當前位置:首頁 » 無線網路 » 手機網路信號是那裡接收來的
擴展閱讀
電腦開機輸錯5次密碼 2024-11-15 20:27:38

手機網路信號是那裡接收來的

發布時間: 2022-02-23 02:56:05

Ⅰ 手機信號怎麼來的

通過電磁波來接收信號的。

1831年,英國的法拉第發現了電磁感應現象,麥克斯韋進一步用數學公式闡述了法拉第等人的研究成果,並把電磁感應理論推廣到了空間。

而60多年後赫茲在實驗中證實了電磁波的存在。電磁波的發現,成為有線電通襲信向無線電通信的轉折點,也成為整個移動通信的發源點。

(1)手機網路信號是那裡接收來的擴展閱讀:

手機信號是以電磁波的形式通過基站在不同區域之間進行傳播的,但是電磁波傳輸的距離有限,並且隨著距離的增加而逐漸衰弱。

所以為了讓信號能夠內覆蓋的范圍足夠廣,就需要設立很多個基站。而基站的分布並非隨意的,容為了節約成本,最大限度的利用資源,基站的分布方式精密的計算的。

Ⅱ 手機接收的無線網路信號,這個無線網路信號是從哪發射的

沒見過還沒聽說過么
基站
我們這給它叫信號塔
如果你說滴是WIFI請追問。。。如果我的回答能幫到你,那採納滴時候算上我一個

Ⅲ 手機是怎麼接收屬於自己的信號的

信號是表示消息的物理量,如電信號可以通過幅度、頻率、相位的變化來表示不同的消息。這種電信號有模擬信號和數字信號兩類。信號是運載消息的工具,是消息的載體。從廣義上講,它包含光信號、聲信號和電信號等。按照實際用途區分,信號包括電視信號、廣播信號、雷達信號,通信信號等;按照所具有的時間特性區分,則有確定性信號和隨機性信號等。


網路會自動分配每個手機接收通知的時間。在WCDMA中,網路會先喊」有你的消息「或者」沒有你的消息「,當聽到」沒有「的時候,那就不用管接下來網路叫的是誰的身份證號碼,當聽到」有「的時候,手機才需要仔細聽是不是自己的身份證號碼。然而手機會不間斷收聽簡單說就是在某一時刻收聽一下尋呼消息。

通過上述,手機就是這樣來不間斷的接收屬於自己的信號的!

Ⅳ 我們平常用的手機是怎麼接收信號的

衛星通信覆蓋范圍廣,幾十顆衛星就可以實現全球覆蓋,而實現全球4G信號覆蓋,用了600多萬座基站,仍然存在很多信號死角,比如一些偏遠山區、海上是沒有4G信號的。手機的電量不足以使用衛星通訊,很快手機就會沒電了,並且成本非常高。成本高售價就會更高,不足以產生好的商業利潤。這才是真正的原因。技術從來都不是商業活動的障礙。


衛星距離地面遠,從手機發送信號至衛星,到衛星接收信號後回傳至手機,所花費的時間比地面通信基站要多很多,因此通信衛星的時延較長,4G理論時延是10毫秒,5G理論時延是1毫秒,通信衛星的時延至少20毫秒。天通一號01星我國衛星移動通信系統首發星,2016年8月在西昌衛星發射中心順利升空。天通一號01星的發射填補了我國沒有自主衛星移動通信系統的空白。

Ⅳ 手機網路信號的各個區域是通過什麼來實現的

GSM900和DCS1800就是我們平常講的雙頻網路,它們都是GSM標准。兩個系統功能相同,主要是頻率不同,GSM900工作在900MHZ,DCS1800工作在1800MHZ。我國最早使用的是GSM900,隨著通信網路規模和用戶數量的迅速發展,原有的GSM900網路頻率變得日益緊張,為更好地滿足用戶增長的需求,我國近期引入了DCS1800,並採用以GSM900網路為依託, DCS1800網路為補充的組網方式,構成GSM900/DCS1800雙頻網,以緩和高話務密集區無線信道日趨緊張的狀況。只要用戶使用的是雙頻手機,就可在GSM900/DCS1800兩者之間自由切換,自動選擇最佳信道進行通話,即使在通話中手機也可在兩個網路之間自動切換而用戶毫無察覺,而且手機選擇了最佳信道,接通率得到了提高。為適應這個趨勢,進一步搶占市場份額,諾基亞、摩托羅拉、愛立信等世界著名行動電話設備生產廠商競相開發並推出多頻段手機。

