数据传输。负责可靠传输(确保数据被可靠传送到目标地址)。用主机A将“早上好”这一数据发送给主机B,期间可能因为某些原因导致数据损坏,主机B只收到“早上”,此时也会将这一事实告诉主机A,主机A得知情况会将后面的“好”重发给主机B。保证数据传输的可靠性是传输层的一个重要作用。为了确保可靠性,这一层所要传输的数据附加首部以识别这一分层的数据。然而,实际上将数据传输给对端的处理是由网络层来完成的。

网络层 :地址管理与路由选择。两端主机之间虽然有众多数据链路,但能够将数据从主机A送到主机B也都是网络层的功劳。相当于TCP/IP协议中的IP协议,网络层不能保证数据的可达性,所以需要传输层TCP协议确保可达性,所以TCP/IP协议实现了可靠传输。

数据链路层 :互连设备之间传送和识别数据帧。网络层负责将整个数据发送给最终目标地址,而数据链路层则只负责发送一个分段内的数据。

物理层 :以“0”、“1”代表电压的高低、灯光的闪灭。界定连接器和网线的规格。将数据的0、1转换为电压和脉冲光传输给物理的传输介质。

计算机之间的网络连接通过 电缆 相互连接。任何一台计算机连接网络时,必须要使用 网卡 (网络适配器、NIC、LAN卡), 中继器 的作用是将电缆传过来的信号调整和放大再传给另一个电缆,可以完成不同媒介之间的连接工作。 网桥 是数据链路层面上连接两个网络的设备,提供的是传递数据帧的作用,并且还具备自学机制。 路由器 是在网络层面上(OSI七层模型网络层)连接两个网络、并对分组报文进行转发的设备。 网桥 是根据物理地址(MAC地址)进行处理,而路由器/3层交换机则是根据IP地址进行处理的。由此,TCP/IP中网络层的地址就成为了IP地址。对于并发访问量非常大的一个企业级Web站点,使用一台服务器不足以满足前端的访问需求,这时通常会架设多台服务器来分担。这些服务器的访问的入口地址通常只有一个,为了能通过同一个URL将前端访问分发到后台多个服务器上,可以将这些服务器的前端加一个负载均衡器。这种负载均衡器就是4-7层交换机的一种。 网关 是OSI参考模型中负责将从传输层到应用层的数据进行转换和转发的设备。在两个不能进行直接通信的协议之间进行翻译,最终实现两者的通信。非常典型的例子就是互联网邮件和手机邮件之间的转换服务。防火墙也是一款通过网关通信,针对不用应用提高安全性的产品。

美国军方利用分组交换技术组件的ARPANET网络是互联网的鼻祖。而BSD UNIX操作系统实现了TCP/IP协议,随着UNIX系统的普及,TCP/IP协议开始盛行。TCP/IP可以单纯的指这两种协议,然而在很多情况下,它指的是包含HTTP、SMTP、FTP、TCP、UDP、IP、ARP等很多协议的 网际协议族

发送数据包的过程,和上节OSI参考模型中介绍的差不多。数据链路层是由网络接口(以太网驱动)来处理的,它会改数据附加上 以太网首部 以太网首部 中包含接收端的MAC地址、发送端MAC地址以及标志以太网类型的以太网数据的协议。

在以太网普及之初,一般多台终端使用同一根同轴电缆的 共享介质型 连接方式,访问控制一般以半双工通信为前提采用CSMA/CD方式。随着ATM交换技术的进步和CAT5 UTP电缆的普及很快发生了变化,逐渐采用像 非共享介质网络 那样直接与交换机连接的方式。

网络层与数据链路层的关系
某人要去一个很远的地方旅行,并计划先后乘坐飞机、火车、公交车到达目的地。旅行社不仅帮他预订好了飞机票和火车票,甚至还为他指定了一个详细的行程表,详细到几点几分需要乘坐飞机或火车都一目了然。机票和火车票只能够在某一限定区间内移动,此处的“区间内”就如同通信网络上的数据链路。这个区间内的出发地点和目的地点就如同某一个数据链路的源地址和目标地址等首部信息。整个行程表的作用就相当于网络层。

