當前位置:首頁 » 無線網路 » 無線感測器網路及應用課後習題
擴展閱讀
伺服器設置網路連接錯誤 2024-11-17 19:24:38
win10可用網路無法顯示wifi 2024-11-17 18:56:30

無線感測器網路及應用課後習題

發布時間: 2022-04-18 01:54:55

❶ 無線感測器網路體系結構包括哪些部分,各部分的

結構
感測器網路系統通常包括感測器節點EndDevice、匯聚節點Router和管理節點Coordinator。
大量感測器節點隨機部署在監測區域內部或附近,能夠通過自組織方式構成網路。感測器節點監測的數據沿著其他感測器節點逐跳地進行傳輸,在傳輸過程中監測數據可能被多個節點處理,經過多跳後路由到匯聚節點,最後通過互聯網或衛星到達管理節點。用戶通過管理節點對感測器網路進行配置和管理,發布監測任務以及收集監測數據。
感測器節點
處理能力、存儲能力和通信能力相對較弱,通過小容量電池供電。從網路功能上看,每個感測器節點除了進行本地信息收集和數據處理外,還要對其他節點轉發來的數據進行存儲、管理和融合,並與其他節點協作完成一些特定任務。
匯聚節點
匯聚節點的處理能力、存儲能力和通信能力相對較強,它是連接感測器網路與Internet
等外部網路的網關,實現兩種協議間的轉換,同時向感測器節點發布來自管理節點的監測任務,並把WSN收集到的數據轉發到外部網路上。匯聚節點既可以是一個具有增強功能的感測器節點,有足夠的能量供給和更多的、Flash和SRAM中的所有信息傳輸到計算機中,通過匯編軟體,可很方便地把獲取的信息轉換成匯編文件格式,從而分析出感測節點所存儲的程序代碼、路由協議及密鑰等機密信息,同時還可以修改程序代碼,並載入到感測節點中。
管理節點
管理節點用於動態地管理整個無線感測器網路。感測器網路的所有者通過管理節點訪問無線感測器網路的資源。
無線感測器測距
在無線感測器網路中,常用的測量節點間距離的方法主要有TOA(Time
of
Arrival),TDOA(Time
Difference
of
Arrival)、超聲波、RSSI(Received
Sig
nalStrength
Indicator)和TOF(Time
of
Light)等。

❷ 試述無線電感測網路在某一領域的應用,與其他信息探測系統和網路比較,無線感測網路有哪些優勢

摘要 親,無線感測器網路的逐漸普及,促進了信息家電、網路技術的快速發展,家庭網路的主要設備已由單一機向多種家電設備擴展,基於無線感測器網路的智能家居網路控制節點為家庭內、外部網路的連接及內部網路之間信息家電和設備的連接提供了一個基礎平台。