(一)GSM系統的網路結構

GSM的歷史可以追溯到1982年,當時,北歐四國向CEPT(Conference Europe of Post and Telecommunications)提交了一份建議書,要求制定900MHZ頻段的歐洲公共電信業務規 范,以建立全歐統一的蜂窩系統。同年,成立了移動通信特別小組(GSM-Group Special Mobile)。在1982年~1985年期間,討論焦點是制定模擬蜂窩網標准還是制定數字蜂窩網 標准問題,直到1986年決定為制定數字蜂窩網標准。1986年,在巴黎對不同公司、不同 方案的系統(8個)進行了比較,包括現場試驗。1987年5月選定窄帶TDMA方案。與此同時,18個國家簽署了諒解備忘錄,相互達成履行規范的協議。1988年頒布了GSM標准, 也稱泛歐數字蜂窩通信標准。在現階段,GSM包括兩個並行的系統:GSM900和DCS1800, 這兩個系統功能相同,主要是頻率不同。在GSM建議中,未對硬體作出規定,只對功能和介面制定了詳細規定,這樣便於不同產品可以互通。GSM建議共有12個系統。

1.GSM系統的主要組成

GSM數字蜂窩通信系統的主要組成部分可分為移動台、基站子系統和網路子系統。 基站子系統(簡稱基站BS)由基站收發台(BTS)和基站控制器(BSC)組成;網路子系 統由移動交換中心(MSC)和操作維護中心(OMC)以及原地位置寄存器(HLR)、訪問 位置寄存器(VLR)、鑒權中心(AUC)和設備標志寄存器(EIR)等組成。

2.GSM的區域、號碼、地址與識別

1)區域劃分

從地理位置范圍來看,GSM系統分為GSM服務區,公用陸地移動網(PLMN)業務區、移動 交換控制區(MSC區)、位置區(LA)、基站區和小區。

*GSM服務區

由聯網的GSM全部成員國組成,移動用戶只要在服務區內,就能得到系統的各種服 務,包括完成國際 漫遊。

*PLMN業務區

由GSM系統構成的公用陸地移動網(GSM/PLMN)處於國際或國內匯接交換機的級別上,該區域為PLMN業務區,它可以與公用交換電信網(PSTN)、綜合業務數字網(ISDN) 和公用數據網(PDNN)互連,在該區域內,有共同的編號方法及路由規劃。一個PLMN 業務區包括多個MSC業務區,甚至可擴展全國。

*MSC業務區

在該區域內,有共同的編號方法及路由規劃。由一個移動交換中心控制區域稱為 MSC業務區。一個MSC區可以由一個或多個位置區組成。

*位置區

每一個MSC業務區分成若干位置區(LA),位置區由若干基站區組成,它與一個或 若干個基站控制器(BSC)有關。在位置區內移動台移動時,不需要作位置更新。當尋 呼移動用戶時,位置區內全部基站可以同時發尋呼信號。系統中,位置區域以位置區 識別碼(LAI)來區分MSC業務區的不同位置區。

*基站區

一般指一個基站控制器所控制若干個小區的區域稱為基站區。

*小區

小區也叫蜂窩區,理想形狀是正六邊形,一個小區包含一個基站,每個基站包含 若干套收,發信機,其有效覆蓋范圍決定於發射功率、天線高度等因素,一般為幾公 里。基站可位於正六邊形中心,採用全向天線,稱為中心激勵;也可位於正六邊形頂 點(相隔設置),採用120度或60度定向天線,稱為頂點激勵。 若小區內業務量激增時,小區可以縮小(一分為四),新的小區俗稱「小小區」, 在蜂窩網中稱為小區分裂。

2)識別號碼

GSM網路是十分復雜的,它包括交換系統,基站子系統和移動台。移動用戶可以 與市話網用戶、綜合業務數字網用戶和其它移動用戶進行接續呼叫,因此必須具有多 種識別號碼。

1>國際移動用戶識別碼(IMSI)

