當前位置:首頁 » 無線網路 » 已知某信號傳送網路有信號源

已知某信號傳送網路有信號源

發布時間: 2024-09-28 08:14:16

『壹』 【山外筆記-計算機網路·第7版】第02章:物理層

[學習筆記]第02章_物理層-列印版.pdf

本章最重要的內容是:

(1)物理層的任務。

(2)幾種常用的信道復用技術。

(3)幾種常用的寬頻接入技術,主要是ADSL和FTTx。

1、物理層簡介

(1)物理層在連接各種計算機的傳輸媒體上傳輸數據比特流,而不是指具體的傳輸媒體。

(2)物理層的作用是盡可能地屏蔽掉傳輸媒體和通信手段的差異。

(3)用於物理層的協議常稱為物理層規程(procere),其實物理層規程就是物理層協議。

2、物理層的主要任務 :確定與傳輸媒體的介面有關的一些特性。

(1)機械特性:指明介面所用接線器的形狀和尺寸、引腳數目和排列、固定和鎖定裝置等。

(2)電氣特性:指明在介面電纜的各條線上出現的電壓的范圍。

(3)功能特性:指明某條線上出現的某一電平的電壓的意義。

(4)過程特性:指明對於不同功能的各種可能事件的出現順序。

3、物理層要完成傳輸方式的轉換。

(1)數據在計算機內部多採用並行傳輸方式。

(2)數據在通信線路(傳輸媒體)上的傳輸方式一般都是串列傳輸,即逐個比特按照時間順序傳輸。

(3)物理連接的方式:點對點、多點連接或廣播連接。

(4)傳輸媒體的種類:架空明線、雙絞線、對稱電纜、同軸電纜、光纜,以及各種波段的無線信道等。

1、數據通信系統的組成

一個數據通信系統可劃分為源系統(或發送端、發送方)、傳輸系統(或傳輸網路)和目的系統(或接收端、接收方)三大部分。

(1)源系統:一般包括以下兩個部分:

(2)目的系統:一般也包括以下兩個部分:

(3)傳輸系統:可以是簡單的傳輸線,也可以是連接在源系統和目的系統之間的復雜網路系統。

2、通信常用術語

(1)通信的目的是傳送消息(message),數據(data)是運送消息的實體。

(2)數據是使用特定方式表示的信息,通常是有意義的符號序列。

(3)信息的表示可用計算機或其他機器(或人)處理或產生。

(4)信號(signal)則是數據的電氣或電磁的表現。

3、信號的分類 :根據信號中代表消息的參數的取值方式不同

(1)模擬信號/連續信號:代表消息的參數的取值是連續的。

(2)數字信號/離散信號:代表消息的參數的取值是離散的。

1、信道

(1)信道一般都是用來表示向某一個方向傳送信息的媒體。

(2)一條通信電路往往包含一條發送信道和一條接收信道。

(3)單向通信只需要一條信道,而雙向交替通信或雙向同時通信則都需要兩條信道(每個方向各一條)。

2、通信的基本方式

(1)單向通信又稱為單工通信,只能有一個方向的通信而沒有反方向的交互。如無線電廣播、有線電廣播、電視廣播。

(2)雙向交替通信又稱為半雙工通信,即通信的雙方都可以發送信息,但不能雙方同時發送/接收。

(3)雙向同時通信又稱為全雙工通信,即通信的雙方可以同時發送和接收信息。

3、調制 (molation)

(1)基帶信號:來自信源的信號,即基本頻帶信號。許多信道不能傳輸基帶信號,必須對其進行調制。

(2)調制的分類

4、基帶調制常用的編碼方式 (如圖2-2)

(1)不歸零制:正電平代表1,負電平代表0。

(2)歸零制:正脈沖代表1,負脈沖代表0。

(3)曼徹斯特:編碼位周期中心的向上跳變代表0,位周期中心的向下跳變代表1。也可反過來定義。

(4)差分曼徹斯特:編碼在每一位的中心處始終都有跳變。位開始邊界有跳變代表0,而位開始邊界沒有跳變代表1。

5、帶通調制的基本方法

(1)調幅(AM)即載波的振幅隨基帶數字信號而變化。例如,0或1分別對應於無載波或有載波輸出。

(2)調頻(FM)即載波的頻率隨基帶數字信號而變化。例如,0或1分別對應於頻率f1或f2。

(3)調相(PM)即載波的初始相位隨基帶數字信號而變化。例如,0或1分別對應於相位0度或180度。

(4)多元制的振幅相位混合調制方法:正交振幅調制QAM(Quadrature Amplitude Molation)。

1、信號失真

(1)信號在信道上傳輸時會不可避免地產生失真,但在接收端只要從失真的波形中能夠識別並恢復出原來的碼元信號,那麼這種失真對通信質量就沒有影響。

(2)碼元傳輸的速率越高,或信號傳輸的距離越遠,或雜訊干擾越大,或傳輸媒體質量越差,在接收端的波形的失真就越嚴重。

2、限制碼元在信道上的傳輸速率的因素

(1)信道能夠通過的頻率范圍

(2)信噪比

3、香農公式 (Shannon)

(1)香農公式(Shannon):C = W*log2(1+S/N) (bit/s)

(2)香農公式表明:信道的帶寬或信道中的信噪比越大,信息的極限傳輸速率就越高。

(3)香農公式指出了信息傳輸速率的上限。

(4)香農公式的意義:只要信息傳輸速率低於信道的極限信息傳輸速率,就一定存在某種辦法來實現無差錯的傳輸。

(5)在實際信道上能夠達到的信息傳輸速率要比香農的極限傳輸速率低不少,是因為香農公式的推導過程中並未考慮如各種脈沖干擾和在傳輸中產生的失真等信號損傷。

1、傳輸媒體

傳輸媒體也稱為傳輸介質或傳輸媒介,是數據傳輸系統中在發送器和接收器之間的物理通路。

2、傳輸媒體的分類

(1)導引型傳輸媒體:電磁波被導引沿著固體媒體(雙絞線、同軸電纜或光纖)傳播。

(2)非導引型傳輸媒體:是指自由空間,電磁波的傳輸常稱為無線傳輸。

1、雙絞線

(1)雙絞線也稱為雙扭線, 即把兩根互相絕緣的銅導線並排放在一起,然後用規則的方法絞合(twist)起來。絞合可減少對相鄰導線的電磁干擾。

(2)電纜:通常由一定數量的雙絞線捆成,在其外麵包上護套。

(3)屏蔽雙絞線STP(Shielded Twisted Pair):在雙絞線的外面再加上一層用金屬絲編織成的屏蔽層,提高了雙絞線抗電磁干擾的能力。價格比無屏蔽雙絞線UTP(Unshielded Twisted Pair)要貴一些。

(4)模擬傳輸和數字傳輸都可以使用雙絞線,其通信距離一般為幾到十幾公里。

(5)雙絞線布線標准

(6)雙絞線的使用

2、同軸電纜

(1)同軸電纜由內導體銅質芯線(單股實心線或多股絞合線)、絕緣層、網狀編織的外導體屏蔽層(也可以是單股的)以及保護塑料外層所組成。

(2)由於外導體屏蔽層的作用,同軸電纜具有很好的抗干擾特性,被廣泛用於傳輸較高速率的數據。

(3)同軸電纜主要用在有線電視網的居民小區中。

(4)同軸電纜的帶寬取決於電纜的質量。目前高質量的同軸電纜的帶寬已接近1GHz。

3、光纜

(1)光纖通信就是利用光導纖維(簡稱光纖)傳遞光脈沖來進行通信。有光脈沖為1,沒有光脈沖為0。

(2)光纖是光纖通信的傳輸媒體。

(3)多模光纖:可以存在多條不同角度入射的光線在一條光纖中傳輸。光脈沖在多模光纖中傳輸時會逐漸展寬,造成失真,多模光纖只適合於近距離傳輸。

(4)單模光纖:若光纖的直徑減小到只有一個光的波長,則光纖就像一根波導那樣,可使光線一直向前傳播,而不會產生多次反射。單模光纖的纖芯很細,其直徑只有幾個微米,製造起來成本較高。

(5)光纖通信中常用的三個波段中心:850nm,1300nm和1550nm。

(6)光纜:一根光纜少則只有一根光纖,多則可包括數十至數百根光纖,再加上加強芯和填充物,必要時還可放入遠供電源線,最後加上包帶層和外護套。

(7)光纖的優點

1、無線傳輸

(1)無線傳輸是利用無線信道進行信息的傳輸,可使用的頻段很廣。

(2)LF,MF和HF分別是低頻(30kHz-300kHz)、中頻(300kHz-3MH z)和高頻(3MHz-30MHz)。

(3)V,U,S和E分別是甚高頻(30MHz-300MHz)、特高頻(300MHz-3GHz)、超高頻(3GHz-30GHz)和極高頻(30GHz-300GHz),最高的一個頻段中的T是Tremendously。