❸ 無線感測器網路的理論及應用的目錄

第1篇總論
第1章無線感測器網路概述
1.1無線感測器網路介紹1
1.1.1無線感測器網路的概念1
1.1.2無線感測器網路的特徵2
1.1.3無線感測器網路的應用4
1.2無線感測器網路的體系結構7
1.2.1無線感測器網路的系統架構7
1.2.2感測器節點的結構7
1.2.3無線感測器網路的體系結構概述8
1.3無線感測器網路的研究進展10
1.3.1無線感測器網路的發展歷程10
1.3.2無線感測器網路的關鍵技術14
1.3.3無線感測器網路所面臨的挑戰14
參考文獻16
第2篇無線感測器網路的通信協議
第2章無線感測器網路的物理層
2.1無線感測器網路物理層概述19
2.1.1無線感測器網路物理層的研究內容19
2.1.2無線感測器網路物理層的研究現狀20
2.1.3無線感測器網路物理層的主要技術挑戰22
2.2無線感測器網路的調制與編碼方法22
2.2.1Mary調制機制22
2.2.2差分脈沖位置調制機制23
2.2.3自適應編碼位置調制機制24
2.3超寬頻技術在無線感測器網路中的應用25
2.3.1超寬頻技術概述25
2.3.2超寬頻技術的基本原理26
2.3.3超寬頻技術的研究現狀29
2.3.4基於超寬頻技術的無線感測器網路31
參考文獻35
第3章無線感測器網路的數據鏈路層
3.1無線感測器網路數據鏈路層概述37
3.1.1無線感測器網路數據鏈路層的研究內容37
3.1.2無線感測器網路數據鏈路層的研究現狀38
3.1.3無線感測器網路數據鏈路層的主要技術挑戰39
3.2無線感測器網路的MAC協議40
3.2.1基於競爭機制的MAC協議40
3.2.2基於時分復用的MAC協議47
3.2.3其他類型的MAC協議54
參考文獻58
第4章IEEE802.15.4標准
4.1IEEE802.15.4標准概述60
4.2IEEE802.15.4的物理層60
4.2.1物理層概述60
4.2.2物理層服務規范61
4.2.3物理層幀結構65
4.3IEEE802.15.4的MAC子層65
4.3.1MAC層概述65
4.3.2MAC層的服務規范66
4.3.3MAC幀結構69
4.3.4MAC層的功能描述70
4.4基於IEEE802.15.4標準的無線感測器網路70
4.4.1組網類型70
4.4.2數據傳輸機制71
參考文獻72
第5章無線感測器網路的網路層
5.1無線感測器網路網路層概述73
5.1.1網路層的研究內容73
5.1.2網路層的研究現狀74
5.1.3網路層的主要技術挑戰75
5.2無線感測器網路的路由協議75
5.2.1以數據為中心的平面路由75
5.2.2網路分層路由77
5.2.3基於查詢的路由79
5.2.4地理位置路由81
5.2.5能量感知路由84
5.2.6基於QoS的路由87
5.2.7路由協議的優化88
5.3無線感測器網路中的數據包轉發策略90
5.3.1包轉發策略的研究背景90
5.3.2基於價格機制的包轉發博弈模型91
5.3.3自發合作的包轉發博弈模型93
參考文獻94
第6章無線感測器網路的傳輸層
6.1無線感測器網路傳輸層概述97
6.1.1無線感測器網路傳輸層的研究內容97
6.1.2無線感測器網路傳輸層的研究現狀98
6.1.3無線感測器網路傳輸層的主要技術挑戰99
6.2無線感測器網路的傳輸協議99
6.2.1PSFQ傳輸協議99
6.2.2ESRT傳輸協議101
6.3無線感測器網路與其他網路的互聯103
6.3.1無線感測器網路與Internet互聯103
6.3.2無線感測器網路接入到網格105
參考文獻109
第7章ZigBee協議規范
7.1ZigBee概述111
7.1.1ZigBee與IEEE802.15.4111
7.1.2ZigBee協議框架112
7.1.3ZigBee的技術特點113
7.2網路層規范113
7.2.1網路層概述113
7.2.2服務規范114
7.2.3幀結構與命令幀115
7.2.4功能描述116
7.3應用層規范117
7.3.1應用層概述117
7.3.2ZigBee應用支持子層117
7.3.3ZigBee應用層框架結構118
7.3.4ZigBee設備協定(profile)119
7.3.5ZigBee目標設備(ZDO)119
7.4ZigBee系統的開發119
7.4.1開發條件和注意事項119
7.4.2軟體開發120
7.4.3硬體開發121
7.5基於ZigBee規范的無線感測器網路122
7.5.1無線感測器的構建122
7.5.2無線感測器網路的構建123
7.5.3基於ZigBee的無線感測器網路與RFID技術的融合124
參考文獻124
第3篇無線感測器網路的核心支撐技術
第8章無線感測器網路的拓撲控制
8.1無線感測器網路的拓撲控制技術概述125
8.1.1無線感測器網路拓撲控制的研究內容125
8.1.2無線感測器網路拓撲控制的研究現狀126
8.1.3無線感測器網路拓撲控制的主要技術挑戰126
8.2無線感測器網路的拓撲控制演算法127
8.2.1功率控制演算法127
8.2.2層次拓撲結構控制演算法129
8.3無線感測器網路的密度控制135
8.3.1連通支配集構造演算法135
8.3.2基於概率覆蓋模型的無線感測器網路密度控制演算法138
