⑴ 【山外筆記-計算機網路·第7版】第02章:物理層
[學習筆記]第02章_物理層-列印版.pdf
本章最重要的內容是:
(1)物理層的任務。
(2)幾種常用的信道復用技術。
(3)幾種常用的寬頻接入技術,主要是ADSL和FTTx。
1、物理層簡介
(1)物理層在連接各種計算機的傳輸媒體上傳輸數據比特流,而不是指具體的傳輸媒體。
(2)物理層的作用是盡可能地屏蔽掉傳輸媒體和通信手段的差異。
(3)用於物理層的協議常稱為物理層規程(procere),其實物理層規程就是物理層協議。
2、物理層的主要任務 :確定與傳輸媒體的介面有關的一些特性。
(1)機械特性:指明介面所用接線器的形狀和尺寸、引腳數目和排列、固定和鎖定裝置等。
(2)電氣特性:指明在介面電纜的各條線上出現的電壓的范圍。
(3)功能特性:指明某條線上出現的某一電平的電壓的意義。
(4)過程特性:指明對於不同功能的各種可能事件的出現順序。
3、物理層要完成傳輸方式的轉換。
(1)數據在計算機內部多採用並行傳輸方式。
(2)數據在通信線路(傳輸媒體)上的傳輸方式一般都是串列傳輸,即逐個比特按照時間順序傳輸。
(3)物理連接的方式:點對點、多點連接或廣播連接。
(4)傳輸媒體的種類:架空明線、雙絞線、對稱電纜、同軸電纜、光纜,以及各種波段的無線信道等。
1、數據通信系統的組成
一個數據通信系統可劃分為源系統(或發送端、發送方)、傳輸系統(或傳輸網路)和目的系統(或接收端、接收方)三大部分。
(1)源系統:一般包括以下兩個部分:
(2)目的系統:一般也包括以下兩個部分:
(3)傳輸系統:可以是簡單的傳輸線,也可以是連接在源系統和目的系統之間的復雜網路系統。
2、通信常用術語
(1)通信的目的是傳送消息(message),數據(data)是運送消息的實體。
(2)數據是使用特定方式表示的信息,通常是有意義的符號序列。
(3)信息的表示可用計算機或其他機器(或人)處理或產生。
(4)信號(signal)則是數據的電氣或電磁的表現。
3、信號的分類 :根據信號中代表消息的參數的取值方式不同
(1)模擬信號/連續信號:代表消息的參數的取值是連續的。
(2)數字信號/離散信號:代表消息的參數的取值是離散的。
1、信道
(1)信道一般都是用來表示向某一個方向傳送信息的媒體。
(2)一條通信電路往往包含一條發送信道和一條接收信道。
(3)單向通信只需要一條信道,而雙向交替通信或雙向同時通信則都需要兩條信道(每個方向各一條)。
2、通信的基本方式 :
(1)單向通信又稱為單工通信,只能有一個方向的通信而沒有反方向的交互。如無線電廣播、有線電廣播、電視廣播。
(2)雙向交替通信又稱為半雙工通信,即通信的雙方都可以發送信息,但不能雙方同時發送/接收。
(3)雙向同時通信又稱為全雙工通信,即通信的雙方可以同時發送和接收信息。
3、調制 (molation)
(1)基帶信號:來自信源的信號,即基本頻帶信號。許多信道不能傳輸基帶信號,必須對其進行調制。
(2)調制的分類
4、基帶調制常用的編碼方式 (如圖2-2)
(1)不歸零制:正電平代表1,負電平代表0。
(2)歸零制:正脈沖代表1,負脈沖代表0。
(3)曼徹斯特:編碼位周期中心的向上跳變代表0,位周期中心的向下跳變代表1。也可反過來定義。
(4)差分曼徹斯特:編碼在每一位的中心處始終都有跳變。位開始邊界有跳變代表0,而位開始邊界沒有跳變代表1。
5、帶通調制的基本方法
(1)調幅(AM)即載波的振幅隨基帶數字信號而變化。例如,0或1分別對應於無載波或有載波輸出。
