① 人工神經網路的特點有哪些
工神經網路(Artificial Neural Network,即ANN ),是20世紀80 年代以來人工智慧領域興起的研究熱點。它從信息處理角度對人腦神經元網路進行抽象, 建立某種簡單模型,按不同的連接方式組成不同的網路。在工程與學術界也常直接簡稱為神經網路或類神經網路。神經網路是一種運算模型,由大量的節點(或稱神經元)之間相互聯接構成。每個節點代表一種特定的輸出函數,稱為激勵函數(activation function)。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為權重,這相當於人工神經網路的記憶。網路的輸出則依網路的連接方式,權重值和激勵函數的不同而不同。而網路自身通常都是對自然界某種演算法或者函數的逼近,也可能是對一種邏輯策略的表達。
② 簡述人工神經網路的結構形式
神經網路有多種分類方式,例如,按網路性能可分為連續型與離散型網路,確定型與隨機型網路:按網路拓撲結構可分為前向神經網路與反饋神經網路。本章土要簡介前向神經網路、反饋神經網路和自組織特徵映射神經網路。
前向神經網路是數據挖掘中廣為應用的一種網路,其原理或演算法也是很多神經網路模型的基礎。徑向基函數神經網路就是一種前向型神經網路。
Hopfield神經網路是反饋網路的代表。Hvpfi}ld網路的原型是一個非線性動力學系統,目前,已經在聯想記憶和優化計算中得到成功應用。
模擬退火演算法是為解決優化計算中局部極小問題提出的。Baltzmann機是具有隨機輸出值單元的隨機神經網路,串列的Baltzmann機可以看作是對二次組合優化問題的模擬退火演算法的具體實現,同時它還可以模擬外界的概率分布,實現概率意義上的聯想記憶。
自組織競爭型神經網路的特點是能識別環境的特徵並自動聚類。自組織竟爭型神經網路已成功應用於特徵抽取和大規模數據處理。
③ 人工神經網路分類方法
從20世紀80年代末期,人工神經網路方法開始應用於遙感圖像的自動分類。目前,在遙感圖像的自動分類方面,應用和研究比較多的人工神經網路方法主要有以下幾種:
(1)BP(Back Propagation)神經網路,這是一種應用較廣泛的前饋式網路,屬於有監督分類演算法,它將先驗知識融於網路學習之中,加以最大限度地利用,適應性好,在類別數少的情況下能夠得到相當高的精度,但是其網路的學習主要採用誤差修正演算法,識別對象種類多時,隨著網路規模的擴大,需要的計算過程較長,收斂緩慢而不穩定,且識別精度難以達到要求。
(2)Hopfield神經網路。屬於反饋式網路。主要採用Hebb規則進行學習,一般情況下計算的收斂速度較快。這種網路是美國物理學家J.J.Hopfield於1982年首先提出的,它主要用於模擬生物神經網路的記憶機理。Hopfield神經網路狀態的演變過程是一個非線性動力學系統,可以用一組非線性差分方程來描述。系統的穩定性可用所謂的「能量函數」進行分析,在滿足一定條件下,某種「能量函數」的能量在網路運行過程中不斷地減少,最後趨於穩定的平衡狀態。Hopfield網路的演變過程是一種計算聯想記憶或求解優化問題的過程。
(3)Kohonen網路。這是一種由芬蘭赫爾辛基大學神經網路專家Kohonen(1981)提出的自組織神經網路,其採用了無導師信息的學習演算法,這種學習演算法僅根據輸入數據的屬性而調整權值,進而完成向環境學習、自動分類和聚類等任務。其最大的優點是最終的各個相鄰聚類之間是有相似關系的,即使識別時把樣本映射到了一個錯誤的節點,它也傾向於被識別成同一個因素或者一個相近的因素,這就十分接近人的識別特性。
④ 什麼是人工神經網路
人工神經網路(Artificial Neural Network,即ANN ),是20世紀80 年代以來人工智慧領域興起的研究熱點。它從信息處理角度對人腦神經元網路進行抽象, 建立某種簡單模型,按不同的連接方式組成不同的網路。在工程與學術界也常直接簡稱為神經網路或類神經網路。神經網路是一種運算模型,由大量的節點(或稱神經元)之間相互聯接構成。每個節點代表一種特定的輸出函數,稱為激勵函數(activation function)。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為權重,這相當於人工神經網路的記憶。網路的輸出則依網路的連接方式,權重值和激勵函數的不同而不同。而網路自身通常都是對自然界某種演算法或者函數的逼近,也可能是對一種邏輯策略的表達。最近十多年來,人工神經網路的研究工作不斷深入,已經取得了很大的進展,其在模式識別、智能機器人、自動控制、預測估計、生物、醫學、經濟等領域已成功地解決了許多現代計算機難以解決的實際問題,表現出了良好的智能特性。
⑤ 什麼是人工神經網路
一.一些基本常識和原理
[什麼叫神經網路?]