國際移動用戶識別碼是用於識別GSM/PLMN網中用戶,簡稱用戶識別碼,根據GSM 建議,IMSI最大長度為15位十進制數字。

MCC MNC MSIN/NMSI

3位數字 1或者2位數字 10-11位數字

MCC-移動國家碼,3位數字。如中國的MCC為460。

MNC-移動網號,最多2位數字。用於識別歸屬的移動通信網(PLMN)。

MSIN-移動用戶識別碼。用於識別移動通信網中的移動用戶。

NMSI-國內移動用戶識別碼。由移動網號和移動用戶識別碼組成。

2>臨時用戶識別碼(TMSI)

為安全起見,在空中傳送用戶識別碼時用TMSI來代替IMSI,因為TMSI只在本地有效(即 在該MSC/VLR區域內),其組成結構由管理部門選擇,但總長不超過4個位元組。

3>國際移動設備識別碼(IMEI)

IMEI是唯一的,用於識別移動設備的號碼。用於監控被竊或無效的這一類移動設備, IMEI的構成如下圖所示。

IMEI=TAC+FAC+SNR+SP(15位數)。

TAC FAC SNR SP

6位數字 2位數字 6位數字 1位數字

TAC - Type Approval Code (TAC) 型號批准碼,由歐洲型號批准中心分配。 前2位為國家碼。(例如:Nokia的,Ericsson的,Motorola的,又各式各樣不同型號的 批准碼又不盡相同,如同是Ericsson的,GH388和GF388就不一樣,雖然只差有無蓋; 但只要是同一型號的,前六碼一定一樣,如果不一樣,可能是冒牌貨!)

FAC - Final Assembly Code (FAC)最後裝配碼,表示生產廠或最後裝配地, 由廠家編碼。如40的話,是Motorola在英國(UK)的工廠,07也是Motorola的工廠,在 德國,67的話也是,在美國本地。對Nokia,FAC是51。 SNR - Serial Number (SNR)序號碼,獨立地、唯一地識別每個TAC和FAC移 動設備,所以同一個牌子的同一型號的SNR是不可能一樣的。

SP - Spare備用碼,通常是0。

4>移動台PSTN/ISDN號碼(MSISDN)

MSISDN用於公用交換電信網(PSTN)或綜合業務數字網(ISDN)撥向GSM 系統的號碼,構成如下:

MSISDN=CC+NDC+SN(總長不超過15位數字)

CC=國家碼(如中國為86),NDC=國內地區碼,SN=用戶號碼

5>移動台漫遊號碼(MSRN)

當移動台漫遊到另一個移動交換中心業務區時,該移動交換中心將給移動台分配 一個臨時漫遊號碼,用於路由選擇。漫遊號碼格式與被訪地的移動台PSTN/ISDN號碼格 式相同。當移動台離開該區後,被訪位置寄存器(VLR)和原地位置寄存器(HLR)都 要刪除該漫遊號碼,以便可再分配給其它移動台使用。

MSRN分配過程如下:

市話用戶通過公用交換電信網發MSISDN號至GSMC、HLR。HLR請求被訪MSC/VLR分配 一個臨時性漫遊號碼,分配後將該號碼送至HLR。HLR一方面向MSC發送該移動台有關參 數,如國際移動用戶識別碼(IMSI);另一方面HLR向GMSC告知該移動台漫遊號碼, GMSC即可選擇路由,完成市話用戶->GMSC->MSC->移動台接續任務。

6>位置區識別碼(LAI)

LAI用於移動用戶的位置更新。LAI=MCC+MNC+LAC 。MCC=移動國家碼,識別國家, 與IMSI中的三位數字相同。MNC=移動網號,識別不同的GSMPLMN網,與IMSI中的MNC相 同。LAC=位置區號碼,識別一個GSMPLMN網中的位置區。LAC的最大長度為16bits,一 個GSMPLMN中可以定義65536個不同的位置區。

7>小區全球識別碼(CGI)

CGI是用來識別一個位置區內的小區。它是在位置區識別碼(LAI)後加上一個小 區識別碼(CI)。

CGC=MCC+MNC+LAC+CI。

CI=小區識別碼,識別一個位置區內的小區,最多為16bits。

8>基站識別碼(BSIC)