2、短波通信: 即高頻通信,主要是靠電離層的反射傳播到地面上很遠的地方,通信質量較差。

3、無線電微波通信

(1)微波的頻率范圍為300M Hz-300GHz(波長1m-1mm),但主要使用2~40GHz的頻率范圍。

(2)微波在空間中直線傳播,會穿透電離層而進入宇宙空間,傳播距離受到限制,一般只有50km左右。

(3)傳統的微波通信主要有兩種方式,即地面微波接力通信和衛星通信。

(4)微波接力通信:在一條微波通信信道的兩個終端之間建立若干個中繼站,中繼站把前一站送來的信號經過放大後再發送到下一站,故稱為「接力」,可傳輸電話、電報、圖像、數據等信息。

(5)衛星通信:利用高空的人造同步地球衛星作為中繼器的一種微波接力通信。

(6)無線區域網使用ISM無線電頻段中的2.4GHz和5.8GHz頻段。

(7)紅外通信、激光通信也使用非導引型媒體,可用於近距離的筆記本電腦相互傳送數據。

1、復用(multiplexing)技術原理

(1)在發送端使用一個復用器,就可以使用一個共享信道進行通信。

(2)在接收端再使用分用器,把合起來傳輸的信息分別送到相應的終點。

(3)復用器和分用器總是成對使用,在復用器和分用器之間是用戶共享的高速信道。

(4)分用器(demultiplexer)的作用:把高速信道傳送過來的數據進行分用,分別送交到相應的用戶。

2、最基本的復用

(1)頻分復用FDM(Frequency Division Multiplexing)

(2)時分復用TDM(Time Division Multiplexing):

3、統計時分復用STDM (Statistic TDM)

(1)統計時分復用STDM是一種改進的時分復用,能明顯地提高信道的利用率。

(2)集中器(concentrator):將多個用戶的數據集中起來通過高速線路發送到一個遠地計算機。

(3)統計時分復用使用STDM幀來傳送數據,每一個STDM幀中的時隙數小於連接在集中器上的用戶數。

(4)STDM幀不是固定分配時隙,而是按需動態地分配時隙,提高了線路的利用率。

(5)統計復用又稱為非同步時分復用,而普通的時分復用稱為同步時分復用。

(6)STDM幀中每個時隙必須有用戶的地址信息,這是統計時分復用必須要有的和不可避免的一些開銷。

(7)TDM幀和STDM幀都是在物理層傳送的比特流中所劃分的幀。和數據鏈路層的幀是完全不同的概念。

(8)使用統計時分復用的集中器也叫做智能復用器,能提供對整個報文的存儲轉發能力,通過排隊方式使各用戶更合理地共享信道。此外,許多集中器還可能具有路由選擇、數據壓縮、前向糾錯等功能。

1、波分復用WDM (Wavelength Division Multiplexing)

波分復用WDM是光的頻分復用,在一根光纖上用波長來復用兩路光載波信號。

2、密集波分復用DWDM (Dense Wavelength Division Multiplexing)

密集波分復用DWDM是在一根光纖上復用幾十路或更多路數的光載波信號。

1、碼分復用CDM (Code Division Multiplexing)

(1)每一個用戶可以在同樣的時間使用同樣的頻帶進行通信。

(2)各用戶使用經過特殊挑選的不同碼型,因此各用戶之間不會造成干擾。

(3)碼分復用最初用於軍事通信,現已廣泛用於民用的移動通信中,特別是在無線區域網中。

2、碼分多址CDMA (Code Division Multiple Access)。

(1)在CDMA中,每一個比特時間再劃分為m個短的間隔,稱為碼片(chip)。通常m的值是64或128。

(2)使用CDMA的每一個站被指派一個唯一的m bit碼片序列(chip sequence)。

(3)一個站如果發送比特1,則發送m bit碼片序列。如果發送比特0,則發送該碼片序列的二進制反碼。

(4)發送信息的每一個比特要轉換成m個比特的碼片,這種通信方式是擴頻通信中的直接序列擴頻DSSS。

(5)CDMA系統給每一個站分配的碼片序列必須各不相同,並且還互相正交(orthogonal)。

(6)CDMA的工作原理:現假定有一個X站要接收S站發送的數據。

(7)擴頻通信(spread spectrum)分為直接序列擴頻DSSS(Direct Sequence Spread Spectrum)和跳頻擴頻FHSS(Frequency Hopping Spread Spectrum)兩大類。

早起電話機用戶使用雙絞線電纜。長途干線採用的是頻分復用FDM的模擬傳輸方式,現在大都採用時分復用PCM的數字傳輸方式。現代電信網,在數字化的同時,光纖開始成為長途干線最主要的傳輸媒體。

1、早期的數字傳輸系統最主要的缺點:

(1)速率標准不統一。互不兼容的國際標准使國際范圍的基於光纖的高速數據傳輸就很難實現。

(2)不是同步傳輸。為了節約經費,各國的數字網主要採用准同步方式。

2、數字傳輸標准

(1)同步光纖網SONET(Synchronous Optical Network)

(2)同步數字系列SDH(Synchronous Digital Hierarchy)

(3)SDH/SONET定義了標准光信號,規定了波長為1310nm和1550nm的激光源。在物理層定義了幀結構。

(4)SDH/SONET標準的制定,使北美、日本和歐洲三種不同的數字傳輸體制在STM-1等級上獲得了統一,第一次真正實現了數字傳輸體制上的世界性標准。

互聯網的發展初期,用戶利用電話的用戶線通過數據機連接到ISP,速率最高只能達到56kbit/s。

從寬頻接入的媒體來看,寬頻接入技術可以分為有線寬頻接入和無線寬頻接入兩大類。

1、非對稱數字用戶線ADSL (Asymmetric Digital Subscriber Line)

(1)ADSL技術是用數字技術對現有的模擬電話用戶線進行改造,使它能夠承載寬頻數字業務。

(2)ADSL技術把0-4kHz低端頻譜留給傳統電話使用,把原來沒有被利用的高端頻譜留給用戶上網使用。

(3)ADSL的ITU的標準是G.992.1(或稱G.dmt,表示它使用DMT技術)。

(4)「非對稱」是指ADSL的下行(從ISP到用戶)帶寬都遠遠大於上行(從用戶到ISP)帶寬。

(5)ADSL的傳輸距離取決於數據率和用戶線的線徑(用戶線越細,信號傳輸時的衰減就越大)。

(6)ADSL所能得到的最高數據傳輸速率還與實際的用戶線上的信噪比密切相關。

2、ADSL數據機的實現方案 :離散多音調DMT(Discrete Multi-Tone)調制技術

(1)ADSL在用戶線(銅線)的兩端各安裝一個ADSL數據機。

(2)「多音調」就是「多載波」或「多子信道」的意思。

(3)DMT調制技術採用頻分復用的方法,把40kHz-1.1MHz的高端頻譜劃分為許多子信道。

(4)當ADSL啟動時,用戶線兩端的ADSL數據機就測試可用的頻率、各子信道受到的干擾情況,以及在每一個頻率上測試信號的傳輸質量。

(5)ADSL能夠選擇合適的調制方案以獲得盡可能高的數據率,但不能保證固定的數據率。

3、數字用戶線接入復用器DSLAM (DSL Access Multiplexer)

(1)數字用戶線接入復用器包括許多ADSL數據機。

(2)ADSL數據機又稱為接入端接單元ATU(Access Termination Unit)。

(3)ADSL數據機必須成對使用,因此把在電話端局記為ATU-C,用戶家中記為ATU-R。

(4)ADSL最大的好處就是可以利用現有電話網中的用戶線(銅線),而不需要重新布線。

(5)ADSL數據機有兩個插口:

(6)一個DSLAM可支持多達500-1000個用戶。

4、第二代ADSL

(1)ITU-T已頒布了G系列標准,被稱為第二代ADSL,ADSL2。

(1)第二代ADSL通過提高調制效率得到了更高的數據率。

(2)第二代ADSL採用了無縫速率自適應技術SRA(Seamless Rate Adaptation),可在運營中不中斷通信和不產生誤碼的情況下,根據線路的實時狀況,自適應地調整數據率。

