A. 計算機網路——CSMA/CD協議
CSMA/CD協議是計算機網路中乙太網的重要協議,也是數據鏈路層的重難點。由於乙太網採用匯流排型方式進行數據傳輸,多個計算機站接在一根匯流排上,若多個計算機同時進行數據發送,會導致數據差錯。因此,匯流排模式下使用半雙工通信方式,一個站不能同時進行發送和接收,由CSMA/CD協議維持這一通信方式。
CSMA/CD協議的要點包括:在發送數據幀時邊發送邊檢測信道狀態,適用於有線網路,信道忙碌則不能發送數據;當電壓變化幅度超過門限值時,可認為發生碰撞。正確理解這些要點對於掌握CSMA/CD協議至關重要。
在碰撞檢測方面,存在重要的時間點和事件。傳播時延和比特時間是關鍵概念,它們影響著數據發送和碰撞檢測的時機。當一個站開始發送數據後,若在特定時間檢測到信道空閑,則發送數據,若在數據發送過程中檢測到碰撞,則雙方停止發送,接收方丟棄接收到的幀並向上層報告。
通過實例,我們可以進一步理解CSMA/CD協議的工作原理。例如,假設某區域網採用CSMA/CD協議,主機A和主機B之間的距離為一定值,信號傳播速度為一定值。當主機A和主機B在同一時刻發送數據幀,且發生沖突,可以通過計算傳播時延和檢測到沖突的時間來確定發生沖突的具體時間。此外,通過計算最短和最長經歷時間,我們可以了解在不同場景下碰撞檢測的工作情況。
爭用期是CSMA/CD協議中的另一個關鍵概念,它指的是在數據發送過程中檢測到碰撞前的時間間隔。爭用期的長度決定了能夠使用CSMA/CD協議的最短幀長,以確保在數據發送過程中有足夠的時間進行碰撞檢測。通過計算傳播時延和爭用期,我們可以確定最短幀長,從而確保數據發送的可靠性和效率。
截斷二進制指數退避演算法是CSMA/CD協議中處理碰撞後重傳數據幀的重要機制。通過隨機選擇等待時間,避免多個站同時重傳數據幀,從而減少網路擁堵和數據碰撞。通過實例分析,我們可以了解在不同情況下,站之間重傳數據幀的時機和概率。
人為干擾信號的發送也是CSMA/CD協議中碰撞檢測機制的一部分,旨在通知所有用戶發生碰撞。通過在檢測到碰撞後發送特定的干擾信號,網路中的其他站可以得知碰撞發生並相應調整自己的發送策略。
最後,幀間最小間隔的設定是為了確保接收方有足夠的時間處理接收到的幀,並做好接收下一幀的准備。通過規定在檢測到信道空閑後一定時間內發送幀,網路的傳輸效率和可靠性得到了提升。
總結CSMA/CD協議的關鍵要點,包括發送成功與失敗的判斷、碰撞檢測的時間點和事件、爭用期的定義及其對最短幀長的影響、截斷二進制指數退避演算法的機制、人為干擾信號的發送以及幀間最小間隔的設定。這些要點共同構成了CSMA/CD協議的核心,確保了乙太網中數據傳輸的高效、可靠性和穩定性。
B. 02 - 數據鏈路層的詳細認識
時間有限我這里只寫了一部分內容,更詳細的內容可以直接看我的筆記 第三章數據鏈路層
數據鏈路層的任務就是將分組從一個網路中或一個鏈路上的一端傳送到另一端。數據鏈路層傳送的數據單元稱為幀(frame)。所以也可以說數據鏈路層的任務就是在一個網路(或一段鏈路上)傳送以幀為單位的數據
數據鏈路層屬於計算機網路的底層,僅在物理層的上方,在網路層的下方,網路中的主機、路由器等都必須實現數據鏈路層。數據鏈路層使用的信道主要有兩種類型,點對點信道,廣播信道
在點對點信道中最重要的是如何實現可靠傳輸(在實際中並不會在數據鏈路層實現可靠傳輸,而是交給上層)
網路層的IP數據報必須向下傳達到數據鏈路層,在數據報前後分別加上首部和尾部,封裝成為一個完整的幀。因為在數據鏈路層就是以幀為單位傳輸和處理數據,因此,數據鏈路層中的幀長就是數據部分加上首部和尾部的長度。