BSIC用於移動台識別不同的相鄰基站,BSIC採用6比特編碼。

(二)GSM系統信道分類

蜂窩通信系統要傳輸不同類型的信息,包括業務信息和各種控制信息,因而要在物理 信道上安排相應的邏輯信道。這些邏輯信道有的用於呼叫接續階段,有的用於通信進行 當中,也有的用於系統運行的全部時間內。

1、業務信道(TCH)傳輸話音和數據

話音業務信道按速率的不同,可分為全速率話音業務信道(TCH/FS)和半速率話音 業務信道(TCH/HS)。

同樣,數據業務信道按速率的不同,也分為全速率數據業務信道(如TCH/F9.6, TCH/F4.8,TCH/F2.4)和半速率數據業務信道(如 TCH/H4.8,TCH/H2.4)(這里的數 字9.6,4.8和2.4表示數據速率,單位為kb/s)。

2、控制信道(CCH)傳輸各種信令信息

控制信道分為三類:

1)廣播信息(BCH)是一種「一點對多點」的單方向控制信道,用於基站向所有移 動台廣播公用信息。傳輸的內容是移動台入網和呼叫建立所需要的各種信息。其中又分 為:

a、頻率校正信道(FCCH):傳輸供移動台校正其工作頻率的信息;

b、同步信道(SCH):傳輸供移動台進行同步和對基站進行識別的信息;

c、廣播控制信道(BCCH):傳輸通用信息,用於移動台測量信號強度和識別小區 標志等。

2)公共控制信道(CCCH)是一種「一點對多點」的雙向控制信道,其用途是在呼 叫接續階段,傳輸鏈路連接所需要的控制信令與信息。其中又分為:

a、尋呼信道(PCH):傳輸基站尋呼移動台的信息;

b、隨機接入信道(RACH):移動台申請入網時,向基站發送入網請求信息;

c、准許接入信道(AGCH):基站在呼叫接續開始時,向移動台發送分配專用控制 信道的信令。

3)專用控制信道(DCCH)是一種「點對點」的雙向控制信道,其用途是在呼叫接 續階段和在通信進行當中,在移動台和基站之間傳輸必需的控制信息。其中又分為:
a、獨立專用控制信道(SDCCH):傳輸移動台和基站連接和信道分配的信令;

b、慢速輔助控制信道(SACCH):在移動台和基站之間,周期地傳輸一些特定的信 息,如功率調整、幀調整和測量數據等信息;SACCH是安排在業務信道和有關的控制信 道中,以復接方式傳輸信息。安排在業務信道時,以SACCH/T表示,安排在控制信道時, 以SACCH/C表示,SACCH/常與SDCCH聯合使用。

c、快速輔助控制信道(FACCH):傳送與SDCCH相同的信息。使用時要中斷業務信 息(4幀),把FACCH插入,不過,只有在沒有分配SDCCH的情況下,才使用這種控制信 道。這種控制信道的傳輸速率較快,每次佔用4幀時間,約18.5ms。

由此可見,GSM通信系統為了傳輸所需的各種信令,設置了多種專門的控制信道。 這樣做,除因為數字傳輸為設置多各邏輯信道提供了可能外,主要是為了增強系統的控 制功能(比如後面將要提到的,為提高過境切換的速度而採用移動台輔助切換技術), 也為了保證話音通信質量,在模擬蜂窩系統中,要在通話進行過程中,進行控制信息的 傳輸,必須中斷話音信息的傳輸(100ms),這就是所謂的「中斷一猝發」的控制方式。 信道中斷100ms,會使話音產生可以聽得到的喀喇聲。如果這種中斷過於頻繁,勢必明 顯地降低話音質量,因此,模擬蜂窩系統必須限制在通話過程中傳輸控制信息的容量。 與此不同,GSM蜂窩系統採用專用控制信道傳輸控制信息,除去FACCH外,不在通信過 程中中斷話音信息,因而能保證話音的傳輸質量。其中FACCH雖然也採取「中斷一猝發」 控制方式,但是只在特定場合下才使用,而且佔用的時間短(18.5ms),其影響明顯 減小。GSM蜂窩系統還採用信息處理技術,來估計並補償這種因為插入FACCH而被刪除 的話音。