(3)第二代ADSL改善了線路質量評測和故障定位功能。

5、ADSL技術的變型 :xDSL

ADSL並不適合於企業,為了滿足企業的需要,產生了ADSL技術的變型:xDSL。

(1)對稱DSL(Symmetric DSL,SDSL):把帶寬平均分配到下行和上行兩個方向,每個方向的速度分別為384kbit/s或1.5Mbit/s,距離分別為5.5km或3km。

(2)HDSL(High speed DSL):使用一對線或兩對線的對稱DSL,是用來取代T1線路的高速數字用戶線,數據速率可達768KBit/s或1.5Mbit/s,距離為2.7-3.6km。

(3)VDSL(Very high speed DSL):比ADSL更快的、用於短距離傳送(300-1800m),即甚高速數字用戶線,是ADSL的快速版本。

1、光纖同軸混合網HFC (Hybrid Fiber Coax)

(1)光纖同軸混合網HFC是在有線電視網的基礎上改造開發的一種居民寬頻接入網。

(2)光纖同軸混合網HFC可傳送電視節目,能提供電話、數據和其他寬頻交互型業務。

(3)有線電視網最早是樹形拓撲結構的同軸電纜網路,採用模擬技術的頻分復用進行單向廣播傳輸。

2、光纖同軸混合網HFC的主要特點:

(1)HFC網把原有線電視網中的同軸電纜主幹部分改換為光纖,光纖從頭端連接到光纖結點(fiber node)。

(2)在光纖結點光信號被轉換為電信號,然後通過同軸電纜傳送到每個用戶家庭。

(3)HFC網具有雙向傳輸功能,而且擴展了傳輸頻帶。

(4)連接到一個光纖結點的典型用戶數是500左右,但不超過2000。

3、電纜數據機 (cable modem)

(1)模擬電視機接收數字電視信號需要把機頂盒(set-top box)的設備連接在同軸電纜和電視機之間。

(2)電纜數據機:用於用戶接入互聯網,以及在上行信道中傳送交互數字電視所需的一些信息。

(3)電纜數據機可以做成一個單獨的設備,也可以做成內置式的,安裝在電視機的機頂盒裡面。

(4)電纜數據機不需要成對使用,而只需安裝在用戶端。

(5)電纜數據機必須解決共享信道中可能出現的沖突問題,比ADSL數據機復雜得多。

信號在陸地上長距離的傳輸,已經基本實現了光纖化。遠距離的傳輸媒體使用光纜。只是到了臨近用戶家庭的地方,才轉為銅纜(電話的用戶線和同軸電纜)。

1、多種寬頻光纖接入方式FTTx

(1)多種寬頻光纖接入方式FTTx,x可代表不同的光纖接入地點,即光電轉換的地方。

(2)光纖到戶FTTH(Fiber To The Home):把光纖一直鋪設到用戶家庭,在光纖進入用戶後,把光信號轉換為電信號,可以使用戶獲得最高的上網速率。

(3)光纖到路邊FTTC(C表示Curb)

(4)光纖到小區FTTZ(Z表示Zone)

(5)光纖到大樓FTTB(B表示Building)

(6)光纖到樓層FTTF(F表示Floor)

(7)光纖到辦公室FTTO(O表示Office)

(8)光纖到桌面FTTD(D表示Desk)

2、無源光網路PON (Passive Optical Network)

(1)光配線網ODN(Optical Distribution Network):在光纖干線和廣大用戶之間,鋪設的轉換裝置,使得數十個家庭用戶能夠共享一根光纖干線。

(2)無源光網路PON(Passive Optical Network),即無源的光配線網。

(3) 無源:表明在光配線網中無須配備電源,因此基本上不用維護,其長期運營成本和管理成本都很低。

(4)光配線網採用波分復用,上行和下行分別使用不同的波長。

(5)光線路終端OLT( Optical Line Terminal)是連接到光纖干線的終端設備。

(6)無源光網路PON下行數據傳輸

(7)無源光網路PON上行數據傳輸

當ONU發送上行數據時,先把電信號轉換為光信號,光分路器把各ONU發來的上行數據匯總後,以TDMA方式發往OLT,而發送時間和長度都由OLT集中控制,以便有序地共享光纖主幹。

(8)從ONU到用戶的個人電腦一般使用乙太網連接,使用5類線作為傳輸媒體。

(9)從總的趨勢來看,光網路單元ONU越來越靠近用戶的家庭,即「光進銅退」。

3、無源光網路PON的種類

(1)乙太網無源光網路EPON(Ethernet PON)

(2)吉比特無源光網路GPON(Gigabit PON)

『貳』 網路電視 信號源

首先通過衛星地面接受站把衛星上的電視信號轉接下來, 然後使用電視卡把信號轉接到電腦上, 然後通過一些編碼使用軟體進行發布, 接著就可以通過網路發布出去, 過程很復雜, 操作很簡單

『叄』 一個數據在TCP/IP協議中從信源到信宿是怎樣傳輸的

1:計算機網路是一種地理上分散、具有獨立功能的多台計算機通過軟、硬體設備互連,以實現資源共享和信息交換的系統。計算機網路必須有以下三個要素:

兩台或兩台以上獨立的計算機互連接起來才能構成網路,達到資源共享目的。
計算機之間要用通信設備和傳輸介質連接起來。
計算機之間要交換信息,彼此就需要一個統一的規則,這個規則成為「網路協議」(Protocol TCP/IP)。網路中的計算機必須有網路協議。
2:金橋工程、金關工程和金卡工程
3:計算機網路的功能主要體現在三個方面:信息交換、資源共享、分布式處理。

⑴信息交換

這是計算機網路最基本的功能,主要完成計算機網路中各個節點之間的系統通信。用戶可以在網上傳送電子郵件、發布新聞消息、進行電子購物、電子貿易、遠程電子教育等。

⑵資源共享

所謂的資源是指構成系統的所有要素,包括軟、硬體資源,如:計算處理能力、大容量磁碟、高速列印機、繪圖儀、通信線路、資料庫、文件和其他計算機上的有關信息。由於受經濟和其他因素的制約,這些資源並非(也不可能)所有用戶都能獨立擁有,所以網路上的計算機不僅可以使用自身的資源,也可以共享網路上的資源。因而增強了網路上計算機的處理能力,提高了計算機軟硬體的利用率。

⑶分布式處理

一項復雜的任務可以劃分成許多部分,由網路內各計算機分別協作並行完成有關部分,使整個系統的性能大為增強。
4:包括軟、硬體資源,如:計算處理能力、大容量磁碟、高速列印機、繪圖儀、通信線路、資料庫、文件和其他計算機上的有關信息。由於受經濟和其他因素的制約,這些資源並非(也不可能)所有用戶都能獨立擁有,所以網路上的計算機不僅可以使用自身的資源,也可以共享網路上的資源。因而增強了網路上計算機的處理能力,提高了計算機軟硬體的利用率
5:
通信是指信息的傳輸,通信具有三個基本要素:

信源:信息的發送者;信宿:信息的接收者;載體:信息的傳輸媒體。

通信系統基本組成部分見下圖:

信源:
發送各種信息(語言、文字、圖像、數據)的信息源,如人、機器、計算機等。

信道:
信號的傳輸載體。從形式上看,主要有有線信道和無線信道兩類;從傳輸方式上看,信道又可分為模擬信道和數字信道兩類。

信宿:
信息的接收者,可以是人、機器、計算機等;

變換器:
將信源發出的信息變換成適合在信道上傳輸的信號。對應不同的信源和信道,變換器有著不同的組成和變換功能。如計算機通信中的數據機就是一種變換器。

反變換器
提供與變換器相反的功能,將從信道上接收的電(或光)信號變換成信宿可以接收的信息。

雜訊源:
通信系統中不能忽略雜訊的影響,通信系統的雜訊可能來自於各個部分,包括發送或接收信息的周圍環境、各種設備的電子器件,信道外部的電磁場干擾等。
6:非同步傳輸:數據以字元為傳輸單位,字元發送時間是非同步的,即後一字元的發送時間與前一字元的發送時間無關。時序或同步僅在每個字元的范圍內是必須的,接收機可以在每個新字元開始是抓住再同步的機會。同步傳輸:以比

特塊為單位進行傳輸,發送器與接收機之間通過專門的時鍾線路或把同步信號嵌入數字信號進行同步。非同步傳輸需要至少20%以上的開銷,同步傳輸效率遠遠比非同步傳輸高。

7:數據傳輸速率是描述數據傳輸系統的重要技術指標之一。數據傳輸速率在數值上等於每秒種傳輸構成數據代碼的二進制比特數,單位為比特/秒(bit/second),記作bps。對於二進制數據,數據傳輸速率為:

S=1/T(bps)