參考文獻140
第9章無線感測器網路的節點定位
9.1無線感測器網路的節點定位技術概述142
9.1.1無線感測器網路節點定位的研究內容142
9.1.2無線感測器網路節點定位的研究現狀143
9.1.3無線感測器網路節點定位的主要技術挑戰146
9.2無線感測器網路的定位機制147
9.2.1基於測距的定位演算法147
9.2.2非基於測距的定位演算法151
9.3一種基於測距的協作定位策略159
9.3.1剛性圖理論簡介159
9.3.2基於剛性圖的協作定位理論160
9.3.3LCB定位演算法161
9.4節點位置估計更新策略162
9.4.1動態網路問題162
9.4.2更新策略163
參考文獻164
第10章無線感測器網路的時間同步
10.1無線感測器網路的時間同步概述167
10.1.1無線感測器網路時間同步的研究內容167
10.1.2無線感測器網路時間同步的研究現狀168
10.1.3無線感測器網路時間同步的主要技術挑戰169
10.2無線感測器網路的時間同步機制170
參考文獻180
第11章無線感測器網路的網內信息處理
11.1無線感測器網路的網內信息處理概述182
11.1.1無線感測器網路網內信息處理的研究內容182
11.1.2無線感測器網路網內信息處理的研究現狀183
11.1.3無線感測器網路網內信息處理的主要技術挑戰184
11.2無線感測器網路的數據融合技術184
11.2.1與路由相結合的數據融合184
11.2.2基於反向組播樹的數據融合186
11.2.3基於性能的數據融合187
11.2.4基於移動代理的數據融合189
11.3無線感測器網路的數據壓縮技術191
11.3.1基於排序編碼的數據壓縮演算法191
11.3.2分布式數據壓縮演算法192
11.3.3基於數據相關性的壓縮演算法194
11.3.4管道數據壓縮演算法194
11.4無線感測器網路的協作信號信息處理技術195
11.4.1網元層的CSIP技術195
11.4.2網路層的CSIP技術196
11.4.3應用層的CSIP技術196
11.4.4CSIP技術展望197
參考文獻198
第12章無線感測器網路的安全技術
12.1無線感測器網路的安全問題概述201
12.1.1無線感測器網路安全技術的研究內容201
12.1.2無線感測器網路安全技術的研究現狀202
12.1.3無線感測器網路安全技術的主要技術挑戰205
12.2無線感測器網路的安全問題分析205
12.2.1無線感測器網路物理層的安全策略206
12.2.2無線感測器網路鏈路層的安全策略207
12.2.3無線感測器網路網路層的安全策略207
12.2.4無線感測器網路傳輸層和應用層的安全策略209
12.3無線感測器網路的密鑰管理和入侵檢測技術209
12.3.1無線感測器網路的密鑰管理209
12.3.2無線感測器網路的入侵檢測技術211
參考文獻214
第4篇無線感測器網路的自組織管理技術
第13章無線感測器網路的節點管理
13.1無線感測器網路的節點管理概述216
13.1.1無線感測器網路節點管理的研究內容216
13.1.2無線感測器網路節點管理的研究現狀217
13.1.3無線感測器網路節點管理的主要技術挑戰218
13.2無線感測器網路的節點休眠/喚醒機制218
13.2.1PEAS演算法218
13.2.2基於網格的調度演算法219
13.2.3基於局部圓周覆蓋的節點休眠機制220
13.2.4基於隨機休眠調度的節能機制221
13.3無線感測器網路的節點功率管理222
13.3.1動態功率管理和動態電壓調節222
13.3.2基於節點度的演算法224
13.3.3基於鄰近圖的演算法224
13.3.4基於二分法的功率控制224
13.3.5網路負載自適應功率管理演算法226
參考文獻227
第14章無線感測器網路的資源與任務管理
14.1無線感測器網路的資源與任務管理概述229
14.1.1無線感測器網路資源與任務管理的研究內容229
14.1.2無線感測器網路資源與任務管理的研究現狀230
14.1.3無線感測器網路資源與任務管理的主要技術挑戰230
14.2無線感測器網路的資源管理技術231
14.2.1自組織資源分配方式231
14.2.2計算資源分配232
14.2.3帶寬資源分配235
14.3無線感測器網路的任務管理技術237
14.3.1任務分配237
14.3.2任務調度239
14.3.3負載均衡243
參考文獻245
第15章無線感測器網路的數據管理
15.1無線感測器網路的數據管理概述248
15.1.1無線感測器網路數據管理的研究內容248
15.1.2無線感測器網路數據管理的研究現狀249
15.1.3無線感測器網路數據管理的主要技術挑戰249
15.2無線感測器網路的數據管理系統250
15.2.1TinyDB系統250
15.2.2Cougar系統251
15.2.3Dimensions系統252
15.3無線感測器網路數據管理的基本方法253
15.3.1數據模式253
15.3.2數據存儲254
15.3.3數據索引255
15.3.4數據查詢257
參考文獻260
第16章無線感測器網路的部署、初始化和維護管理
16.1無線感測器網路的部署、初始化和維護管理概述261