人的思維有邏輯性和直觀性兩種不同的基本方式。邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:1.信息是通過神經元上的興奮模式分布儲在網路上;2.信息處理是通過神經元之間同時相互作用的動態過程來完成的。
人工神經網路就是模擬人思維的第二種方式。這是一個非線性動力學系統,其特色在於信息的分布式存儲和並行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網路系統所能實現的行為卻是極其豐富多彩的。
[人工神經網路的工作原理]
人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對手寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。
所以網路學習的准則應該是:如果網路作出錯誤的的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。
如果輸出為「0」(即結果錯誤),則把網路連接權值朝著減小綜合輸入加權值的方向調整,其目的在於使網路下次再遇到「A」模式輸入時,減小犯同樣錯誤的可能性。如此操作調整,當給網路輪番輸入若干個手寫字母「A」、「B」後,經過網路按以上學習方法進行若干次學習後,網路判斷的正確率將大大提高。這說明網路對這兩個模式的學習已經獲得了成功,它已將這兩個模式分布地記憶在網路的各個連接權值上。當網路再次遇到其中任何一個模式時,能夠作出迅速、准確的判斷和識別。一般說來,網路中所含的神經元個數越多,則它能記憶、識別的模式也就越多。
=================================================
關於一個神經網路模擬程序的下載
人工神經網路實驗系統(BP網路) V1.0 Beta 作者:沈琦
http://emuch.net/html/200506/de24132.html
作者關於此程序的說明:
從輸出結果可以看到,前3條"學習"指令,使"輸出"神經元收斂到了值 0.515974。而後3條"學習"指令,其收斂到了值0.520051。再看看處理4和11的指令結果 P *Out1: 0.520051看到了嗎? "大腦"識別出了4和11是屬於第二類的!怎麼樣?很神奇吧?再打show指令看看吧!"神經網路"已經形成了!你可以自己任意的設"模式"讓這個"大腦"學習分辯哦!只要樣本數據量充分(可含有誤差的樣本),如果能夠在out數據上收斂地話,那它就能分辨地很准哦!有時不是絕對精確,因為它具有"模糊處理"的特性.看Process輸出的值接近哪個Learning的值就是"大腦"作出的"模糊性"判別!
=================================================
人工神經網路論壇
http://www.youngfan.com/forum/index.php
http://www.youngfan.com/nn/index.html(舊版,楓舞推薦)
國際神經網路學會(INNS)(英文)
http://www.inns.org/
歐洲神經網路學會(ENNS)(英文)
http://www.snn.kun.nl/enns/
亞太神經網路學會(APNNA)(英文)
http://www.cse.cuhk.e.hk/~apnna
日本神經網路學會(JNNS)(日文)
http://www.jnns.org
國際電氣工程師協會神經網路分會
http://www.ieee-nns.org/
研學論壇神經網路
http://bbs.matwav.com/post/page?bid=8&sty=1&age=0
人工智慧研究者俱樂部
http://www.souwu.com/
2nsoft人工神經網路中文站
http://211.156.161.210:8888/2nsoft/index.jsp
=================================================
推薦部分書籍:
人工神經網路技術入門講稿(PDF)
http://www.youngfan.com/nn/ann.pdf
神經網路FAQ(英文)
http://www.youngfan.com/nn/FAQ/FAQ.html
數字神經網路系統(電子圖書)
http://www.youngfan.com/nn/nnbook/director.htm
神經網路導論(英文)
http://www.shef.ac.uk/psychology/gurney/notes/contents.html
===============================================
一份很有參考價值的講座
<前向網路的敏感性研究>
http://www.youngfan.com/nn/mgx.ppt
是Powerpoint文件,比較大,如果網速不夠最好用滑鼠右鍵下載另存.