Ⅵ 電信信號手機是怎樣接收的

只有國際海事衛星通信系統,是用小型地面設備直接與通信衛星相連的,所以發生自然災害、戰爭等,地面通信遭破壞了,只有海事衛星能夠保證通信不中斷。 移動通信,一般都是用微波、光纜等方式,將每個基站組網,組成一張分布全國的移動網。

Ⅶ 通信基站是如何接收到手機發出的信號的

可以從幾個方面來看。
天線。基站使用的是高增益天線,具備雙集/多集接收能力,±45度雙極化,可以很好的「捕捉」到手機發出的微弱信號。一副好天線就像是基站的「順風耳」,手機發出的很微弱的「聲音」也能被接收到。
還有就是所使用的技術。比如使用了CDMA技術的3G系統比單純使用TDMA+FDMA技術的GSM多了擴頻增益,從而允許終端可以以更低的發射功率和基站進行通信。
還有就是所使用的技術。比如使用了CDMA技術的3G系統比單純使用TDMA+FDMA技術的GSM多了擴頻增益,從而允許終端可以以更低的發射功率和基站進行通信。擴頻可以使原來相對高功率頻譜密度的窄帶信號展擴成一個低功率頻譜密度的寬頻信號,在接收端再進行解擴操作將擴頻後的信號恢復出來。CDMA技術的特性可以使手機以更低的發射功率進行工作的同時還能被基站更好的接收,比如WCDMA手機的發射功率可低至-50dBm(約10nW,而GSM手機在1800MHz頻段下最低發射功率為0dBm,約1mW)。這種信號甚至可以淹沒在雜訊中進行傳輸,具備一定的隱蔽性,因此早期也被用於軍事通信用途。同時CDMA中還使用Rake接收機對多徑信號進行合並處理(無論是基站還是手機都應用了Rake接收機,這也是「基站能更好的接收手機微弱信號」的一個體現。通俗的說就是採取CDMA技術系統的基站(WCDMA/CDMA2000/TD-SCDMA)接收能力要比GSM基站更強。最後就是基站君雖然性能強大,但是其同時間所能服務的手機數量也是有上限的,當同個小區(cell)下同時進行業務的手機超過一定數量,就可能會導致上行受限(比如CDMA系統的呼吸效應),此時部分手機的信號即使能被接收也無法被正確解調,從而造成無法進行業務的情況。如果手機距離基站實在過遠或者是物理環境阻隔太多,使得基站接收到手機的信噪比低於其所能解調的門限,也會造成業務無法順利進行。還有就是私人違法架設的一些所謂信號放大器之類的東西,由於其發射功率或者天線增益超標,導致基站接收到的信號功率過大,從而引起底噪的抬升,甚至阻塞了接收機,就像大家都安靜說話,就一個人大聲說話蓋過了所有人的聲音一樣,此時基站也無法順利解調出其他手機的信號了。所以基站也並不是每時每刻都能順利的接收並解調出手機的信號。

Ⅷ 手機是怎麼接收信號的

手機是通過電磁波來接收信號的。

1831年,英國的法拉第發現了電磁感應現象,麥克斯韋進一步用數學公式闡述了法拉第等人的研究成果,並把電磁感應理論推廣到了空間。

而60多年後赫茲在實驗中證實了電磁波的存在。電磁波的發現,成為有線電通信向無線電通信的轉折點,也成為整個移動通信的發源點。

(8)手機網路信號是那裡接收來的擴展閱讀:

1985年,第一台現代意義上的可以商用的行動電話誕生。它是將電源和天線放置在一個例子里,重量達3公斤。

與現代形狀接近的手機,則誕生於1987年。其重量仍有大約750克,與如今僅重60克的手機相比,像一塊大磚頭。

此後,手機的"瘦身"越來越迅速。1991年,手機重量為250克左右。1996年秋出現了體積為100立方厘米,重量為100克的手機。此後又進一步小型化,輕型化,到1999年就輕到了60克以下。

Ⅸ 手機的信號接收器在那個位置

不同品牌手機的信號接收器在不同的地方,一般情況下是在左上角或者右上角,也可以買來電帖進行檢測,打電話時來電貼亮的地方就是信號接收器。

Ⅹ 手機是怎麼接受網路信號的

手機上有接收信號的裝置