A. 什麼是「小波神經網路」能幹什麼用呀
小波神經網路(Wavelet Neural Network, WNN)是在小波分析研究獲得突破的基礎上提出的一種人工神經網路。它是基於小波分析理論以及小波變換所構造的一種分層的、多解析度的新型人工神經網路模型。
即用非線性小波基取代了通常的非線性Sigmoid 函數,其信號表述是通過將所選取的小波基進行線性疊加來表現的。它避免了BP 神經網路結構設計的盲目性和局部最優等非線性優化問題,大大簡化了訓練,具有較強的函數學習能力和推廣能力及廣闊的應用前景。
「小波神經網路」的應用:
1、在影像處理方面,可以用於影像壓縮、分類、識別與診斷,去污等。在醫學成像方面的減少B超、CT、核磁共振成像的時間,提高解析度等。
2、在信號分析中的應用也十分廣泛。它可以用於邊界的處理與濾波、時頻分析、信噪分離與提取弱信號、求分形指數、信號的識別與診斷以及多尺度邊緣偵測等。
3、在工程技術等方面的應用。包括電腦視覺、電腦圖形學、曲線設計、湍流、遠端宇宙的研究與生物醫學方面。
(1)神經網路信號分析擴展閱讀:
小波神經網路這方面的早期工作大約開始於1992 年,主要研究者是Zhang Q、Harold H S 和焦李成等。其中,焦李成在其代表作《神經網路的應用與實現》中從理論上對小波神經網路進行了較為詳細的論述。近年來,人們在小波神經網路的理論和應用方面都開展了不少研究工作。
小波神經網路具有以下特點:首先,小波基元及整個網路結構的確定有可靠的理論根據,可避免BP 神經網路等結構設計上的盲目性;其次,網路權系數線性分布和學習目標函數的凸性,使網路訓練過程從根本上避免了局部最優等非線性優化問題;第三,有較強的函數學習能力和推廣能力。
B. 神經網路模型用於解決什麼樣的問題
神經網路模型用於解決的問題有:信息領域、醫學領域、經濟領域、控制領域、交通領域、心理學領域。
1、信息領域
(1)、信息處理:人工神經網路系統具有很高的容錯性、 魯棒性及自組織性,在軍事系統電子設備中得到廣泛的應用。現有的智能信息系統有智能儀器、自動跟蹤監測儀器系統、自動控制制導系統、自動故障診斷和報警系統等。
(2)、模式識別:人工神經網路是模式識別中的常用方法,被廣泛應用到文字識別、語音識別、指紋識別、遙感圖像識別、人臉識別、手寫體字元的識別、工業故障檢測、精確制導等方面。
3、非常定性:人工神經網路具有自適應、自組織、自學習能力。神經網路不但處理的信息可以有各種變化,而且在處理信息的同時,非線性動力系統本身也在不斷變化。經常採用迭代過程描寫動力系統的演化過程。
4、非凸性:一個系統的演化方向,在一定條件下將取決於某個特定的狀態函數。例如能量函數,它的極值相應於系統比較穩定的狀態。非凸性是指這種函數有多個極值,故系統具有多個較穩定的平衡態,這將導致系統演化的多樣性。