其中,T為發送每一比特所需要的時間。例如,如果在通信信道上發送一比特0、1信號所需要的時間是0.001ms,那麼信道的數據傳輸速率為1 000 000bps。

在實際應用中,常用的數據傳輸速率單位有:kbps、Mbps和Gbps。其中:

1kbps=103bps 1Mbps=106kbps 1Gbps=109bps

帶寬與數據傳輸速率
在現代網路技術中,人們總是以「帶寬」來表示信道的數據傳輸速率,「帶寬」與「速率」幾乎成了同義詞。信道帶寬與數據傳輸速率的關系可以奈奎斯特(Nyquist)准則與香農(Shanon)定律描述。

奈奎斯特准則指出:如果間隔為π/ω(ω=2πf),通過理想通信信道傳輸窄脈沖信號,則前後碼元之間不產生相互竄擾。因此,對於二進制數據信號的最大數據傳輸速率Rmax與通信信道帶寬B(B=f,單位Hz)的關系可以寫為:

Rmax=2.f(bps)

對於二進制數據若信道帶寬B=f=3000Hz,則最大數據傳輸速率為6000bps。

奈奎斯特定理描述了有限帶寬、無雜訊信道的最大數據傳輸速率與信道帶寬的關系。香農定理則描述了有限帶寬、有隨機熱雜訊信道的最大傳輸速率與信道帶寬、信噪比之間的關系。

香農定理指出:在有隨機熱雜訊的信道上傳輸數據信號時,數據傳輸速率Rmax與信道帶寬B、信噪比S/N的關系為:

Rmax=B.log2(1+S/N)

式中,Rmax單位為bps,帶寬B單位為Hz,信噪比S/N通常以dB(分貝)數表示。若S/N=30(dB),那麼信噪比根據公式:

S/N(dB)=10.lg(S/N)

可得,S/N=1000。若帶寬B=3000Hz,則Rmax≈30kbps。香農定律給出了一個有限帶寬、有熱雜訊信道的最大數據傳輸速率的極限值。它表示對於帶寬只有3000Hz的通信信道,信噪比在30db時,無論數據採用二進制或更多的離散電平值表示,都不能用越過0kbps的速率傳輸數據。

因此通信信道最大傳輸速率與信道帶寬之間存在著明確的關系,所以人們可以用「帶寬」去取代「速率」。例如,人們常把網路的「高數據傳輸速率」用網路的「高帶寬」去表述。因此「帶寬」與「速率」在網路技術的討論中幾乎成了同義詞。

帶寬:信號傳輸頻率的最大值和最小值之差(Hz)。信道容量:單位時間內傳輸的最大碼元數(Baud),或單位時間內傳輸的最大二進制數(b/s)。數據傳輸速率:每秒鍾傳輸的二進制數(b/s)。

帶寬 :信道可以不失真地傳輸信號的頻率范圍。為不同應用而設計的傳輸媒體具有不同的信道質量,所支持的帶寬有所不同。
信道容量:信道在單位時間內可以傳輸的最大信號量,表示信道的傳輸能力。信道容量有時也表示為單位時間內可傳輸的二進制位的位數(稱信道的數據傳輸速率,位速率),以位/秒(b/s)形式予以表示,簡記為bps。
數據傳輸率:信道在單位時間內可以傳輸的最大比特數。信道容量和信道帶寬具有正比的關系:帶寬越大,容量越大。(這句話是說,信道容量只是在受信噪比影響的情況下的信息傳輸速率
8:6000bps*30
9: 基帶傳輸又叫數字傳輸,是指把要傳輸的數據轉換為數字信號,使用固定的頻率在信道上傳輸。例如計算機網路中的信號就是基帶傳輸的。 和基帶相對的是頻帶傳輸,又叫模擬傳輸,是指信號在電話線等這樣的普通線路上,以正弦波形式傳播的方式。我們現有的電話、模擬電視信號等,都是屬於頻帶傳輸
在數字傳輸系統中,其傳輸對象通常是二進制數字信息,它可能來自計算機、網路或其它數字設備的各種數字代碼。也可能來自數字電話終端的脈沖編碼信號,設計數字傳輸系統的基本考慮是選擇一組有限的離散的波形來表示數字信息。這些離散波形可以是未經調制的不同電平信號,也可以是調制後的信號形式。由於未經調制的脈沖電信號所佔據的頻帶通常從直流和低頻開始。因而稱為數字基帶信號。在某些有線信道中,特別是傳輸距離不大遠的情況下,數字基帶信號可以直接傳送,我們稱之為數字信號的基帶傳輸

上面的傳輸方式適用於一個單位內部的區域網傳輸,但除了市內的線路之外,長途線路是無法傳送近似於0的分量的,也就是說,在計算機的遠程通信中,是不能直接傳輸原始的電脈沖信號的(也就是基帶信號了)。因此就需要利用頻帶傳輸,就是用基帶脈沖對載波波形的某些參量進行控制,使這些參量隨基帶脈沖變化,這就是調制。經過調制的信號稱為已調信號。已調信號通過線路傳輸到接收端,然後經過解調恢復為原始基帶脈沖。這種頻帶傳輸不僅克服了目前許多長途電話線路不能直接傳輸基帶信號的缺點,而且能實現多路復用的目的,從而提高了通信線路的利用率。不過頻帶傳輸在發送端和接收端都要設置數據機
10.
0 1 0 1 1 0 1 0
1 1 1 0 0 0 0(1)
0 0 0(0)1 1 0 0
1 0(0)1 1 1 0 1
0 0 0 0(1)0 1(0)

11. 優點:1.促進標准化工作,允許各供應商進行開發。2.各層相互獨立,把 網路操作分成低復雜性單元。3.靈活性好,某一層的變化不會影響到別層,設計者可專心設計和開發模塊功能。4.各層間通過一個介面在相鄰層上下通信
原則:計算機網路體系結構的分層思想主要遵循以下幾點原則:

1.功能分工的原則:即每一層的劃分都應有它自己明確的與其他層不同的基本功能。

2.隔離穩定的原則:即層與層的結構要相對獨立和相互隔離,從而使某一層內容或結構的變化對其他層的影響小,各層的功能、結構相對穩定。

3.分支擴張的原則:即公共部分與可分支部分劃分在不同層,這樣有利於分支部分的靈活擴充和公共部分的相對穩定,減少結構上的重復。

4.方便實現的原則:即方便標准化的技術實現。

12:七層參考模型 第1層:物理層 第2層:數據鏈路層 第3層:網路層
第4層:傳輸層 第5層:會話層 第6層:表示層 第7層:應用層

13: MAC(Media Access Control, 介質訪問控制)MAC地址是燒錄在Network Interface Card(網卡,NIC)里的.MAC地址,也叫硬體地址,是由48比特長(6位元組),16進制的數字組成.0-23位是由廠家自己分配.24-47位,叫做組織唯一標志符(organizationally unique ,是識別LAN(區域網)節點的標識

IP是 OSI參考模型中的3層設備使用的 全球唯一的32位 點分10進制地址. 分A B C D E 5類. A B C是用於互聯網的. D是廣播地址. E是實驗室預留的地址. IP地址相當於個人ID,是標識的作用

通過tcp/ip協議

14:「面向連接」就是在正式通信前必須要與對方建立起連接。比如你給別人打電話,必須等線路接通了、對方拿起話筒才能相互通話。

TCP(Transmission Control Protocol,傳輸控制協議)是基於連接的協議,也就是說,在正式收發數據前,必須和對方建立可靠的連接。一個TCP連接必須要經過三次「對話」才能建立起來,其中的過程非常復雜,我們這里只做簡單、形象的介紹,你只要做到能夠理解這個過程即可。我們來看看這三次對話的簡單過程:主機A向主機B發出連接請求數據包:「我想給你發數據,可以嗎?」,這是第一次對話;主機B向主機A發送同意連接和要求同步(同步就是兩台主機一個在發送,一個在接收,協調工作)的數據包:「可以,你什麼時候發?」,這是第二次對話;主機A再發出一個數據包確認主機B的要求同步:「我現在就發,你接著吧!」,這是第三次對話。三次「對話」的目的是使數據包的發送和接收同步,經過三次「對話」之後,主機A才向主機B正式發送數據。

TCP協議能為應用程序提供可靠的通信連接,使一台計算機發出的位元組流無差錯地發往網路上的其他計算機,對可靠性要求高的數據通信系統往往使用TCP協議傳輸數據。
面向非連接的UDP協議

「面向非連接」就是在正式通信前不必與對方先建立連接,不管對方狀態就直接發送。這與現在風行的手機簡訊非常相似:你在發簡訊的時候,只需要輸入對方手機號就OK了。

UDP(User Data Protocol,用戶數據報協議)是與TCP相對應的協議。它是面向非連接的協議,它不與對方建立連接,而是直接就把數據包發送過去!