發送方將幀以比特流的形式發送給接收方(在物理層會轉換成電信號),接收方為了能夠處理幀數據,必須正確認識每個幀的開始和結束,這就需要進行幀定界凱雀
幀定界有很多種,比如乙太網就是在傳輸的幀與幀之間插入時間間隔來實現,只有首部有幀定界符,尾部沒有幀定界符。還有一種就是在幀的首部和尾部都加上一個幀定界符。
幀定界符:
不同類型:
幀定界符在透明傳輸中的蠢孫碰問題和解決
問題: 傳輸數據存在使用幀定界符所使用的字元或比特組合,會出現錯誤的幀定界
解決:
注意:
通信鏈路的傳輸都不會是理想的,比特在傳輸過程中可能會產生差錯,比如1變為0,0變為1,這叫做比特差錯,因此就需要在接收端進行差錯檢測。
發送方需要採用某種差錯檢測演算法,使用發送的數據計算出差錯檢測碼EDC,差錯檢測碼隨數據一起發送給接收方,接收方使用同樣的差錯檢測演算法計算出差錯檢測碼EDC',如果兩者不一致,則表示出現差錯,一般採用循環冗餘檢驗(CRC)來檢錯
差錯檢測演算法:
接收雙方需要約定好一個多項式,之後按照下圖的方式進行處理
案例說明
發送方的冗餘校驗:
說明:
接收方的冗餘校驗:
說明:
注意:
有些情況下數據鏈路層需要向上層的網路層提供「可靠傳輸」的服務,也就是發送端發送什麼,對應的接收端就必須接收什麼。帶談我們通過可靠傳輸協議來實現數據鏈路層的可靠傳輸,有三種,停止等待協議SW、回退N步協議GBN、選擇重傳協議SR。
可靠傳輸協議就是要在不可靠的信道上實現可靠的數據傳輸服務。
在計算機網路中實現可靠傳輸的基本方法就是:如果發現錯誤就重傳
使用分組確認和超時重傳機制就可以在不可靠的信道上實現可靠的數據傳輸。
解決: 可以在發送方發送完一個數據分組後,啟動一個超時計時器,若超出了設置的重傳時間,發送方仍沒有收到接收方的任何確認分組,就會重傳原來的分組。
注意: 重傳時間的選擇一般是略大於「從發送方到接收方的平均往返時間」數據鏈路層的往返時間是比較確定的,可以使用這種方式
說明:
上面也可以看到停止等待協議的信道利用率很低,所以需要採用流水線傳輸方式,發送方不間斷的發送分組來提高信道利用率。但是這種方式有可能會使接收方來不及處理這些分組,從而導致分組的丟失。因此需要限制發送方連續發送分組的個數避免這個問題,而這種方式就是回退N步協議。
簡單理解回退N步協議就是停止等待協議只能發送一個分組就等待,回退N步協議是發送多個分組才處於等待狀態
原理: 回退N步協議在流水線傳輸的基礎上利用發送窗口來限制發送方連續發送分組的個數,是一種連續的ARQ協議
注意:
選擇重傳協議是在回退N步協議的基礎上,只重傳出現差錯的分組,這時接收窗口不再為1,以便先收下失序到達但仍然處於接收窗口中的分組,等到所缺分組收齊後再一並送交上層,這就是選擇重傳協議。
注意:
C. 關於計算機網路中幀的問題
網路上的幀
數據在網路上是以很小的稱為幀(Frame)的單位傳輸的,幀由幾部分組成,不同的部分執行不同的功能.幀通過特定的稱為網路驅動程序的軟體進行成型,然後通過網卡發送到網線上,通過網線到達它們的目的機器,在目的機器的一端執行相反的過程.接收端機器的乙太網卡捕獲到這些幀,並告訴操作系統幀已到達,然後對其進行存儲.就是在這個傳輸和接收的過程中,嗅探器會帶來安全方面的問題 .
幀——就是影像動畫中最小單位的單幅影像畫面,相當於電影膠片上的每一格鏡頭.一幀就是一副靜止的畫面,連續的幀就形成動畫,如電視圖像等.我們通常說幀數,簡單地說,就是在1秒鍾時間里傳輸的圖片的幀數,也可以理解為圖形處理器每秒鍾能夠刷新幾次,通常用fps(Frames Per Second)表示.每一幀都是靜止的圖像,快速連續地顯示幀便形成了運動的假象.高的幀率可以得到更流暢、更逼真的動畫.每秒鍾幀數 (fps) 越多,所顯示的動作就會越流暢.