(2)調頻(FM)即載波的頻率隨基帶數字信號而變化。例如,0或1分別對應於頻率f1或f2。
(3)調相(PM)即載波的初始相位隨基帶數字信號而變化。例如,0或1分別對應於相位0度或180度。
(4)多元制的振幅相位混合調制方法:正交振幅調制QAM(Quadrature Amplitude Molation)。
1、信號失真
(1)信號在信道上傳輸時會不可避免地產生失真,但在接收端只要從失真的波形中能夠識別並恢復出原來的碼元信號,那麼這種失真對通信質量就沒有影響。
(2)碼元傳輸的速率越高,或信號傳輸的距離越遠,或雜訊干擾越大,或傳輸媒體質量越差,在接收端的波形的失真就越嚴重。
2、限制碼元在信道上的傳輸速率的因素
(1)信道能夠通過的頻率范圍
(2)信噪比
3、香農公式 (Shannon)
(1)香農公式(Shannon):C = W*log2(1+S/N) (bit/s)
(2)香農公式表明:信道的帶寬或信道中的信噪比越大,信息的極限傳輸速率就越高。
(3)香農公式指出了信息傳輸速率的上限。
(4)香農公式的意義:只要信息傳輸速率低於信道的極限信息傳輸速率,就一定存在某種辦法來實現無差錯的傳輸。
(5)在實際信道上能夠達到的信息傳輸速率要比香農的極限傳輸速率低不少,是因為香農公式的推導過程中並未考慮如各種脈沖干擾和在傳輸中產生的失真等信號損傷。
1、傳輸媒體
傳輸媒體也稱為傳輸介質或傳輸媒介,是數據傳輸系統中在發送器和接收器之間的物理通路。
2、傳輸媒體的分類
(1)導引型傳輸媒體:電磁波被導引沿著固體媒體(雙絞線、同軸電纜或光纖)傳播。
(2)非導引型傳輸媒體:是指自由空間,電磁波的傳輸常稱為無線傳輸。
1、雙絞線
(1)雙絞線也稱為雙扭線, 即把兩根互相絕緣的銅導線並排放在一起,然後用規則的方法絞合(twist)起來。絞合可減少對相鄰導線的電磁干擾。
(2)電纜:通常由一定數量的雙絞線捆成,在其外麵包上護套。
(3)屏蔽雙絞線STP(Shielded Twisted Pair):在雙絞線的外面再加上一層用金屬絲編織成的屏蔽層,提高了雙絞線抗電磁干擾的能力。價格比無屏蔽雙絞線UTP(Unshielded Twisted Pair)要貴一些。
(4)模擬傳輸和數字傳輸都可以使用雙絞線,其通信距離一般為幾到十幾公里。
(5)雙絞線布線標准
(6)雙絞線的使用
2、同軸電纜
(1)同軸電纜由內導體銅質芯線(單股實心線或多股絞合線)、絕緣層、網狀編織的外導體屏蔽層(也可以是單股的)以及保護塑料外層所組成。
(2)由於外導體屏蔽層的作用,同軸電纜具有很好的抗干擾特性,被廣泛用於傳輸較高速率的數據。
(3)同軸電纜主要用在有線電視網的居民小區中。
(4)同軸電纜的帶寬取決於電纜的質量。目前高質量的同軸電纜的帶寬已接近1GHz。
3、光纜
(1)光纖通信就是利用光導纖維(簡稱光纖)傳遞光脈沖來進行通信。有光脈沖為1,沒有光脈沖為0。
(2)光纖是光纖通信的傳輸媒體。
(3)多模光纖:可以存在多條不同角度入射的光線在一條光纖中傳輸。光脈沖在多模光纖中傳輸時會逐漸展寬,造成失真,多模光纖只適合於近距離傳輸。
(4)單模光纖:若光纖的直徑減小到只有一個光的波長,則光纖就像一根波導那樣,可使光線一直向前傳播,而不會產生多次反射。單模光纖的纖芯很細,其直徑只有幾個微米,製造起來成本較高。
(5)光纖通信中常用的三個波段中心:850nm,1300nm和1550nm。
(6)光纜:一根光纜少則只有一根光纖,多則可包括數十至數百根光纖,再加上加強芯和填充物,必要時還可放入遠供電源線,最後加上包帶層和外護套。