UDP適用於一次只傳送少量數據、對可靠性要求不高的應用環境。比如,我們經常使用「ping」命令來測試兩台主機之間TCP/IP通信是否正常,其實「ping」命令的原理就是向對方主機發送UDP數據包,然後對方主機確認收到數據包,如果數據包是否到達的消息及時反饋回來,那麼網路就是通的。例如,在默認狀態下,一次「ping」操作發送4個數據包(如圖2所示)。大家可以看到,發送的數據包數量是4包,收到的也是4包(因為對方主機收到後會發回一個確認收到的數據包)。這充分說明了UDP協議是面向非連接的協議,沒有建立連接的過程。正因為UDP協議沒有連接的過程,所以它的通信效果高;但也正因為如此,它的可靠性不如TCP協議高。QQ就使用UDP發消息,因此有時會出現收不到消息的情況。
TCP協議和UDP協議各有所長、各有所短,適用於不同要求的通信環境。

15:物理層:物理層(Physical layer)是參考模型的最低層。該層是網路通信的數據傳輸介質,由連接不同結點的電纜與設備共同構成。主要功能是:利用傳輸介質為數據鏈路層提供物理連接,負責處理數據傳輸並監控數據出錯率,以便數據流的透明傳輸。
 數據鏈路層:數據鏈路層(Data link layer)是參考模型的第2層。 主要功能是:在物理層提供的服務基礎上,在通信的實體間建立數據鏈路連接,傳輸以「幀」為單位的數據包,並採用差錯控制與流量控制方法,使有差錯的物理線路變成無差錯的數據鏈路。
 網路層:網路層(Network layer)是參考模型的第3層。主要功能是:為數據在結點之間傳輸創建邏輯鏈路,通過路由選擇演算法為分組通過通信子網選擇最適當的路徑,以及實現擁塞控制、網路互聯等功能。
 傳輸層:傳輸層(Transport layer)是參考模型的第4層。主要功能是向用戶提供可靠的端到端(End-to-End)服務,處理數據包錯誤、數據包次序,以及其他一些關鍵傳輸問題。傳輸層向高層屏蔽了下層數據通信的細節,因此,它是計算機通信體系結構中關鍵的一層。
 會話層:會話層(Session layer)是參考模型的第5層。主要功能是:負責維擴兩個結點之間的傳輸鏈接,以便確保點到點傳輸不中斷,以及管理數據交換等功能。
 表示層:表示層(Presentation layer)是參考模型的第6層。主要功能是:用於處理在兩個通信系統中交換信息的表示方式,主要包括數據格式變換、數據加密與解密、數據壓縮與恢復等功能。
 應用層:應用層(Application layer)是參考模型的最高層。主要功能是:為應用軟體提供了很多服務,例如文件伺服器、資料庫服務、電子郵件與其他網路軟體服務。
16。CSMA/CD(Carrier Sense Multiple Access/Collision Detection)帶沖突檢測的載波監聽多路訪問協議。分為非堅持型監聽演算法、1-堅持型監聽演算法和P-堅持型監聽演算法。

在區域網上,經常是在一條傳輸介質上連有多台計算機,如匯流排型和環型區域網,大家共享使用一條傳輸介質,而一條傳輸介質在某一時間內只能被一台計算機所使用,那麼在某一時刻到底誰能使用或訪問傳輸介質呢?這就需要有一個共同遵守的方法或原則來控制、協調各計算機對傳輸介質的同時訪問,這種方法,這種方法就是協議或稱為介質訪問控制方法。目前,在區域網中常用的傳輸介質訪問方法有:以太(Ethernet)方法、令牌(Token Ring)、FDDE方法、非同步傳輸模式(ATM)方法等,因此可以把區域網分為乙太網(Ethernet)、令牌網(Token Ring)、FDDE網、ATM網等
17:區域網的拓撲(Topology)結構是指網路中各節點的互連構型,也就是區域網的布線方式。常見的拓撲結構有星型、匯流排型及環型等。

18:共享式的話,通過匯流排這一共享介質使PC全部連通.
交換式區域網是用機與機之間,通過VLAN(虛擬區域網)劃分不同的網段.
從而使同一網段的PC可以通信,
最後有三點不同,
.數據轉發給哪個埠,交換機基於MAC地址作出決定,集線器根本不做決定,而是將數據轉發給所有埠.數據在交換機內部可以採用獨立路徑,在集線器中所有的數據都可以在所有的路徑上流動.
2.集線器所有埠共享一個帶寬,交換即每個埠有自己獨立的帶寬,互不影響.
3.集線器所有埠均是同一個沖突域,而交換機每個埠下是一 個獨立的沖突域

19:5-4-3規則,是指任意兩台計算機間最多不能超過5段線(既包括集線器到集線器的連接線纜,也包括集線器到計算機間的連接線纜)、4台集線器,並且只能有3台集線器直接與計算機等網路設備連接。

20:CSMA/CD(Carrier Sense Multiple Access/Collision Derect),即載波監聽多路訪問/沖突檢測方法是一種爭用型的介質訪問控制協議。它起源於美國夏威夷大學開發的ALOHA網所採用的爭用型協議,並進行了改進,使之具有比ALOHA協議更高的介質利用率。

CSMA/CD是一種分布式介質訪問控制協議,網中的各個站(節點)都能獨立地決定數據幀的發送與接收。每個站在發送數據幀之前,首先要進行載波監聽,只有介質空閑時,才允許發送幀。這時,如果兩個以上的站同時監聽到介質空閑並發送幀,則會產生沖突現象,這使發送的幀都成為無效幀,發送隨即宣告失敗。每個站必須有能力隨時檢測沖突是否發生,一旦發生沖突,則應停止發送,以免介質帶寬因傳送無效幀而被白白浪費,然後隨機延時一段時間後,再重新爭用介質,重發送幀。CSMA/CD協議簡單、可靠,其網路系統(如Ethernet)被廣泛使用
21:只需給出一個判斷,若是獨立IP,則返回TRUE,若不是,則返回FALSE……
22:1.基本地址格式
現在的IP網路使用32位地址,以點分十進製表示,如172.16.0.0。地址格式為:IP地址=網路地址+主機地址 或 IP地址=主機地址+子網地址+主機地址。
網路地址是由Internet權力機構(InterNIC)統一分配的,目的是為了保證網路地址的全球唯一性。主機地址是由各個網路的系統管理員分配。因此,網路地址的唯一性與網路內主機地址的唯一性確保了IP地址的全球唯一性。

2.保留地址的分配
根據用途和安全性級別的不同,IP地址還可以大致分為兩類:公共地址和私有地址。公用地址在Internet中使用,可以在Internet中隨意訪問。私有地址只能在內部網路中使用,只有通過代理伺服器才能與Internet通信。
公用IP地址被分為基本三類。
Class A 1.0.0.0-126.255.255.255
Class B 128.0.0.0-191.255.255.255
Class C 192.0.0.0 -255.255.255.255
這三個基本類決定了你可以擁有多少的次網路(subnets) 和連接多少的用戶(devices)(伺服器,網關,列印機,電腦等)
Class A 擁有3個host.
Class B 擁有2個host.
Class C 擁有1個host.

Class A 可以適用於超級大公司或者政府機關
Class B 可以適用於普通的集團公司或者學校
Class C 可以適用於一般公司

一個機構或網路要連入Internet,必須申請公用IP地址。但是考慮到網路安全和內部實驗等特殊情況,在IP地址中專門保留了三個區域作為私有地址,其地址范圍如下:
10.0.0.0/8:10.0.0.0~10.255.255.255
172.16.0.0/12:172.16.0.0~172.31.255.255
192.168.0.0/16:192.168.0.0~192.168.255.255
使用保留地址的網路只能在內部進行通信,而不能與其他網路互連。因為本網路中的保留地址同樣也可能被其他網路使用,如果進行網路互連,那麼尋找路由時就會因為地址的不唯一而出現問題。但是這些使用保留地址的網路可以通過將本網路內的保留地址翻譯轉換成公共地址的方式實現與外部網路的互連。這也是保證網路安全的重要方法之一。