⑥ 什麼是人工神經網路的學習它可以通過哪些途徑來實現
早在1943 年,神經科學家和控制論專家Warren McCulloch 與邏輯學家Walter Pitts就基於數學和閾值邏輯演算法創造了一種神經網路計算模型。其中最基本的組成成分是神經元(Neuron)模型,即上述定義中的「簡單單元」(Neuron 也可以被稱為Unit)。在生物學所定義的神經網路中(如圖1所示),每個神經元與其他神經元相連,並且當某個神經元處於興奮狀態時,它就會向其他相連的神經元傳輸化學物質,這些化學物質會改變與之相連的神經元的電位,當某個神經元的電位超過一個閾值後,此神經元即被激活並開始向其他神經元發送化學物質。Warren McCulloch 和Walter Pitts 將上述生物學中所描述的神經網路抽象為一個簡單的線性模型(如圖2所示),這就是一直沿用至今的「McCulloch-Pitts 神經元模型」,或簡稱為「MP 模型」。
在MP 模型中,某個神經元接收到來自n 個其他神經元傳遞過來的輸入信號(好比生物學中定義的神經元傳輸的化學物質),這些輸入信號通過帶權重的連接進行傳遞,某個神經元接收到的總輸入值將與它的閾值進行比較,然後通過「激活函數」(亦稱響應函數)處理以產生此神經元的輸出。如果把許多個這樣的神經元按照一定的層次結構連接起來,就可以得到相對復雜的多層人工神經網路。
⑦ BP人工神經網路方法
(一)方法原理
人工神經網路是由大量的類似人腦神經元的簡單處理單元廣泛地相互連接而成的復雜的網路系統。理論和實踐表明,在信息處理方面,神經網路方法比傳統模式識別方法更具有優勢。人工神經元是神經網路的基本處理單元,其接收的信息為x1,x2,…,xn,而ωij表示第i個神經元到第j個神經元的連接強度或稱權重。神經元的輸入是接收信息X=(x1,x2,…,xn)與權重W={ωij}的點積,將輸入與設定的某一閾值作比較,再經過某種神經元激活函數f的作用,便得到該神經元的輸出Oi。常見的激活函數為Sigmoid型。人工神經元的輸入與輸出的關系為
地球物理勘探概論
式中:xi為第i個輸入元素,即n維輸入矢量X的第i個分量;ωi為第i個輸入與處理單元間的互聯權重;θ為處理單元的內部閾值;y為處理單元的輸出。
常用的人工神經網路是BP網路,它由輸入層、隱含層和輸出層三部分組成。BP演算法是一種有監督的模式識別方法,包括學習和識別兩部分,其中學習過程又可分為正向傳播和反向傳播兩部分。正向傳播開始時,對所有的連接權值置隨機數作為初值,選取模式集的任一模式作為輸入,轉向隱含層處理,並在輸出層得到該模式對應的輸出值。每一層神經元狀態隻影響下一層神經元狀態。此時,輸出值一般與期望值存在較大的誤差,需要通過誤差反向傳遞過程,計算模式的各層神經元權值的變化量
(二)BP神經網路計算步驟
(1)初始化連接權值和閾值為一小的隨機值,即W(0)=任意值,θ(0)=任意值。
(2)輸入一個樣本X。
(3)正向傳播,計算實際輸出,即根據輸入樣本值、互聯權值和閾值,計算樣本的實際輸出。其中輸入層的輸出等於輸入樣本值,隱含層和輸出層的輸入為
地球物理勘探概論
輸出為
地球物理勘探概論
式中:f為閾值邏輯函數,一般取Sigmoid函數,即
地球物理勘探概論
式中:θj表示閾值或偏置;θ0的作用是調節Sigmoid函數的形狀。較小的θ0將使Sigmoid函數逼近於閾值邏輯單元的特徵,較大的θ0將導致Sigmoid函數變平緩,一般取θ0=1。
(4)計算實際輸出與理想輸出的誤差
地球物理勘探概論
式中:tpk為理想輸出;Opk為實際輸出;p為樣本號;k為輸出節點號。
(5)誤差反向傳播,修改權值
地球物理勘探概論
式中:
地球物理勘探概論
地球物理勘探概論
(6)判斷收斂。若誤差小於給定值,則結束,否則轉向步驟(2)。
(三)塔北雅克拉地區BP神經網路預測實例
以塔北雅克拉地區S4井為已知樣本,取氧化還原電位,放射性元素Rn、Th、Tc、U、K和地震反射
S4井位於測區西南部5線25點,是區內唯一已知井。該井在5390.6m的侏羅系地層獲得40.6m厚的油氣層,在5482m深的震旦系地層中獲58m厚的油氣層。取S4井周圍9個點,即4~6線的23~25 點作為已知油氣的訓練樣本;由於區內沒有未見油的鑽井,只好根據地質資料分析,選取14~16線的55~57點作為非油氣的訓練樣本。BP網路學習迭代17174次,總誤差為0.0001,學習效果相當滿意。以學習後的網路進行識別,得出結果如圖6-2-4所示。