DNS :将域名和IP地址相匹配。
ARP :以目标IP地址为线索,用来定位下一个应该接受数据分包的网络设备对应的MAC地址。ARP只适用于IPv4,IPv6可以用ICMPv6替代ARP发送邻居探索消息。
ICMP :在IP通信中如果某个IP包因为某种原因未能送达目标地址,那么这个具体的原因将由ICMP负责通知。
DHCP :使用移动设备时,每移动到一个新地方,都要重新设置IP地址,为了实现自动设置IP地址、统一管理IP地址分配,就产生了DHCP协议。
NAT :是用于在本地网络中使用私有地址,在连接互联网时转而使用全局IP地址的技术。
IP隧道 :IPv4和IPv6之间进行通信的技术就是IP隧道。

TCP用于低速可靠传输
UDP用于高速不可靠传输
端口号就是用来识别同一台计算机中进行通信的不同应用程序,也被称为程序地址。
TCP传输利用 窗口控制 提高速度,无需等到每次应答来进行下一次发送,而是有个窗口进行缓冲,来提高吞吐量。
TCP拥塞控制,利用拥塞窗口来调节发送的数据量,拥塞时减小窗口,流畅是增大窗口来控制吞吐量。

我们日常网络访问的 http 用的是 tcp ,那还是看一下这个过程吧
tcp 可以提供全双工的数据流传输服务,全双工说白了,就是同一时间 A 可以发信息给 B , B 也可以发消息给 A ,俩人同时都可以给对方发消息;半双工就是某个时间段 A 可以发给 B ,但 B 不能给 A ,换个时间段,就反过来了。

这个过程理解起来,就像两人在喊话:
A:喂,有人吗,我想建立连接
B:有哇,你建立吧,等你吆
A:好哒,我来啦
然后俩人就建立连接了...

一定要三次握手么,两次行不行?
这么一个场景:
A->B: 洞幺洞幺,我是洞拐,收到请回复。
B->A: 洞拐洞拐,洞幺收到。

请问根据以上对话判断:
1、B是否能收到A的信息? (答案是肯定的)
2、A是否能收到B的信息? (你猜?)

tcp的核心思想是保证数据可靠传输,如果 2 次,显然不行,但 3 次就一定行么?未必,可能第三次的时候网络中断了,然后 A 就认为 B 收到了,然后一通发消息,其实 B 没收到,但这是无法完全保证的。无论握手多少次都不能满足传输的绝对可靠,为了效率跟相对可靠而看, 3 次刚刚好,所以就 3 次了(正好 AB 相互确认了一次)。

举个栗子:把客户端比作男孩,服务器比作女孩。通过他们的分手来说明“四次挥手”过程:

"第一次挥手" :日久见人心,男孩发现女孩变成了自己讨厌的样子,忍无可忍,于是决定分手,随即写了一封信告诉女孩。
“第二次挥手” :女孩收到信之后,知道了男孩要和自己分手,怒火中烧,心中暗骂:你算什么东西,当初你可不是这个样子的!于是立马给男孩写了一封回信:分手就分手,给我点时间,我要把你的东西整理好,全部还给你!男孩收到女孩的第一封信之后,明白了女孩知道自己要和她分手。随后等待女孩把自己的东西收拾好。
“第三次挥手” :过了几天,女孩把男孩送的东西都整理好了,于是再次写信给男孩:你的东西我整理好了,快把它们拿走,从此你我恩断义绝!
“第四次挥手” :男孩收到女孩第二封信之后,知道了女孩收拾好东西了,可以正式分手了,于是再次写信告诉女孩:我知道了,这就去拿回来!

为什么连接的时候是三次握手,关闭的时候却是四次握手?
答:因为当 Server端 收到 Client端 的 SYN 连接请求报文后,可以直接发送 SYN+ACK报文 。其中 ACK报文 是用来应答的, SYN报文 是用来同步的。但是关闭连接时,当 Server端 收到 FIN报文 时,很可能并不会立即 关闭SOCKET ,所以只能先回复一个 ACK报文 ,告诉 Client端 ,"你发的 FIN报文 我收到了"。只有等到我 Server端 所有的报文都发送完了,我才能发送 FIN报文 ,因此不能一起发送。故需要四步握手。

静态路由 是指事先设置好路由器和主机中并将路由信息固定的一种方法。缺点是某个路由器发生故障,基本上无法自动绕过发生故障的节点,只有在管理员手工设置以后才能恢复正常。
动态路由 是管理员先设置好路由协议,其设定过程的复杂程度与具体要设置路由协议的类型有直接关系。在路由器个数较多的网络,采用动态路由显然能够减轻管理员负担。网络发生故障,只要有一个可绕的其他路径,数据包会自动选择这个路径,但路由器需要定期相互交换必要的路由控制信息,会增加一定程度的负荷。