(7)光纖的優點
1、無線傳輸
(1)無線傳輸是利用無線信道進行信息的傳輸,可使用的頻段很廣。
(2)LF,MF和HF分別是低頻(30kHz-300kHz)、中頻(300kHz-3MH z)和高頻(3MHz-30MHz)。
(3)V,U,S和E分別是甚高頻(30MHz-300MHz)、特高頻(300MHz-3GHz)、超高頻(3GHz-30GHz)和極高頻(30GHz-300GHz),最高的一個頻段中的T是Tremendously。
2、短波通信: 即高頻通信,主要是靠電離層的反射傳播到地面上很遠的地方,通信質量較差。
3、無線電微波通信
(1)微波的頻率范圍為300M Hz-300GHz(波長1m-1mm),但主要使用2~40GHz的頻率范圍。
(2)微波在空間中直線傳播,會穿透電離層而進入宇宙空間,傳播距離受到限制,一般只有50km左右。
(3)傳統的微波通信主要有兩種方式,即地面微波接力通信和衛星通信。
(4)微波接力通信:在一條微波通信信道的兩個終端之間建立若干個中繼站,中繼站把前一站送來的信號經過放大後再發送到下一站,故稱為「接力」,可傳輸電話、電報、圖像、數據等信息。
(5)衛星通信:利用高空的人造同步地球衛星作為中繼器的一種微波接力通信。
(6)無線區域網使用ISM無線電頻段中的2.4GHz和5.8GHz頻段。
(7)紅外通信、激光通信也使用非導引型媒體,可用於近距離的筆記本電腦相互傳送數據。
1、復用(multiplexing)技術原理
(1)在發送端使用一個復用器,就可以使用一個共享信道進行通信。
(2)在接收端再使用分用器,把合起來傳輸的信息分別送到相應的終點。
(3)復用器和分用器總是成對使用,在復用器和分用器之間是用戶共享的高速信道。
(4)分用器(demultiplexer)的作用:把高速信道傳送過來的數據進行分用,分別送交到相應的用戶。
2、最基本的復用
(1)頻分復用FDM(Frequency Division Multiplexing)
(2)時分復用TDM(Time Division Multiplexing):
3、統計時分復用STDM (Statistic TDM)
(1)統計時分復用STDM是一種改進的時分復用,能明顯地提高信道的利用率。
(2)集中器(concentrator):將多個用戶的數據集中起來通過高速線路發送到一個遠地計算機。
(3)統計時分復用使用STDM幀來傳送數據,每一個STDM幀中的時隙數小於連接在集中器上的用戶數。
(4)STDM幀不是固定分配時隙,而是按需動態地分配時隙,提高了線路的利用率。
(5)統計復用又稱為非同步時分復用,而普通的時分復用稱為同步時分復用。
(6)STDM幀中每個時隙必須有用戶的地址信息,這是統計時分復用必須要有的和不可避免的一些開銷。
(7)TDM幀和STDM幀都是在物理層傳送的比特流中所劃分的幀。和數據鏈路層的幀是完全不同的概念。
(8)使用統計時分復用的集中器也叫做智能復用器,能提供對整個報文的存儲轉發能力,通過排隊方式使各用戶更合理地共享信道。此外,許多集中器還可能具有路由選擇、數據壓縮、前向糾錯等功能。
1、波分復用WDM (Wavelength Division Multiplexing)
波分復用WDM是光的頻分復用,在一根光纖上用波長來復用兩路光載波信號。
2、密集波分復用DWDM (Dense Wavelength Division Multiplexing)
密集波分復用DWDM是在一根光纖上復用幾十路或更多路數的光載波信號。