23:
平常使用的IP地址,基本上是A、B、C三類,這三類地址都有各自的默認子網掩碼,如果更改默認的子網掩碼,使IP地址中原來應該是用來表示主機的位現在用於表示網路號,這些「借用」的主機位就是子網位,可用於表示不同的子網號,從而就是在原來的網路中生成了不同的「子」網。原本劃分子網的目的是充分利用IP地址資源,不過現在也用於其他更多的目的。這樣的劃分子網是純邏輯層面的,在第三層(網路層)實施的分隔手段,只與使用TCP/IP協議進行通信的應用有關,也即是說,即使兩台機器不在同一子網,仍可使用其他協議(如IPX)通信,而且各機器如果有權力修改IP地址的話,隨時可以改變自己的IP,使自己位於不同子網中,而虛擬區域網(VLAN)是在第二層(數據鏈路層)實施的分隔,與協議無關,不同VLAN中的機器,如果沒有到達其他VLAN的路由,無論如何更改協議地址,都仍然無法與其他VLAN中的機器通信。

子網掩碼是一個32位地址,用於屏蔽IP地址的一部分以區別網路標識和主機標識,並說明該IP地址是在區域網上,還是在遠程網上

24:域名是Internet網路上的一個伺服器或一個網路系統的名字,在全世界,沒有重復的域名域名具有唯一性。從技術上講,域名只是一個Internet中用於解決地址對應問題的一種方法。可以說只是一個技術名詞。但是,由於Internet已經成為了全世界人的Internet,域名也自然地成為了一個社會科學名詞

『肆』 計算機網路選擇題 高手幫我

1 CSMA(載波監聽多路訪問)控制策略中有三種堅持退避演算法,其中一種是:「一旦介質空閑就發送數據,假如介質是忙的,繼續監聽,直到介質空閑後立即發送數據;如果有沖突就退避,然後再嘗試」這種退避演算法稱為 (1) 演算法。這種演算法的主要特點是 (2) 。CSMA/CD在CSMA的基礎上增加了沖突檢測功能。網路中的某個發送站點一旦檢測到沖突,它就立即停止發送,並發沖突碼,其他站點都會 (3) 。如果站點發……
1 CSMA(載波監聽多路訪問)控制策略中有三種堅持退避演算法,其中一種是:「一旦介質空閑就發送數據,假如介質是忙的,繼續監聽,直到介質空閑後立即發送數據;如果有沖突就退避,然後再嘗試」這種退避演算法稱為 (1) 演算法。這種演算法的主要特點是 (2) 。CSMA/CD在CSMA的基礎上增加了沖突檢測功能。網路中的某個發送站點一旦檢測到沖突,它就立即停止發送,並發沖突碼,其他站點都會 (3) 。如果站點發送時間為1,任意兩個站之間的傳播延遲為t,若能正常檢測到沖突,對於基帶匯流排網路,t的值應為 (4) ;對於寬頻匯流排網路,t的值應為 (5) 。 (2001年試題)

(1)A.1-堅持CSMA B.非堅持CSMA C.P-堅持CSMA D.O-堅持CSMA

(2)A.介質利用率低,但可以有效避免沖突

B.介質利用率高,但無法避免沖突

C.介質利用率低,且無法避免沖突

D.介質利用率高,且可以有效避免沖突

(3)A.處於待發送狀態 B.相繼競爭發送權 C.接收到阻塞信號 D.有可能繼續發送數據

(4)A.t≤0.5 B.t>0.5 C.t≥1 D.0.5(5)A.t>0.25 B.t≥0.5 C.t≤0.25 D.0.25解析

本題考查的是CSMA/CD協議的相關知識點。

載波監聽(Carrier Sense)的思想是:站點在發送幀訪問傳輸信道之前,首先監聽信道有無載波,若有載波,說明已有用戶在使用信道,則不發送幀以避免沖突。多路訪問(Multiple Access)是指多個用戶共用一條線路。

CSMA技術中要解決的一個問題是當偵聽信道已經被佔用時,如何確定再次發送的時間,通常有以下幾種方法:

堅持型CSMA(1—persistent CSMA):其原理是若站點有數據發送,先監聽信道,若站點發現信道空閑,則發送;若信道忙,則繼續監聽直至發現信道空閑,然後完成發送;若產生沖突,等待一隨機時間,然後重新開始發送過程。其優點是減少了信道空閑時間;缺點是增加了發生沖突的概率;廣播延遲對協議性能的影響:廣播延遲越大,發生沖突的可能性越大,協議性能越差。

非堅持型CSMA(nonpersistent CSMA):其原理是若站點有數據發送,先監聽信道,若站點發現信道空閑,則發送;若信道忙,等待一隨機時間,然後重新開始發送過程;若產生沖突,等待一隨機時間,然後重新開始發送過程。它的優點是減少了沖突的概率;缺點是增加了信道空閑時間,數據發送延遲增大;信道效率比1-堅持CSMA高,傳輸延遲比1-堅持CSMA大。

p-堅持型CSMA(p-persistent CSMA):適用於分槽信道,它的原理是若站點有數據發送,先監聽信道,若站點發現信道空閑,則以概率p發送數據,以概率q=l-p延遲至下一個時槽發送。若下一個時槽仍空閑,重復此過程,直至數據發出或時槽被其他站點所佔用;若忙,則等待下一個時槽,重新開始發送;若產生沖突,等待一隨機時間,然後重新開始發送。

CSMA/CD載波偵聽多路存取/沖突檢測的原理是站點使用CSMA協議進行數據發送,在發送期間如果檢測到沖突,立即終止發送,並發出一個瞬間干擾信號,使所有的站點都知道發生了沖突,在發出干擾信號後,等待一段隨機時間,再重復上述過程。

CSMA/CD的代價是用於檢測沖突所花費的時間。對於基帶匯流排而言,最壞情況下用於檢測一個沖突的時間等於任意兩個站之間傳播時延的兩倍。因此2t≤1,即t≤0.5。對於寬頻匯流排而言,由於單向傳輸的原因,沖突檢測時間等於任意兩個站之間最大傳播時延的4倍。因此4t≤1,即t≤0.25。

答案 (1)A (2)B (3)C (4)A (5)C

2 IEEE802.5令牌環(Token Ring)網中,時延是由 (1) 決定。要保證環網的正常運行,環的時延必須有一個最低限度,即 (2) 。如果達不到這個要求,可以採用的一種辦法是通過增加電纜長度,人為地增加時延來解決。設有某—個令牌環網長度為400m,環上有28個站點,其數據傳輸率為4Mbit/s,環上信號的傳播速度為200m/μs,每個站點具有1bit時延,則環上可能存在的最小和最大時延分別是 (3) bit和 (4) bit。當始終有一半站點打開工作時,要保證環網的正常運行,至少還要將電纜的長度增加 (5) 。(2002年試題)

(1)A.站點時廷和信號傳話時廷 B.令牌幀長短和數據幀長短

C.電纜長度和站點個數 D.數據傳輸單和信號傳播速度

(2)A.數據幀長 B.令牌幀長 C.信號傳播時延 D.站點個數

(3)A.1 B.8 C.20 D.24

(4)A.9 B.28 C.36 D.48

(5)A.50 B.100 C.200 D.400

解析

本題考查令牌環網的相關知識,應該牢固掌握。

首先要了解令牌環網的工作原理。當節點A想要發送數據時的步驟如下:

①A節點要等待令牌的到來,並檢測該令牌是否為空閑狀態。若是空閑狀態進行步驟2,否則繼續等待;

②將得到的令牌改為忙碌(busy)狀態;

③構成一個信息幀,即將數據(data)與忙碌的Token附在一起發送出去;

④當忙碌的token沿著環型網經過每一個節點時,每個節點首先會先檢查數據單元中的目的地址。如果目的地址與本節點地址相符,則由本節點將數據接收下來,進行拷貝操作,並以應答報文的形式作出回答,然後再傳送給下一個節點。當忙碌的Token與數據單元回到原來發送節點時,該節點將會除去數據單元,並將忙碌的Token改為空閑狀態;

⑤接著檢查目的節點送來的應答信息,如果為ACK(確認),則表示目的節點接收正確,至此,完成了一次數據傳送。反之,需要等待再得到令牌時進行重發。

因此令牌環內需要保證三個位元組令牌幀的流動,即時延不能低於24bit。

當網路取得最小時延即在每個站點都不停留,得400/200=2μs,2×10-6×4×106=8bit,即最小時延8bit。

網路取得最大時延時即在每個站點都停留,這時增加1×28bit,共36bit

當網路中始終有一半站點工作時,使用類似的方法可得這時的最大時延是8+14=22bit,而為了保證令牌不網正常工作,還需要添加2bit,即增加2/(4*106)=0.5μs,可知需要增加0.5×200=100m的電纜。

答案 (1)A (2)B (3)B (4)C (5)B

3 採用星型拓撲結構的區域網典型實例是( )。

CBX(計算機交換分機)

FDDI(光纖分布數據介面)