16.1.1無線感測器網路部署、初始化和維護管理的研究內容261
16.1.2無線感測器網路部署、初始化和維護管理的研究現狀262
16.1.3無線感測器網路部署、初始化和維護管理的主要技術挑戰263
16.2無線感測器網路的部署技術264
16.2.1採用確定放置的部署技術264
16.2.2採用隨機拋撒且節點不具移動能力的部署技術265
16.2.3採用隨機拋撒且節點具有移動能力的部署技術265
16.3無線感測器網路的初始化技術266
16.3.1UDG模型266
16.3.2基於MIS的初始化演算法266
16.3.3基於MDS的初始化演算法268
16.4無線感測器網路的維護管理技術270
16.4.1覆蓋與連接維護技術270
16.4.2性能監測技術271
參考文獻272
第5篇無線感測器網路的開發與應用
第17章無線感測器網路的模擬技術
17.1無線感測器網路的模擬技術概述275
17.1.1網路模擬概述275
17.1.2無線感測器網路模擬研究概述275
17.2常用網路模擬軟體276
17.2.1OPNET簡介276
17.2.2NS279
17.2.3TOSSIM280
17.3OMNeT++模擬軟體281
17.3.1OMNeT++概述281
17.3.2NED語言282
17.3.3簡單模塊/復合模塊287
17.3.4消息290
17.3.5類庫291
17.4模擬示例296
參考文獻303
第18章無線感測器網路的硬體開發
18.1無線感測器網路的硬體開發概述304
18.1.1硬體系統的設計特點與要求304
18.1.2硬體系統的設計內容304
18.1.3硬體系統設計的主要挑戰305
18.2感測器節點的開發305
18.2.1數據處理模塊設計305
18.2.2換能器模塊設計307
18.2.3無線通信模塊設計307
18.2.4電源模塊設計309
18.2.5外圍模塊設計309
18.3感測器節點原型的開發實例Mica310
18.3.1Mica系列節點簡介310
18.3.2Mica系列處理器/射頻板設計分析313
18.3.3Mica系列感測板設計分析315
18.3.4編程調試介面板介紹317
參考文獻318
第19章無線感測器網路的操作系統
19.1無線感測器網路操作系統概述320
19.1.1無線感測器網路操作系統的設計要求320
19.1.2幾種典型的無線感測器網路操作系統介紹321
19.1.3無線感測器網路操作系統設計的主要技術挑戰321
19.2TinyOS操作系統322
19.2.1TinyOS的設計思路322
19.2.2TinyOS的組件模型322
19.2.3TinyOS的通信模型324
19.3基於TinyOS的應用程序運行過程解析324
19.3.1Blink程序的配件分析325
19.3.2BlinkM模塊分析327
19.3.3ncc編譯nesC程序的過程329
19.3.4Blink程序的運行跟蹤解析329
19.3.5TinyOS的任務調度機制的實現338
19.3.6TinyOS的事件驅動機制的實現342
19.4TinyOS的使用346
19.4.1TinyOS的安裝346
19.4.2創建應用程序348
19.4.3使用TOSSIM模擬調試應用程序348
19.4.4使用TinyViz進行可視化調試349
19.4.5將應用程序導入節點運行350
參考文獻351
第20章無線感測器網路的軟體開發
20.1無線感測器網路軟體開發概述353
20.1.1無線感測器網路軟體開發的特點與設計要求353
20.1.2無線感測器網路軟體開發的內容354
20.1.3無線感測器網路軟體開發的主要技術挑戰355
20.2nesC編程語言355
20.2.1nesC語言介紹355
20.2.2nesC的語法規范356
20.2.3nesC應用程序開發364
20.3無線感測器網路的應用軟體開發367
20.3.1無線感測器網路的編程模式367
20.3.2無線感測器網路的中間件設計370
20.3.3無線感測器網路的服務發現372
參考文獻373
第21章無線感測器網路應用於環境監測
21.1環境監測應用概述375
21.1.1環境監測應用的場景描述375
21.1.2環境監測應用中無線感測器網路的體系架構375
21.2關鍵技術377
21.2.1節點部署377
21.2.2能量管理377
21.2.3通信機制378
21.2.4任務的分配與控制379
21.2.5數據采樣與收集379
21.3無線感測器網路用於環境監測的實例380
21.3.1公路交通監測380
21.3.2建築物健康狀況監測384
21.3.3「狼群計劃」385
參考文獻387
第22章無線感測器網路應用於目標追蹤
22.1目標追蹤應用概述388
22.1.1目標追蹤應用的場景描述388
22.1.2目標追蹤應用的特點與技術挑戰388
22.1.3目標追蹤應用中的無線感測器網路系統架構389
22.2無線感測器網路用於目標追蹤的關鍵技術390
22.2.1追蹤步驟390
22.2.2追蹤演算法392
22.2.3面向目標追蹤的網路布局優化400
22.3基於無線感測器網路的車輛追蹤系統實例402
22.3.1系統架構402
22.3.2關鍵問題403
22.3.3關鍵技術404
參考文獻407
附錄英漢縮略語對照表410