根据路由控制范围分为 IGP (内部网关协议)和 EGP (外部网关协议)

路由算法分为 距离向量算法 链路状态算法
距离向量算法 :通过距离与方向确定通往目标网络的路径
链路状态算法 :链路状态中路由器知道网络的连接状态,并根据链路信息确定通往目标网络的路径。

IGP包含RIP、RIP2、OSPF
EGP包含EGP、BGP

RIP是距离向量型的一种路由协议,广泛应用于LAN
RIP2是RIP的第二版。新增以下特点:使用多播、支持子网掩码、路由选择域、外部路由标志、身份验证密钥
OSPF是一种链路状态型路由协议。

在RIP和OSPF中利用IP的网络地址部分进行着路由控制,然而BGP则需要放眼整个互联网进行路由控制。BGP的最终路由控制表有网络地址和下一站的路由器组来表示,不过它会根据所要经过的AS个数进行路由控制。有了AS编号的域,就相当于有了自己一个独立的“国家”。AS的代表可以决定AS内部的网络运营和相关政策。与其他AS相连的时候,可以像一位“外交官”一样签署合约再进行连接。正是有了这些不同地区的AS通过签约的相互连接,才有了今天全球范围内的互联网。

转发IP数据包的过程中除了使用路由技术外,还在使用标记交换技术。最有代表性的就是多协议标记交换技术(MPLS)。
MPLS的标记不像MAC地址直接对应到硬件设备。因此,MPLS不需要具备以外网或ATM等数据链路层协议的作用,而只需要关注它与下面一层IP层之间的功能和协议即可。
MPLS优点:
1.转发速度快
2.利用标记生成虚拟路径,并在它的上面实现IP等数据包的通信。

F. 计算机局域网采用什么技术共享传输介质

双绞线电缆 双绞线电缆(简称为双绞线)是综合布线系统中最常用的一种传输介质,尤其在星型网络拓朴中,双绞线是必不可少的布线材料。双绞线电缆中封装着一对或一对以上的双绞线,为了降低信号的干扰程度,每一对双绞线一般由两根绝缘铜导线相互缠绕而成。双绞线可分为非屏蔽双绞线(UTP)和屏蔽双绞线(STP)两大类。其中,STP又分为3类和5类两种,而UTP分为3类、4类、5类、超5类四种,同时,6类和7类双绞线也禅亮会在不远的将来运用于贺轿宽计算机网络的布线系帆羡统。

G. 共享局域网和交换局域网

发一个 ppt给你 我特意把它传到我的网站目录下了.请尽快下载.几天后将删除.
http://www.togl.cn/共享局域网和交换局域网.ppt

第3章 局域网
3.4 共享介质局域网和交换局域网
3.4.1共享介质局域网的工作原理
及存在的问题
3.4.2 交换局域网的特点
3.4.3 交换局域网的工作原理
3.4.4 局域网交换机技术
3.4.1 共享介质局域网的工作原理及存在的问题
传统的局域网技术是建立在"共享介质"的基础上,网中所有结点共享一条公共通信传输介质,典型的介质访问控制方式是CSMA/CD,Token Ring,Token Bus.介质访问控制方式用来保证每个结点都能够"公平"的使用公共传输介质.IEEE 802.2标准定义的共享介质局域网有以下三种:
采用CSMA/CD介质访问控制方式的总线型局域网.
采用Token Bus介质访问控制方式的总线型局域网.
采用Token Ring介质访问控制方式的环型局域网.
3.4.1 共享介质局域网的工作原理及存在的问题
目前应用最广的一类局域网是第一种,即以太网(Ethernet).10Base-T以太网的中心连接设备是集线器(Hub),它是对"共享介质" 总线型局域网结构的一种改进.用集线器作为以太网的中心连接设备时,所有结点通过非屏蔽双绞线与集线器连接.这样的以太网在物理结构上是星型结构,但它在逻辑上仍然是总线型结构,并且在MAC层仍然采用CSMA/CD介质访问控制方式.当集线器接收到某个结点发送的帧时,它立即将数据帧通过广播方式转发到其它端口.