Ethernet(乙太網)

Token Ring(令牌環)

解析

本題考查的是區域網的拓撲結構。

區域網採用的拓撲結構通常有星型、環型、匯流排型和樹型4種。在題中給出的4類區域網中,CBX(計算機交換分機)以數字交換網路為整個網路的中心,各部件與數字交換網路相連,構成了星型結構。FDDI(光纖分布數據介面)的拓撲結構物理上是反向循環的雙環,環上有各類工作的站和集中器,集中器可以與一些工作站相連,構成以集中器為中心的星型結構,即FDDI網路的拓撲結構為環型+星型。Ethernet(乙太網)採用的拓撲結構為匯流排型,網上的伺服器與工作站均與匯流排相連,通過匯流排傳輸數據,採用CSMA/CD介質訪問控制方式。Token Ring(令牌環)採用環型拓撲結構,各結點依次互連,構成環型結構,所有數據及令牌均沿環依次傳遞,採用Token Ring協議。由以上分析可知,採用星型拓撲結構的區域網典型實例應為CBX。

答案 A

4 通常認為,決定區域網特性的主要技術有3個,它們是( ) 。

傳輸媒體、差錯檢測方法和網路操作系統

通信方式、同步方式和拓撲結構

傳輸媒體、拓撲結構和媒體訪問控制方式

數據編碼技術、媒體訪問控制方法和數據交換技術

解析

本題考查的是區域網的基本知識。

區域網是一種地理范圍有限的計算機網路,其典型特性如下:

(1)高數據速率(0.1~1000Mbit/s)

(2)短距離(0.1~25km)

(3)低誤碼率(10-8~10-11)

通常,決定區域網特性的主要技術有傳輸媒體、拓撲結構和媒體訪問控制方式(MAC)。因此本題選C

答案 C

5 令牌匯流排網中,當所有站都有報文要發送時,最壞情況下等待獲得令牌和發送報文的時間應等於( )。

所有站點傳送令牌的時間總和

所有站點傳送令牌和發送報文的時間的總和

所有站點傳送令牌時間和的一半

所有站點傳送令牌和發送報文時間的總和的一半

解析

本題考查的是令牌匯流排的工作原理。

IEEE 802.4標准描述令牌匯流排的媒體訪問控制方法。令牌匯流排媒體訪問控制是將物理匯流排上的站點構成一個邏輯環,每一個站都在一個有序的序列中被指定一個邏輯位置,而序列中最後一個成員又跟著第一個成員,每個站都知道在它之前和之後的站的標識。在物理結構上它是一個匯流排結構區域網,但是,在邏輯結構上,又成了一種環型結構的區域網。和令牌環一樣,站點只有取得令牌,才能發送幀,而令牌在邏輯環上依次傳遞。在正常運行時,當站點做完該做的工作或者時間終了時,它將令牌傳遞給邏輯序列中的下一個站。從邏輯上看,令牌是按地址的遞減順序傳送至下一個站點,但從物理上看,帶有目的地址的令牌幀廣播到匯流排上所有的站點,當目的站識別出符合它的地址,即把該令牌幀接收。匯流排上站的實際順序與邏輯順序並無關系。只有收到令牌幀的站點才能將信息幀送到匯流排上,取得令牌的站點有報文要發送則可發送,隨後,將令牌傳遞給下一個站點。如果取得令牌的站點沒有報文要發送,則立刻把令牌傳遞到下一站點。由於站點接收到令牌的過程是順序依次進行的,因此對所有站點都有機會傳遞數據。令牌匯流排的每個站傳輸之前必須等待的時間總量總是確定的,這是因為對每個站發送幀的最大長度可以加以限制。此外,當所有站都有報文要發送,則最壞的情況下等待取得令牌和發送報文的時間應該等於全部令牌傳送時間和報文發送時間的總和。另一方面,如果只有一個站點有報文要發送,則最壞情況下等待時間只是全部令牌傳遞時間之總和,實際等待時間在這一區間范圍內。對於應用於控制過程的區域網,這個等待訪問時間是一個很關鍵的參數,可以根據需求,選定網中的站點數及最大的報文長度,從而保證在限定的時間內,任一站點可以取得令牌權。由以上對令牌匯流排協議的敘述可知,B選項是正確答案。

答案 B

6 從介質訪問控制方法的角度來對區域網進行分類,它們是( )。

A.快速乙太網和慢速乙太網 B.光纖區域網和銅線區域網

C.環型區域網和星型區域網 D.共享式區域網和交換式區域網

解析

本題考查的是對區域網進行分類的方法。

區域網從介質訪問控制方法的角度可以分為兩類:共享介質區域網與交換型區域網。匯流排型區域網通常採用的介質訪問控制方法是共享介質方式。

A是根據傳送速度來分;B是根據使用介質來分;C是拓撲結構來分。還可以根據操作系統來分等。

答案 D

『伍』 為什麼會有信號,源頭在哪裡,有了信號,我們能打電話,能玩游戲,誰發明的

為什麼會有信號? 答:因為有信號塔
源頭在哪裡? 答:多數建設在山頂
誰發明的?答: 在1950年代,通信研究者認識到需要允許在不同計算機用戶和通信網路之間進行常規的通信。這促使了分散網路、排隊論和封包交換的研究。 1960年美國國防部國防前沿研究項目署(ARPA)出於冷戰考慮建立的ARPA網引發了技術進步並使其成為互聯網發展的中心。
1973年ARPA網擴展成互聯網,第一批接入的有英國和挪威計算機。 1974年ARPA的鮑勃·凱恩和斯坦福的溫登·澤夫提出TCP/IP協議,定義了在電腦網路之間傳送報文的方法。
1983年1月1日,ARPA網將其網路核心協議由NCP改變為TCP/IP協議。 1986年,美國國家科學基金會(National Science Foundation,NSF)建立了大學之間互聯的骨幹網路NSFnet,這是互聯網歷史上重要的一步。
在1994年,NSFNET轉為商業運營。 1995年隨著網路開放予商業。 互聯網中成功接入的比較重要的其他網路包括Usenet、Bitnet和多種商用X。25網路。 1990年代,整個網路向公眾開放。
1991年8月,在蒂姆·伯納斯-李(Tim Berners-Lee)在瑞士創立HTML、HTTP和歐洲粒子物理研究所](CERN)的最初幾個網頁之後兩年,他開始宣揚其萬維網(World Wide Web)項目。
1993年,Mosaic網頁瀏覽器版本1。0被放出了。 1994年晚期,公共利益在前學術和技術的互聯網步增長。 1996年,「Internet」(互聯網)一詞被廣泛的流通,不過是指幾乎整個的萬維網。
其間,經過一個十年,互聯網成功地容納了原有的計算機網路中的大多數(盡管像FidoNet的一些網路仍然保持獨立)。 這一快速發展要歸功於互聯網沒有中央控制,以及互聯網協議非私有的特質,前者造成了互聯網有機的生長,而後者則鼓勵了廠家之間的兼容,並防止了某一個公司在互聯網上稱霸。
互聯網的成功,可從「Internet」這個術語的混淆窺知一二。最初,互聯網代表那些使用IP協定架設而成的網路,而今天,它則用來泛指各種類型的網路,不再局限於IP網路。 一個互聯網(internet,開頭的「i」是小寫字母)可以是任何分離的實體網路之集合,這些網路以一組通用的協定相連,形成邏輯上的單一網路。
而互聯網(Internet,開頭的「I」是大寫字母)專指美國的前身為ARPA網、使用IP協定將各種實體網路連結成此單一邏輯網路。

『陸』 計算機網路題求解答 謝謝

2017年12月28日,星期四,

兄弟,你這照片上的第一題中多項式的指數看不清呀,

沒事,我就現在的情形,給你說一下大概的思路,你參考著,再結合題目中實際的參數,再套一遍就能把題目解出來了,

CSMA/CD(Carrier Sense Multiple Access with Collision Detection)基帶沖突檢測的載波監聽多路訪問技術(載波監聽多點接入/碰撞檢測)。所有的節點共享傳輸介質。

  • 原理,如下,

    1、所有的站點共享唯一的一條數據通道,

    2、在一個站點發送數據時,其他的站點都不能發送數據,如果要發送就會產生碰撞,就要重新發送,而且所有站點都要再等待一段隨即的時間,

    3、對於每一個站而言,一旦它檢測到有沖突,它就放棄它當前的傳送任務。換句話說,如果兩個站都檢測到信道是空閑的,並且同時開始傳送數據,則它們幾乎立刻就會檢測到有沖突發生。