1、碼分復用CDM (Code Division Multiplexing)
(1)每一個用戶可以在同樣的時間使用同樣的頻帶進行通信。
(2)各用戶使用經過特殊挑選的不同碼型,因此各用戶之間不會造成干擾。
(3)碼分復用最初用於軍事通信,現已廣泛用於民用的移動通信中,特別是在無線區域網中。
2、碼分多址CDMA (Code Division Multiple Access)。
(1)在CDMA中,每一個比特時間再劃分為m個短的間隔,稱為碼片(chip)。通常m的值是64或128。
(2)使用CDMA的每一個站被指派一個唯一的m bit碼片序列(chip sequence)。
(3)一個站如果發送比特1,則發送m bit碼片序列。如果發送比特0,則發送該碼片序列的二進制反碼。
(4)發送信息的每一個比特要轉換成m個比特的碼片,這種通信方式是擴頻通信中的直接序列擴頻DSSS。
(5)CDMA系統給每一個站分配的碼片序列必須各不相同,並且還互相正交(orthogonal)。
(6)CDMA的工作原理:現假定有一個X站要接收S站發送的數據。
(7)擴頻通信(spread spectrum)分為直接序列擴頻DSSS(Direct Sequence Spread Spectrum)和跳頻擴頻FHSS(Frequency Hopping Spread Spectrum)兩大類。
早起電話機用戶使用雙絞線電纜。長途干線採用的是頻分復用FDM的模擬傳輸方式,現在大都採用時分復用PCM的數字傳輸方式。現代電信網,在數字化的同時,光纖開始成為長途干線最主要的傳輸媒體。
1、早期的數字傳輸系統最主要的缺點:
(1)速率標准不統一。互不兼容的國際標准使國際范圍的基於光纖的高速數據傳輸就很難實現。
(2)不是同步傳輸。為了節約經費,各國的數字網主要採用准同步方式。
2、數字傳輸標准
(1)同步光纖網SONET(Synchronous Optical Network)
(2)同步數字系列SDH(Synchronous Digital Hierarchy)
(3)SDH/SONET定義了標准光信號,規定了波長為1310nm和1550nm的激光源。在物理層定義了幀結構。
(4)SDH/SONET標準的制定,使北美、日本和歐洲三種不同的數字傳輸體制在STM-1等級上獲得了統一,第一次真正實現了數字傳輸體制上的世界性標准。
互聯網的發展初期,用戶利用電話的用戶線通過數據機連接到ISP,速率最高只能達到56kbit/s。
從寬頻接入的媒體來看,寬頻接入技術可以分為有線寬頻接入和無線寬頻接入兩大類。
1、非對稱數字用戶線ADSL (Asymmetric Digital Subscriber Line)
(1)ADSL技術是用數字技術對現有的模擬電話用戶線進行改造,使它能夠承載寬頻數字業務。
(2)ADSL技術把0-4kHz低端頻譜留給傳統電話使用,把原來沒有被利用的高端頻譜留給用戶上網使用。
(3)ADSL的ITU的標準是G.992.1(或稱G.dmt,表示它使用DMT技術)。
(4)「非對稱」是指ADSL的下行(從ISP到用戶)帶寬都遠遠大於上行(從用戶到ISP)帶寬。
(5)ADSL的傳輸距離取決於數據率和用戶線的線徑(用戶線越細,信號傳輸時的衰減就越大)。
(6)ADSL所能得到的最高數據傳輸速率還與實際的用戶線上的信噪比密切相關。
2、ADSL數據機的實現方案 :離散多音調DMT(Discrete Multi-Tone)調制技術