❹ 無線感測器定義及其應用實例解析

無線感測器,看到這個代名詞,我想大多數人是一頭霧水,一臉表現出很茫然的樣子。這也並不奇怪,無線感測器,目前還只運用於一些大型檢測工作中,自然而然,能夠接觸到它的也就只是一些專業的工作人員了。比如它可以監測地震,然後將監測到的信息通過無線網路傳輸到檢測中心的無線網卡,直接送入到計算機里邊兒。既然我們對它有這么多的疑惑,那接下來我就將向大家介紹介紹什麼是無線感測器定義以及它的一些應用實例。

無線感測器的組成模塊封裝在一個外殼內,在工作時它將由電池或振動發電機提供電源,構成無線感測器網路節點,由隨機分布的集成有感測器、數據處理單元和通信模塊的微型節點,通過自組織的方式構成網路。它可以採集設備的數字信號通過無線感測器網路傳輸到監控中心的無線網關,直接送入計算機,進行分析處理。如果需要,無線感測器也可以實時傳輸採集的整個時間歷程信號。監控中心也可以通過網關把控制、參數設置等信息無線傳輸給節點。數據調理採集處理模塊把感測器輸出的微弱信號經過放大,濾波等調理電路後,送到模數轉換器,轉變為數字信號,送到主處理器進行數字信號處理,計算出感測器的有效值,位移值等。


橋梁健康檢測及監測

橋梁結構健康監測(SHM)是一種基於感測器的主動防禦型方法,可以彌補目前安全性能十分重要的結構中,把感測器網路安置到橋梁、建築和飛機中,利用感測器進行SHM是一種可靠且不昂貴的做法,可以在第一時間檢測到缺陷的形成。這種網路可以提早向維修人員報告在關鍵結構中出現的缺陷,從而避免災難性事故。

糧倉溫濕度監測

無線感測器網路技術在糧庫糧倉溫度濕度監測領域應用最為普遍,這是由於糧庫糧倉溫度濕度的測點多,分布廣,使用縱橫交錯的信號線會降低防火安全系數,應用無線感測器網路技術具有低功耗,低成本,布線簡單,安裝方便,易於組網,便於管理維護等特點。


混凝土澆灌溫度監測

在混凝土施工過程中,將數字溫度感測器裝入導熱良好的金屬套管內,可保證感測器對混凝土溫度變化作出迅速的反應。每個溫度監測金屬管接入一個無線溫度節點,整個現場的無線溫度節點通過無線網路傳輸到施工監控中心,不需要在施工現場布放長電纜,安裝布放方便,能夠有效解決溫度測量點因為施工人員損壞電纜造成的成活率較低的問題.