    4、它們不應該再繼續傳送它們的幀,因為這樣只會產生垃圾而已;相反一旦檢測到沖突之後,它們應該立即停止傳送數據。快速地終止被損壞的幀可以節省時間和帶寬。

    5、它的工作原理是: 發送數據前 先偵聽信道是否空閑 ,若空閑,則立即發送數據。若信道忙碌,則等待一段時間至信道中的信息傳輸結束後再發送數據;若在上一段信息發送結束後,同時有兩個或兩個以上的節點都提出發送請求,則判定為沖突。若偵聽到沖突,則立即停止發送數據,等待一段隨機時間,再重新嘗試。

    6、原理簡單總結為:先聽後發,邊發邊聽,沖突停發,隨機延遲後重發。

    7、Carrier Sense Multiple Access就是,要發送和發送中都要進行監聽,

    8、有人將CSMA/CD的工作過程形象的比喻成很多人在一間黑屋子中舉行討論會,參加會議的人都是只能聽到其他人的聲音。每個人在說話前必須先傾聽,只有等會場安靜下來後,他才能夠發言。人們將發言前監聽以確定是否已有人在發言的動作稱為"載波監聽";將在會場安靜的情況下每人都有平等機會講話成為「多路訪問」;如果有兩人或兩人以上同時說話,大家就無法聽清其中任何一人的發言,這種情況稱為發生「沖突」。發言人在發言過程中要及時發現是否發生沖突,這個動作稱為「沖突檢測」。如果發言人發現沖突已經發生,這時他需要停止講話,然後隨機後退延遲,再次重復上述過程,直至講話成功。如果失敗次數太多,他也許就放棄這次發言的想法。通常嘗試16次後放棄。

    9、核心問題:解決在公共通道上以廣播方式傳送數據中可能出現的問題(主要是數據碰撞問題)

    包含四個處理內容:監聽、發送、檢測、沖突處理

監聽:

通過專門的檢測機構,在站點准備發送前先偵聽一下匯流排上是否有數據正在傳送(線路是否忙)?

若「忙」則進入後述的「退避」處理程序,進而進一步反復進行偵聽工作。

發送:

當確定要發送後,通過發送機構,向匯流排發送數據。

檢測:

數據發送後,也可能發生數據碰撞。因而,要對數據邊發送,邊檢測,以判斷是否沖突了。

沖突處理:

當確認發生沖突後,進入沖突處理程序。有兩種沖突情況:

① 偵聽中發現線路忙

② 發送過程中發現數據碰撞

① 若在偵聽中發現線路忙,則等待一個延時後再次偵聽,若仍然忙,則繼續延遲等待,一直到可以發送為止。每次延時的時間不一致,由退避演算法確定延時值。

② 若發送過程中發現數據碰撞,先發送阻塞信息,強化沖突,再進行監聽工作,以待下次重新發送

10、

先聽後說,邊聽邊說,邊說邊聽;

一旦沖突,立即停說;

等待時機,然後再說;

註:「聽」,即監聽、檢測之意;「說」,即發送數據之意。

11、在發送數據前,先監聽匯流排是否空閑。若匯流排忙,則不發送。若匯流排空閑,則把准備好的數據發送到匯流排上。在發送數據的過程中,工作站邊發送邊檢測匯流排,是否自己發送的數據有沖突。若無沖突則繼續發送直到發完全部數據;若有沖突,則立即停止發送數據,但是要發送一個加強沖突的JAM信號,以便使網路上所有工作站都知道網上發生了沖突,然後,等待一個預定的隨機時間,且在匯流排為空閑時,再重新發送未發完的數據。

12、

CSMA/CD網路上進行傳輸時,必須按下列五個步驟來進行

(1)傳輸前監聽

(2)如果忙則等待

(3)如果空閑則傳輸並檢測沖突

(4)如果沖突發生,重傳前等待

(5)重傳或夭折

補充一個重要的知識點:

要使CSMA/CA 正常工作,我們必須要限制幀的長度。如果某次傳輸發生了碰撞,那麼正在發送數據的站必須在發送該幀的最後一比特之前放棄此次傳輸,因為一旦整個幀都被發送出去,那麼該站將不會保留幀的復本,同時也不會繼續監視是否發生了碰撞。所以,一旦檢測出有沖突,就要立即停止發送,

  • 舉例說明,

    A站點發送數據給B站點,當A站通過監聽確認線路空閑後,開始發送數據給B站點,同時對線路進行監聽,即邊發送邊監聽,邊監聽邊發送,直到數據傳送完畢,那麼如果想要正確發送數據,就需要確定最小幀長度和最小發送間隙(沖突時槽)。

  • CSMA/CD沖突避免的方法:先聽後發、邊聽邊發、隨機延遲後重發。一旦發生沖突,必須讓每台主機都能檢測到。關於最小發送間隙和最小幀長的規定也是為了避免沖突。

  • 考慮如下的情況,主機發送的幀很小,而兩台沖突主機相距很遠。在主機A發送的幀傳輸到B的前一刻,B開始發送幀。這樣,當A的幀到達B時,B檢測到沖突,於是發送沖突信號,假如在B的沖突信號傳輸到A之前,A的幀已經發送完畢,那麼A將檢測不到沖突而誤認為已發送成功。由於信號傳播是有時延的,因此檢測沖突也需要一定的時間。這也是為什麼必須有個最小幀長的限制。

  • 按照標准,10Mbps乙太網採用中繼器時,連接的最大長度是2500米,最多經過4個中繼器,因此規定對10Mbps乙太網一幀的最小發送時間為51.2微秒。這段時間所能傳輸的數據為512位,因此也稱該時間為512位時。這個時間定義為乙太網時隙,或沖突時槽。512位=64位元組,這就是乙太網幀最小64位元組的原因。

  • 以上信息的簡單理解是:A發送一個幀的信息(大小不限制),B收到此幀,發現有沖突,馬上發送包含檢測到了沖突的信息給A,這個沖突信息到達A也是需要時間的,所以,要想A成功發送一個幀(並知道這個幀發送的是否成功,沖沒沖突)是需要這個幀從A到B,再從B到A,這一個來回的時間,

    也就是說,當一個站點決定是否要發送信息之前,一定要先進行線路的檢測,那麼隔多長時間檢測一次合適呢(在沒有檢測的期間是不進行數據的發送的,因此也就不存在沖突),這就要看, 一個電子信號在這兩個站點之間跑一個來回的時間了,試想一下,如果這個信號還沒有跑到地方,你就開始檢測,顯然是浪費檢測信號的設備資源,然後,A站點發送一個電子信號給B站點,信號經過一段時間到達了B站點,然後假設B發現了沖突,馬上告訴A,那麼這個電子信號再跑回A也需要一段時間,如果當這個信號在路上的時候,A就開始檢測是不是有沖突,顯然是不合適的,因為,B發送的沖突信號還在路上,如果A在這個時間段就檢測,一定不會發現有沖突,那麼,A就會繼續發送信號,但這是錯誤,因為已經有沖突被檢測出來,因此,A這么做是錯誤的,所以,A要想正確發送一個電子信號給B,並且被B正確接收,就需要,A發送一個電子信號,並等待它跑一個來回的時間那麼長,才能確認是沒有沖突,然後再繼續發送下一個信號,

  • 這個電子信號跑一個來回的時間,是由站點間的距離s、幀在媒體上的傳播速度為v(光速)以及網路的傳輸率為r(bps)共同決定的,

  • 那麼,假設電子信號跑一個來回的時間是t,則有如下式子,

    t=2s/v;

    又有,假設在時間t內可以傳送的數據量(最小幀)為L,則有如下式子,

    L=t*r;解釋:這個就是說,一個電子信號從A跑到B需要t這么長時間,又因為電子信號幾乎接近光速,因此,即使在t這么短的時間內,我仍然可以不停的發送很多個電子信號,這樣就形成了一串二進制數列在t這個很小的時間段內被從A發送出去,那麼我在t這個時間段內究竟能發送出去多少的電子信號,就要看我的傳輸率r是多少了,因為有這種關系,所以就形成了最小幀的概念,

  • 將 L=t*r 變形為 t=L/r,並將 t=L/r 帶入 t2s/v,得到式子:L/r=2s/v,

  • 再將,題目中給出的數據帶入上式,得到

    2500位元組/(1G bps)=2s/200000(Km);將單位統一後,有下式:

    (2500*8)/(1024*1024*1024)=2s/200000(Km);繼續計算,得:

    s=1.86Km,

  • 若1Gbps取值為1000*1000*1000,則s=2Km;

兄弟,我這個利用工作空隙給你寫答案,你別著急啊,現在是12:48,第三題,我抓緊時間幫你算。