(1)ADSL在用戶線(銅線)的兩端各安裝一個ADSL數據機。
(2)「多音調」就是「多載波」或「多子信道」的意思。
(3)DMT調制技術採用頻分復用的方法,把40kHz-1.1MHz的高端頻譜劃分為許多子信道。
(4)當ADSL啟動時,用戶線兩端的ADSL數據機就測試可用的頻率、各子信道受到的干擾情況,以及在每一個頻率上測試信號的傳輸質量。
(5)ADSL能夠選擇合適的調制方案以獲得盡可能高的數據率,但不能保證固定的數據率。
3、數字用戶線接入復用器DSLAM (DSL Access Multiplexer)
(1)數字用戶線接入復用器包括許多ADSL數據機。
(2)ADSL數據機又稱為接入端接單元ATU(Access Termination Unit)。
(3)ADSL數據機必須成對使用,因此把在電話端局記為ATU-C,用戶家中記為ATU-R。
(4)ADSL最大的好處就是可以利用現有電話網中的用戶線(銅線),而不需要重新布線。
(5)ADSL數據機有兩個插口:
(6)一個DSLAM可支持多達500-1000個用戶。
4、第二代ADSL
(1)ITU-T已頒布了G系列標准,被稱為第二代ADSL,ADSL2。
(1)第二代ADSL通過提高調制效率得到了更高的數據率。
(2)第二代ADSL採用了無縫速率自適應技術SRA(Seamless Rate Adaptation),可在運營中不中斷通信和不產生誤碼的情況下,根據線路的實時狀況,自適應地調整數據率。
(3)第二代ADSL改善了線路質量評測和故障定位功能。
5、ADSL技術的變型 :xDSL
ADSL並不適合於企業,為了滿足企業的需要,產生了ADSL技術的變型:xDSL。
(1)對稱DSL(Symmetric DSL,SDSL):把帶寬平均分配到下行和上行兩個方向,每個方向的速度分別為384kbit/s或1.5Mbit/s,距離分別為5.5km或3km。
(2)HDSL(High speed DSL):使用一對線或兩對線的對稱DSL,是用來取代T1線路的高速數字用戶線,數據速率可達768KBit/s或1.5Mbit/s,距離為2.7-3.6km。
(3)VDSL(Very high speed DSL):比ADSL更快的、用於短距離傳送(300-1800m),即甚高速數字用戶線,是ADSL的快速版本。
1、光纖同軸混合網HFC (Hybrid Fiber Coax)
(1)光纖同軸混合網HFC是在有線電視網的基礎上改造開發的一種居民寬頻接入網。
(2)光纖同軸混合網HFC可傳送電視節目,能提供電話、數據和其他寬頻交互型業務。
(3)有線電視網最早是樹形拓撲結構的同軸電纜網路,採用模擬技術的頻分復用進行單向廣播傳輸。
2、光纖同軸混合網HFC的主要特點:
(1)HFC網把原有線電視網中的同軸電纜主幹部分改換為光纖,光纖從頭端連接到光纖結點(fiber node)。
(2)在光纖結點光信號被轉換為電信號,然後通過同軸電纜傳送到每個用戶家庭。
(3)HFC網具有雙向傳輸功能,而且擴展了傳輸頻帶。
(4)連接到一個光纖結點的典型用戶數是500左右,但不超過2000。
3、電纜數據機 (cable modem)
(1)模擬電視機接收數字電視信號需要把機頂盒(set-top box)的設備連接在同軸電纜和電視機之間。
(2)電纜數據機:用於用戶接入互聯網,以及在上行信道中傳送交互數字電視所需的一些信息。
(3)電纜數據機可以做成一個單獨的設備,也可以做成內置式的,安裝在電視機的機頂盒裡面。
(4)電纜數據機不需要成對使用,而只需安裝在用戶端。