3.4.1 共享介质局域网的工作原理及存在的问题
在10Base-T的以太网中,如果网中有N个结点,那么每个结点平均能分到的带宽为10Mbps/N.显然,当局域网的规模不断的扩大,结点数N不断增加时,每个结点平均能分到的带宽将越来越少.因为Ethernet的N个结点共享一条10Mbps的公共通信信道,所以当网络结点数N增大,网络通信负荷加重时,冲突和重发现象将大量发生,网络效率急剧下降,网络传输延迟增长,网络服务质量下降.为了克服网络规模和网络性能之间的矛盾,人们提出了将"共享介质方式"改为"交换方式"的方案,这就推动了"交换局域网"技术的发展.交换局域网的核心设备是局域网交换机,它可以在它的多个端口之间建立多个并发连接.图3.6简单说明了交换局域网的工作原理,图中交换机为站点A 和站点E,站点B 和F,站点C和站点D分别建立了并行,独立的三条链路,使之能同时实现A和E,B和F,C和D之间的通信.
3.4.1 共享介质局域网的工作原理及存在的问题
图3.6 交换局域网的工作原理
3.4.2 交换局域网的特点
我们以交换以太网(Switch Ethernet)为例说明交换局域网的共同特点.交换以太网是指以数据链路层的帧为数据交换单位,以以太网交换机为基础构成的网络.它根本上解决了共享以太网所带来的问题.其特点如下:
允许多对站点同时通信,每个站点可以独占传输通道和带宽.
灵活的接口速率
具有高度的网络可扩充性和延展性
易于管理,便于调整网络负载的分布,有效地利用网络带宽
交换以太网与以太网,快速以太网完全兼容,它们能够实现无缝连接
可互连不同标准的局域网.
3.4.3 交换局域网的工作原理
1. 交换局域网的基本结构
交换局域网的核心设备是局域网交换机,它可以在它的多个端口之间建立多个并发连接.为了保护用户已有的投资,局域网交换机一般是针对某类局域网(例如802.3标准的Ethernet或802..5标准的Token Ring)设计的.
典型的交换局域网是交换以太网(Switched Ethernet),它的核心部件是以太网交换机.以太网交换机可以有多个端口,每个端口可以单独与一个结点连接,也可以与一个共享介质式的以太网集线器(Hub)连接.

3.4.3 交换局域网的工作原理
如果一个端口只连接一个结点,那么这个结点就可以独占整个带宽,这类端口通常被称作"专用端口";如果一个端口连接一个与端口带宽相同的以太网,那么这个端口将被以太网中的所有结点所共享,这类端口被称为"共享端口".典型的交换以太网的结构如图3.7所示.
3.4.3 交换局域网的工作原理
图3.7 交换以太网的结构示意图
3.4.3 交换局域网的工作原理
2. 局域网交换机的工作原理
典型的局域网交换机结构与工作过程如图3.8所示.图中的交换机有6个端口,其中端口1,4,5,6分别连接了结点A,结点B,结点C与结点D.那么交换机的"端口号/MAC地址映射表"就可以根据以上端口号与结点MAC地址的对应关系建立起来.如果结点A与结点D同时要发送数据,那么它们可以分别在Ethernet帧的目的地址字段(DA)中添上该帧的目的地址.
3.4.3 交换局域网的工作原理
图3.8 交换机的结构与工作过程
3.4.3 交换局域网的工作原理
例如,结点A要向结点C发送帧,那么该帧的目的地址DA=结点C;结点D要向结点B发送帧,那么该帧的目的地址DA=结点B.当结点A,结点D同时通过交换机传送Ethernet帧时,交换机的交换控制中心根据"端口号/MAC地址映射表"的对应关系找出帧的目的地址的输出端口号,那么它就可以为结点A到结点C建立端口1到端口5的连接,同时为结点D到结点B建立端口6到端口4的连接.这种端口之间的连接可以根据需要同时建立多条,也就是说可以在多个端口之间建立多个并发连接.
3.4.3 交换局域网的工作原理
以太网交换机的帧转发方式可以分为以下三类:
直接交换方式
存储转发方式
改进直接交换方式
3.4.4 局域网交换机技术
1. 交换机与集线器的区别
交换机的作用是对封装的数据包进行转发,并减少冲突域,隔离广播风暴.从组网的形式看,交换机与集线器非常类似,但实际工作原理有很大的不同.
从OSI体系结构看,集线器工作在 OSI/RM的第一层,是一种物理层的连接设备,因而它只对数据的传输进行同步,放大和整形处理,不能对数据传输的短帧,碎片等进行有效的处理,不进行差错处理,不能保证数据的完整性和正确性.交换机工作在OSI的第二层,属于数据链路层的连接设备,不但可以对数据的传输进行同步,放大和整形处理,还提供数据的完整性和正确性的保证.