數據幀
「幀」數據由兩部分組成:幀頭和幀數據.幀頭包括接收方主機物理地址的定位以及其它網路信息.幀數據區含有一個數據體.為確保計算機能夠解釋數據幀中的數據,這兩台計算機使用一種公用的通訊協議.互聯網使用的通訊協議簡稱IP,即互聯網協議.IP數據體由兩部分組成:數據體頭部和數據體的數據區.數據體頭部包括IP源地址和IP目標地址,以及其它信息.數據體的數據區包括用戶數據協議(UDP),傳輸控制協議(TCP),還有數據包的其他信息.這些數據包都含有附加的進程信息以及實際數據.
FLASH的幀
幀——就是影像動畫中最小單位的單幅影像畫面,相當於電影膠片上的每一格鏡頭.
關鍵幀——任何動畫要表現運動或變化,至少前後要給出兩個不同的關鍵狀態,而中間狀態的變化和銜接電腦可以自動完成,在Flash中,表示關鍵狀態的幀叫做關鍵幀.
過渡幀——在兩個關鍵幀之間,電腦自動完成過渡畫面的幀叫做過渡幀.
關鍵幀和過渡幀的聯系和區別
兩個關鍵幀的中間可以沒有過渡幀(如逐幀動畫),但過渡幀前後肯定有關鍵幀,因為過渡幀附屬於關鍵幀;
關鍵幀可以修改該幀的內容,但過渡幀無法修改該幀內容.
關鍵幀中可以包含形狀、剪輯、組等多種類型的元素或諸多元素,但過渡幀中對象只能是剪輯(影片剪輯、圖形剪輯、按鈕)或獨立形狀.
影片是由一張張連續的圖片組成的,每幅圖片就是一幀,PAL制式每秒鍾25幀,NTSC制式每秒鍾30幀.
D. 幀是長度單位嗎
幀不是長度單位,而是一個用於描述數據傳輸或動畫中的時間間隔或畫面切換的單位。
在計算機科學和多媒體領域,「幀」通常指的是動畫或視頻中單個靜止圖像。在視頻編輯、動畫製作或游戲開發中,幀率是衡量每秒顯示多少幀畫面的指標,它影響著動畫或視頻的流暢度。例如,常見的幀率為24幀/秒、30幀/秒或60幀/秒,意味著每秒鍾會顯示相應數量的靜止圖像,從而構成連續的動態效果。
在數據傳輸中,「幀」也指數據幀,它是一種數據結構的單位,用於在網路中傳輸數據。數據幀包含了控制信息、數據載荷以及校驗等信息,確保數據的准確傳輸。
所以,雖然「幀」與時間和數據的傳輸密切相關,但它本身並不表示長度,而是一個描述時間間隔或數據結構的概念。
E. 計算機網路第三章(數據鏈路層)
3.1、數據鏈路層概述
概述
鏈路 是從一個結點到相鄰結點的一段物理線路, 數據鏈路 則是在鏈路的基礎上增加了一些必要的硬體(如網路適配器)和軟體(如協議的實現)
網路中的主機、路由器等都必須實現數據鏈路層
區域網中的主機、交換機等都必須實現數據鏈路層
從層次上來看數據的流動
僅從數據鏈路層觀察幀的流動
主機H1 到主機H2 所經過的網路可以是多種不同類型的
注意:不同的鏈路層可能採用不同的數據鏈路層協議
數據鏈路層使用的信道
數據鏈路層屬於計算機網路的低層。 數據鏈路層使用的信道主要有以下兩種類型:
點對點信道
廣播信道
區域網屬於數據鏈路層
區域網雖然是個網路。但我們並不把區域網放在網路層中討論。這是因為在網路層要討論的是多個網路互連的問題,是討論分組怎麼從一個網路,通過路由器,轉發到另一個網路。
而在同一個區域網中,分組怎麼從一台主機傳送到另一台主機,但並不經過路由器轉發。從整個互聯網來看, 區域網仍屬於數據鏈路層 的范圍
三個重要問題
數據鏈路層傳送的協議數據單元是 幀
封裝成幀
封裝成幀 (framing) 就是在一段數據的前後分別添加首部和尾部,然後就構成了一個幀。
首部和尾部的一個重要作用就是進行 幀定界 。
差錯控制
在傳輸過程中可能會產生 比特差錯 :1 可能會變成 0, 而 0 也可能變成 1。
可靠傳輸
接收方主機收到有誤碼的幀後,是不會接受該幀的,會將它丟棄