(5)電纜數據機必須解決共享信道中可能出現的沖突問題,比ADSL數據機復雜得多。
信號在陸地上長距離的傳輸,已經基本實現了光纖化。遠距離的傳輸媒體使用光纜。只是到了臨近用戶家庭的地方,才轉為銅纜(電話的用戶線和同軸電纜)。
1、多種寬頻光纖接入方式FTTx
(1)多種寬頻光纖接入方式FTTx,x可代表不同的光纖接入地點,即光電轉換的地方。
(2)光纖到戶FTTH(Fiber To The Home):把光纖一直鋪設到用戶家庭,在光纖進入用戶後,把光信號轉換為電信號,可以使用戶獲得最高的上網速率。
(3)光纖到路邊FTTC(C表示Curb)
(4)光纖到小區FTTZ(Z表示Zone)
(5)光纖到大樓FTTB(B表示Building)
(6)光纖到樓層FTTF(F表示Floor)
(7)光纖到辦公室FTTO(O表示Office)
(8)光纖到桌面FTTD(D表示Desk)
2、無源光網路PON (Passive Optical Network)
(1)光配線網ODN(Optical Distribution Network):在光纖干線和廣大用戶之間,鋪設的轉換裝置,使得數十個家庭用戶能夠共享一根光纖干線。
(2)無源光網路PON(Passive Optical Network),即無源的光配線網。
(3) 無源:表明在光配線網中無須配備電源,因此基本上不用維護,其長期運營成本和管理成本都很低。
(4)光配線網採用波分復用,上行和下行分別使用不同的波長。
(5)光線路終端OLT( Optical Line Terminal)是連接到光纖干線的終端設備。
(6)無源光網路PON下行數據傳輸
(7)無源光網路PON上行數據傳輸
當ONU發送上行數據時,先把電信號轉換為光信號,光分路器把各ONU發來的上行數據匯總後,以TDMA方式發往OLT,而發送時間和長度都由OLT集中控制,以便有序地共享光纖主幹。
(8)從ONU到用戶的個人電腦一般使用乙太網連接,使用5類線作為傳輸媒體。
(9)從總的趨勢來看,光網路單元ONU越來越靠近用戶的家庭,即「光進銅退」。
3、無源光網路PON的種類
(1)乙太網無源光網路EPON(Ethernet PON)
(2)吉比特無源光網路GPON(Gigabit PON)
⑵ 無線接入的組成
伴隨著通信的飛速發展和電話普及率的日益提高,在人口密集的城市或位置偏遠的山區安裝電話,在鋪設最後一段用戶線的時候面臨著一系列難以解決的問題:銅線和雙絞線的長度在4-5公里的時候出現高環阻問題,通信質量難以保證:山區、島嶼以及城市用戶密度較大而管線緊張的地區用戶線架設困難而導致耗時、費力、成本居高不下。為了解決這個所謂的「最後一英(公)里」的問題,達到安裝迅速、價格低廉的目的,作為接入網技術中的一個重要部分--無線接入技術便應運而生了。無線接入是指從交換節點到用戶終端之間,部分或全部採用了無線手段。典型的無線接入系統主要由控制器、操作維護中心、基站、固定用戶單元和移動終端等幾個部分組成。各部分所完成的功能如下。 無線區域網可以在普通區域網基礎上通過無線Hub、無線接入站(Access Point,AP,亦譯作網路橋通器)、無線網橋、無線Modem及無線網卡等來實現。在業內無線區域網多種標准並存,太多的IEEE 802.11標准極易引起混亂,應當減少標准。除了完整定義WLAN系統的三類主要規范(802.11a、802.11b及802.11g)外,IEEE目前正設法制定增強型標准,以減少現行協議存在的缺陷。這並非開發新的無線LAN系統,而是對原標准進行擴展,最終形成一類——最多是保留現行三類標准。