3.4.4 局域网交换机技术
从工作方式和带宽来看,集线器是一种广播模式,一个端口发送信息,所有的端口都可以接收到,容易发生广播风暴;同时集线器共享带宽,当两个端口间通信时,其它端口只能等待.交换机是一种交换方式,一个端口发送信息,只有目的端口可以接收到,能够有效的隔离冲突域,抑制广播风暴;同时每个端口都有自己的独立带宽,两个端口间的通信不影响其它端口间的通信.
3.4.4 局域网交换机技术
2. 交换机的技术特点
目前,局域网交换机主要是针对以太网设计的.一般来说,局域网交换机主要有以下几个技术特点.
低交换传输延迟
高传输带宽
允许10Mbps/100Mbps共存
支持虚拟局域网服务
3.4.4 局域网交换机技术
3. 第三层交换技术
简单的说,第三层交换技术就是"第二层交换技术+第三层转发".第三层交换技术的出现,解决了局域网中网段划分之后网段中的子网必须依赖路由器进行管理的局面,解决了传统路由器低速,复杂所造成的网络瓶颈问题.
一个具有第三层交换功能的设备,是一个带有第三层路由功能的第二层交换机,但它是两者的有机结合,而不是简单地把路由器设备的硬件及软件叠加在局域网交换机上.
3.4.4 局域网交换机技术
其工作原理如下:假设两个使用IP协议的站点A,B通过第三层交换机进行通信,发送站点A在开始发送时,把自己的IP地址与B站的IP地址比较,判断B站是否与自己在同一子网内.若目的站B与发送站A在同一子网内,则进行第二层的转发.若两个站点不在同一子网内,如发送站A要与目的站B通信,发送站A要向"缺省网关"发出ARP(地址解析)封包,而"缺省网关"的IP地址其实是第三层交换机的第三层交换模块.当发送站A对"缺省网关"的IP地址广播出一个ARP请求时,如果第三层交换模块在以前的通信过程中已经知道B站的MAC地址,则向发送站A回复B的MAC地址.否则第三层交换模块根据路由信息向B站广播一个ARP请求, B站得到此ARP请求后向第三层交换模块
3.4.4 局域网交换机技术
回复其MAC地址,B站得到此ARP请求后向第三层交换模块回复其MAC地址,第三层交换模块保存此地址并回复给发送站A,同时将B站的MAC地址发送到第二层交换引擎的MAC地址表中.从这以后,当A向B发送的数据包便全部交给第二层交换处理,信息得以高速交换.由于仅仅在路由过程中才需要第三层处理,绝大部分数据都通过第二层交换转发,因此第三层交换机的速度很快,接近第二层交换机的速度,同时比相同路由器的价格低很多.可以相信,随着网络技术的不断发展,第三层交换机有望在大规模网络中取代现有路由器的位置.

H. 共享介质和介质访问控制

这个概念已经过时了。 共享介质一般指同轴电缆的局域网使用方式,大家都连在同一条同轴电缆上,同时只有一对计算机可以进行通信。对介质资源的分配就必须有一定得规则,这种规则叫介质访问控制 追问: 怎么说这概念过时了?我是在08年的书上看到的 回答: 这种技术在网络上已经淘汰了,2003年以后很少有人见过同轴电缆连接的局域网了。 也许是为了从基础的学起,也许是它的技术衍生的一些访问控制的机制

I. 局域网采用了什么技术

用以传输数据的介质,用以连接各种设备的拓扑结构,用以共享资源的介质控制方法。

局域网一般为一个部门或单位所有,建网、维护以及扩展等较容易,系统灵活性高,覆盖的地理范围较小,只在一个相对独立的局部范围内联,如一座或集中的建筑群内,使用专门铺设的传输介质进行联网,数据传输速率高10Mb/s~10Gb/s。

(9)共享介质型网络使用哪一种技术扩展阅读:

注意事项:

一般家庭无线网络都习惯使用DHCP服务来为网络中的客户端动态分配IP,因为这样配置方便简单。这其实同样存在安全隐患,在成员很固定的家庭网络中,建议为网络成员设备分配固定的IP地址,然后再在无线路由器上设定允许接入设备的IP地址列表。

通常每个无线网络都有一个服务区标识符(SSID),无线客户端需要加入该网络的时候都需要有一个相同的SSID才行。一般情况下无线设备在出厂时都会设置一个默认的值,例如TP-LINK公司的设备SSID值就是TP-LINK。设置SSID值就是注意两点:修改默认值和保持修改后的一致性即可。