如果數據鏈路層向其上層提供的是不可靠服務,那麼丟棄就丟棄了,不會再有更多措施
如果數據鏈路層向其上層提供的是可靠服務,那就還需要其他措施,來確保接收方主機還可以重新收到被丟棄的這個幀的正確副本
以上三個問題都是使用 點對點信道的數據鏈路層 來舉例的
如果使用廣播信道的數據鏈路層除了包含上面三個問題外,還有一些問題要解決
如圖所示,主機A,B,C,D,E通過一根匯流排進行互連,主機A要給主機C發送數據,代表幀的信號會通過匯流排傳輸到匯流排上的其他各主機,那麼主機B,D,E如何知道所收到的幀不是發送給她們的,主機C如何知道發送的幀是發送給自己的
可以用編址(地址)的來解決
將幀的目的地址添加在幀中一起傳輸
還有數據碰撞問題
隨著技術的發展,交換技術的成熟,
在 有線(區域網)領域 使用 點對點鏈路 和 鏈路層交換機 的 交換式區域網 取代了 共享式區域網
在無線區域網中仍然使用的是共享信道技術
3.2、封裝成幀
介紹
封裝成幀是指數據鏈路層給上層交付的協議數據單元添加幀頭和幀尾使之成為幀
幀頭和幀尾中包含有重要的控制信息
發送方的數據鏈路層將上層交付下來的協議數據單元封裝成幀後,還要通過物理層,將構成幀的各比特,轉換成電信號交給傳輸媒體,那麼接收方的數據鏈路層如何從物理層交付的比特流中提取出一個個的幀?
答:需要幀頭和幀尾來做 幀定界
但比不是每一種數據鏈路層協議的幀都包含有幀定界標志,例如下面例子
前導碼
前同步碼:作用是使接收方的時鍾同步
幀開始定界符:表明其後面緊跟著的就是MAC幀
另外乙太網還規定了幀間間隔為96比特時間,因此,MAC幀不需要幀結束定界符
透明傳輸
透明
指某一個實際存在的事物看起來卻好像不存在一樣。
透明傳輸是指 數據鏈路層對上層交付的傳輸數據沒有任何限制 ,好像數據鏈路層不存在一樣
幀界定標志也就是個特定數據值,如果在上層交付的協議數據單元中, 恰好也包含這個特定數值,接收方就不能正確接收
所以數據鏈路層應該對上層交付的數據有限制,其內容不能包含幀定界符的值
解決透明傳輸問題
解決方法 :面向位元組的物理鏈路使用 位元組填充 (byte stuffing) 或 字元填充 (character stuffing),面向比特的物理鏈路使用比特填充的方法實現透明傳輸
發送端的數據鏈路層在數據中出現控制字元「SOH」或「EOT」的前面 插入一個轉義字元「ESC」 (其十六進制編碼是1B)。
接收端的數據鏈路層在將數據送往網路層之前刪除插入的轉義字元。
如果轉義字元也出現在數據當中,那麼應在轉義字元前面插入一個轉義字元 ESC。當接收端收到連續的兩個轉義字元時,就刪除其中前面的一個。
幀的數據部分長度
總結
3.3、差錯檢測
介紹
奇偶校驗
循環冗餘校驗CRC(Cyclic Rendancy Check)
例題
總結
循環冗餘校驗 CRC 是一種檢錯方法,而幀校驗序列 FCS 是添加在數據後面的冗餘碼
3.4、可靠傳輸
基本概念
下面是比特差錯
其他傳輸差錯
分組丟失
路由器輸入隊列快滿了,主動丟棄收到的分組
分組失序
數據並未按照發送順序依次到達接收端
分組重復
由於某些原因,有些分組在網路中滯留了,沒有及時到達接收端,這可能會造成發送端對該分組的重發,重發的分組到達接收端,但一段時間後,滯留在網路的分組也到達了接收端,這就造成 分組重復 的傳輸差錯
三種可靠協議
停止-等待協議SW
回退N幀協議GBN
選擇重傳協議SR
這三種可靠傳輸實現機制的基本原理並不僅限於數據鏈路層,可以應用到計算機網路體系結構的各層協議中
停止-等待協議
停止-等待協議可能遇到的四個問題
確認與否認
超時重傳
確認丟失
既然數據分組需要編號,確認分組是否需要編號?