802.11a擴充了802.11標準的物理層,規定該層使用5G Hz 的頻帶。該標准採用OFDM(正交頻分)調制技術,傳輸速率范圍為6Mbps~54Mbps,共有1 2個不重疊的傳輸信道。這樣的速率既能滿足室內的應用,也能滿足室外的應用。
802.11b規定採用2.4GH z 頻帶,調制方法採用補償碼鍵控(CKK),共有3個不重疊的傳輸信道。傳輸速率能夠從11Mbps自動降到5.5Mbps,或者根據直接序列擴頻技術調整到2Mbps和1Mbps,以保證設備正常運行與穩定。
802.11g是第三個傳輸標准,共有3個不重疊的傳輸信道。它雖然同樣運行於2.4GHz,但由於該標准中使用了與802.11a標准相同的調制方式OFDM,使網路達到了54Mbps的高傳輸速率,而基於該標準的產品價格也只略高於802.11b標准產品。
802.11e將解決802.11網的QoS特性。它不像乙太網那樣,採用MAC層,而是代之以時分多路接入(TDMA)技術,並對重要通信增加額外糾錯功能。目前標准還沒有定案,原因在於對服務級別仍存在爭議,另外,如何具體實現特定服務級別也還是個問題。
802.11f 主要解決802. 11在網間互連方面存在的不足。用戶在兩個不同的交換網段(無線信道),或兩種不同類型無線網的接入點間進行漫遊時,如何更好地維護網路連接,無線LAN具備蜂窩電話那樣的靈活性顯得至關重要。
802.11h力圖在傳輸功率和無線信道選擇上比802.11a更勝一籌,它與802.11e一道將成為歐洲廣為接受的標准。 802.11i主要是克服802.11在安全性方面存在的不足,不像WEP,主管這個標準的工作組目前還未選定認證協議:一些成員想採用一種稱為「辦公化的電報密碼本(OCB)」的新系統,但它分屬三種不同的專利;它是一類基於AES加密演算法的完整新型標准。另一些成員則傾向於採用通用密碼。
802.11j尚在醞釀中,I EEE還沒正式成立專門任務組來討論,現在處於草擬階段,它將採用802.11a與HiperLAN2網共用的頻段。
802.11n,下一個無線新規范,這一新規范的數據傳輸速率尚未確定,但至少將在100MBps以上。
無線區域網由於可移動及高速的數據傳輸,使其實際中的應用越來越廣泛。
① 大樓之間
大樓之間建構網路的連結,取代專線,簡單又便宜。 餐飲及零售餐飲服務業可使用無線區域網絡產品,直接從餐桌即可輸入並傳送客人點菜內容至廚房、櫃台。零售商促銷時,可使用無線區域網絡產品設置臨時收銀櫃台。
② 醫療
使用附無線區域網絡產品的手提式計算機取得實時信息,醫護人員可藉此避免對傷患救治的遲延、不必要的紙上作業、單據循環的遲延及誤診等,而提升對傷患照顧的品質。
③ 企業
當企業內的員工使用無線區域網絡產品時,不管他們在辦公室的任何一個角落,有無線區域網絡產品,就能隨意地發電子郵件、分享檔案及上網路瀏覽。
④ 倉儲管理
一般倉儲人員的盤點事宜,透過無線網路的應用,能立即將最新的資料輸入計算機倉儲系統。
⑤ 貨櫃集散場
一般貨櫃集散場的橋式起重車,可於調動貨櫃時,將實時信息傳回office,以利相關作業之逐行。
⑥ 監視系統
一般位於遠方且需受監控現場之場所,由於布線之困難,可藉由無線網路將遠方之影像傳回主控站。
⑦ 展示會場