地震監測

通過使用由大量互連的微型感測器節點組成的感測器網路,可以對不同環境進行不間斷的高精度數據搜集。採用低功耗的無線通信模塊和無線通信協議可以使感測器網路的生命期延續很長時間。保證了感測器網路的實用性。

無線感測器網路相對於傳統的網路,其最明顯的特色可以用六個字來概括即:「自組織,自癒合」。這些特點使得無線感測器網路能夠適應復雜多變的環境,去監測人力難以到達的惡劣環境地區。BEETECH無線感測器網路節點體積小巧,不需現場拉線供電,非常方便在應急情況下進行靈活部署監測並預測地質災害的發生情況。


建築物振動檢測

建築物懸臂部分不會因為旁邊公路及地鐵交通所引發的振動而超過舒適度的要求;通過現場測量,收集數據以驗證由公路及地鐵交通所引發的振動與主樓懸臂振動之相互關系;同時,通過模態分析得到主樓結構在小振幅脈動振動工況下前幾階振動模態的阻尼比,為將來進行結構的小振幅動力分析提供關鍵數據。


以上這些看起來很「翻番復雜」的文字呢,就是對無線感測器定義以及它的一些應用實例的解析了,這些也都是我所能了解到的知識信息了,對於無線感測器還有很多與其相關的知識信息,但是在這里我也只能給大家提供這么多了。雖然在我們的日常生活中並不會親身接觸到無線感測器,但是它卻一直在我們的身邊,給予我們幫助,為我們「保駕護航」。

❺ 無線感測器網路

無線感測器網路(wirelesssensornetwork,WSN)是綜合了感測器技術、嵌入式計算機技術、分布式信息處理技術和無線通信技術,能夠協作地實時監測、感知和採集網路分布區域內的各種環境或監測對象的信息,並對這些數據進行處理,獲得詳盡而准確的信息。傳送到需要這些信息的用戶。它是由部署在監測區域內大量的廉價微型感測器節點組成,通過無線通信方式形成一個多跳的自組織的網路系統。感測器、感知對象和觀察者構成了感測器網路的三要素。
無線感測器網路作為當今信息領域新的研究熱點,涉及到許多學科交叉的研究領域,要解決的關鍵技術很多,比如:網路拓撲控制、網路協議、網路安全、時間同步、定位技術、數據融合、數據管理、無線通信技術等方面,同時還要考慮感測器的電源和節能等問題。
所謂部署問題,就是在一定的區域內,通過適當的策略布置感測器節點以滿足某種特定的需求。優化節點數目和節點分布形式,高效利用有限的感測器網路資源,最大程度地降低網路能耗,均是節點部署時應注意的問題。
目前的研究主要集中在網路的覆蓋問題、連通問題和能耗問題3個方面。
基於節點部署方式的覆蓋:1)確定性覆蓋2)自組織覆蓋
基於網格的覆蓋:1)方形網格2)菱形網格
被監測目標狀態的覆蓋:1)靜態目標覆蓋2)動態目標覆蓋
連通問題可描述為在感測器節點能量有限,感知、通信和計算能力受限的情況下,採用一定的策略(通常設計有效的演算法)在目標區域中部署感測器節點,使得網路中的各個活躍節點之間能夠通過一跳或多跳方式進行通信。連通問題涉及到節點通信距離和通信范圍的概念。連通問題分為兩類:純連通與路由連通。
覆蓋中的節能對於覆蓋問題,通常採用節點集輪換機制來調度節點的活躍/休眠時間。連通中的節能針對連通問題,也可採用節點集輪換機制與調整節點通信距離的方法。而文獻中涉及最多的主要是從節約網路能量和平衡節點剩餘能量的角度進行路由協議的研究。

❻ 無線感測網路的問題

涉及的內容是挺多的,
1.硬體方面的(目前處除了軍用,或其他一些特定應用外,我們國家很多感測器晶元用的還都是國外的,沒有過硬的技術啊)。
2.無線感測器網路協議研究。根據感測器網路自身的特點,結合應用,量身打造更合適的通信協議。
3.軟體方面的。目前有系統級別的Tiny OS,編程語言nesC,針對特定應用編寫輕量級程序。
4.無線感測器數據管理層面。可以研究網路數據流挖掘之類的。

哪個最有前景?1最有發展空間,但難度大。3是基礎,最容易上手,想有突破很難。2和4,自己想吧。

以上都是個人粗淺見解,做個參考。

❼ 無線感測器網路的理論及應用的基本信息

I S B N :9787811242195作 者:王殊 閻毓傑 胡富平
出 版 社:北航大學
出版時間:2007-07-01
版 次:初版
開 本:16開
包 張:平裝