圖6-2-4 塔北雅克拉地區BP神經網路聚類結果
(據劉天佑等,1997)
由圖6-2-4可見,由預測值大於0.9可得5個大封閉圈遠景區,其中測區南部①號遠景區對應著已知油井S4井;②、③號油氣遠景區位於地震勘探所查明的托庫1、2號構造,該兩個構造位於沙雅隆起的東段,其西段即為1984年鑽遇高產油氣流的Sch2井,應是含油氣性好的遠景區;④、⑤號遠景區位於大澇壩構造,是yh油田的組成部分。
⑧ 神經網路連接方式分為哪幾類每一類有哪些特點
神經網路模型的分類
人工神經網路的模型很多,可以按照不同的方法進行分類。其中,常見的兩種分類方法是,按照網路連接的拓樸結構分類和按照網路內部的信息流向分類。
1 按照網路拓樸結構分類
網路的拓樸結構,即神經元之間的連接方式。按此劃分,可將神經網路結構分為兩大類:層次型結構和互聯型結構。
層次型結構的神經網路將神經元按功能和順序的不同分為輸出層、中間層(隱層)、輸出層。輸出層各神經元負責接收來自外界的輸入信息,並傳給中間各隱層神經元;隱層是神經網路的內部信息處理層,負責信息變換。根據需要可設計為一層或多層;最後一個隱層將信息傳遞給輸出層神經元經進一步處理後向外界輸出信息處理結果。
而互連型網路結構中,任意兩個節點之間都可能存在連接路徑,因此可以根據網路中節點的連接程度將互連型網路細分為三種情況:全互連型、局部互連型和稀疏連接型
2 按照網路信息流向分類
從神經網路內部信息傳遞方向來看,可以分為兩種類型:前饋型網路和反饋型網路。
單純前饋網路的結構與分層網路結構相同,前饋是因網路信息處理的方向是從輸入層到各隱層再到輸出層逐層進行而得名的。前饋型網路中前一層的輸出是下一層的輸入,信息的處理具有逐層傳遞進行的方向性,一般不存在反饋環路。因此這類網路很容易串聯起來建立多層前饋網路。
反饋型網路的結構與單層全互連結構網路相同。在反饋型網路中的所有節點都具有信息處理功能,而且每個節點既可以從外界接受輸入,同時又可以向外界輸出。
⑨ 人工神經網路的分類
人工神經網路模型主要考慮網路連接的拓撲結構、神經元的特徵、學習規則等。目前,已有近40種神經網路模型,其中有反傳網路、感知器、自組織映射、Hopfield網路、波耳茲曼機、適應諧振理論等。
ann:人工神經網路(Artificial Neural Networks)
bp:Back Propagation網路是1986年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播演算法訓練的多層前饋網路,是目前應用最廣泛的神經網路模型之一。BP網路能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程。它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。BP神經網路模型拓撲結構包括輸入層(input)、隱層(hide layer)和輸出層(output layer)。
⑩ 人工神經網路的學習類型
學習是神經網路研究的一個重要內容,它的適應性是通過學習實現的。根據環境的變化,對權值進行調整,改善系統的行為。由Hebb提出的Hebb學習規則為神經網路的學習演算法奠定了基礎。Hebb規則認為學習過程最終發生在神經元之間的突觸部位,突觸的聯系強度隨著突觸前後神經元的活動而變化。在此基礎上,人們提出了各種學習規則和演算法,以適應不同網路模型的需要。有效的學習演算法,使得神經網路能夠通過連接權值的調整,構造客觀世界的內在表示,形成具有特色的信息處理方法,信息存儲和處理體現在網路的連接中。
分類
根據學習環境不同,神經網路的學習方式可分為監督學習和非監督學習。在監督學習中,將訓練樣本的數據加到網路輸入端,同時將相應的期望輸出與網路輸出相比較,得到誤差信號,以此控制權值連接強度的調整,經多次訓練後收斂到一個確定的權值。當樣本情況發生變化時,經學習可以修改權值以適應新的環境。使用監督學習的神經網路模型有反傳網路、感知器等。非監督學習時,事先不給定標准樣本,直接將網路置於環境之中,學習階段與工作階段成為一體。此時,學習規律的變化服從連接權值的演變方程。非監督學習最簡單的例子是Hebb學習規則。競爭學習規則是一個更復雜的非監督學習的例子,它是根據已建立的聚類進行權值調整。自組織映射、適應諧振理論網路等都是與競爭學習有關的典型模型。