諸如一般的電子展,計算機展,由於網路需求極高,而且布線又會讓會場顯得凌亂,因此若能使用無線網路,則是再好不過的選擇。 寬頻無線接入系統屬於固定無線接入系統,以點對多點的傳送方式提供高速、雙向的數據、語音或視頻業務,可作為DDN專線、幀中繼或E1傳輸、高速Internet接入、區域網和城域網互聯等應用的有力手段。寬頻無線接入系統可以按使用頻段的不同劃分為MMDS(Multi-channel Multi-point Distribution Service)和LMDS(Local Multi-point Distribution Service)兩大系列。 寬頻無線接入系統由基站和遠端站構成,一個基站可在自己的無線覆蓋范圍內同時與多個遠端站通信。基站將遠端站的數據進行匯聚,然後通過光線環路或微波SDH環路接入骨幹數據網路。
寬頻無線接入系統的優勢有:
1) 網路構成非常靈活,可擴容和可重用性好
2) 網路建設快、開通迅速
3) 初期投資少,資金回報周期短
4) 業務介面豐富
5) 高質量、高可靠性、容量大、價格低、技術成熟
寬頻無線接入系統提供的業務有:
1) 面向無連接業務
2) 網際網路接入(WWW瀏覽,E-mail,高速文件傳輸等)
3) 區域網、城域網互聯 VOD、遠程教育、遠程醫療等增值業務
4) 面向連接業務(電路或電路模擬方式)
5) 普通電話業務
6) 低於E1的電路承載業務,如n×64kbit/s等
7) 幀中繼
8) E1或高於E1的數字電路承載業務
系統的典型用戶群為
1) 商務樓
2) 集團用戶(主要指集團公司、工礦企業、銀行、政府機關)
3) 賓館
4) 商業用戶(網吧等娛樂性場所)
5) 小區用戶
6) 專網用戶 FSO技術是一種基於光傳輸方式、採用紅外激光承載高速信號的無線傳輸技術,它以激光為載體、以空氣為介質,用點對點或點對多點的方式實現連接,由於其設備也以發光二極體或激光二極體為光源,因此又有虛擬光纖之稱。FSO技術利用小功率的紅外激光束為載體在位於樓頂或窗外的收發器間傳輸數據,紅外波段比微波波段更小,更加靈活和方便。FSO系統的工作頻段在300GHz以上,該頻段的應用在全球不受管制,而且可以免費使用。FSO技術具有與光纖相同的帶寬傳輸能力,使用相似的光學發射器和接收器,甚至還可以在自由空間實現波分復用(WDM)技術,具備低雨衰、無需申請頻段、設備易升級等微波不可比擬的優勢,而且其開放的介面支持來自多種廠商的儀器。目前市場上的產品最高支持2.5Gbps的傳輸速率,最大傳輸距離為4公里。不過FSO技術在理論上沒有帶寬上限,160Gbps的設備正在研製當中。
FSO技術可以傳輸數據、語音和影像等內容,具有高帶寬、部署迅捷、費用合理、體積小、開通方便的特點,在諸如大型集會通信、緊急業務開通、路由備份等應急通信中具有開通迅速、拆遷方便等優勢。而且,FSO設備相對需要天線的微波設備而言可以更方便地獲得屋頂權,也可以隔窗安裝於戶內,這對於國內大中城市的運營者來說有時極為關鍵。
FSO產品安裝快速簡易,目前最高速率可達2.5G,最遠可傳送4km,在本地網和邊緣網等近距離高速網的建設中大有用武之地,目前FSO主要應用於一些不宜布線或是布線成本高、施工難度大、經市政部門審批困難的地方,如市區高層建築物之間、公路(鐵路)兩側的建築物之間、不易架橋的河流兩岸之間、古建築、高山、島嶼以及沙漠地帶等。另外,FSO設備也可用於移動基站的環路建設、場所比較分散的企業區域網子網之間的連接和應急通信。對於銀行、證券、政府機關等需要穩定服務的商業應用來說,FSO產品可以作為預防服務中斷的光纖備份設備。鑒於FSO產品安裝快速簡易,因此可在展覽會、短期租用的建築、野外的臨時工作場所或地震等突發事件的現場作為一種臨時的通信連接。