要。如下圖所示
確認遲到
注意,圖中最下面那個數據分組與之前序號為0的那個數據分組不是同一個數據分組
注意事項
停止-等待協議的信道利用率
假設收發雙方之間是一條直通的信道
TD :是發送方發送數據分組所耗費的發送時延
RTT :是收發雙方之間的往返時間
TA :是接收方發送確認分組所耗費的發送時延
TA一般都遠小於TD,可以忽略,當RTT遠大於TD時,信道利用率會非常低
像停止-等待協議這樣通過確認和重傳機制實現的可靠傳輸協議,常稱為自動請求重傳協議ARQ( A utomatic R epeat re Q uest),意思是重傳的請求是自動進行,因為不需要接收方顯式地請求,發送方重傳某個發送的分組
回退N幀協議GBN
為什麼用回退N幀協議
在相同的時間內,使用停止-等待協議的發送方只能發送一個數據分組,而採用流水線傳輸的發送方,可以發送多個數據分組
回退N幀協議在流水線傳輸的基礎上,利用發送窗口來限制發送方可連續發送數據分組的個數
無差錯情況流程
發送方將序號落在發送窗口內的0~4號數據分組,依次連續發送出去
他們經過互聯網傳輸正確到達接收方,就是沒有亂序和誤碼,接收方按序接收它們,每接收一個,接收窗口就向前滑動一個位置,並給發送方發送針對所接收分組的確認分組,在通過互聯網的傳輸正確到達了發送方
發送方每接收一個、發送窗口就向前滑動一個位置,這樣就有新的序號落入發送窗口,發送方可以將收到確認的數據分組從緩存中刪除了,而接收方可以擇機將已接收的數據分組交付上層處理
累計確認
累計確認
優點:
即使確認分組丟失,發送方也可能不必重傳
減小接收方的開銷
減小對網路資源的佔用
缺點:
不能向發送方及時反映出接收方已經正確接收的數據分組信息
有差錯情況
例如
在傳輸數據分組時,5號數據分組出現誤碼,接收方通過數據分組中的檢錯碼發現了錯誤
於是丟棄該分組,而後續到達的這剩下四個分組與接收窗口的序號不匹配
接收同樣也不能接收它們,講它們丟棄,並對之前按序接收的最後一個數據分組進行確認,發送ACK4, 每丟棄一個數據分組,就發送一個ACK4
當收到重復的ACK4時,就知道之前所發送的數據分組出現了差錯,於是可以不等超時計時器超時就立刻開始重傳,具體收到幾個重復確認就立刻重傳,根據具體實現決定
如果收到這4個重復的確認並不會觸發發送立刻重傳,一段時間後。超時計時器超時,也會將發送窗口內以發送過的這些數據分組全部重傳
若WT超過取值范圍,例如WT=8,會出現什麼情況?
習題
總結
回退N幀協議在流水線傳輸的基礎上利用發送窗口來限制發送方連續發送數據分組的數量,是一種連續ARQ協議
在協議的工作過程中發送窗口和接收窗口不斷向前滑動,因此這類協議又稱為滑動窗口協議
由於回退N幀協議的特性,當通信線路質量不好時,其信道利用率並不比停止-等待協議高
選擇重傳協議SR
具體流程請看視頻
習題
總結
3.5、點對點協議PPP
點對點協議PPP(Point-to-Point Protocol)是目前使用最廣泛的點對點數據鏈路層協議
PPP協議是網際網路工程任務組IEIF在1992年制定的。經過1993年和1994年的修訂,現在的PPP協議已成為網際網路的正式標准[RFC1661,RFC1662]
數據鏈路層使用的一種協議,它的特點是:簡單;只檢測差錯,而不是糾正差錯;不使用序號,也不進行流量控制;可同時支持多種網路層協議
PPPoE 是為寬頻上網的主機使用的鏈路層協議
幀格式
必須規定特殊的字元作為幀定界符
透明傳輸
必須保證數據傳輸的透明性
實現透明傳輸的方法
面向位元組的非同步鏈路:位元組填充法(插入「轉義字元」)
面向比特的同步鏈路:比特填充法(插入「比特0」)
差錯檢測
能夠對接收端收到的幀進行檢測,並立即丟棄有差錯的幀。
工作狀態
當用戶撥號接入 ISP 時,路由器的數據機對撥號做出確認,並建立一條物理連接。
PC 機向路由器發送一系列的 LCP 分組(封裝成多個 PPP 幀)。
這些分組及其響應選擇一些 PPP 參數,並進行網路層配置,NCP 給新接入的 PC 機
分配一個臨時的 IP 地址,使 PC 機成為網際網路上的一個主機。
通信完畢時,NCP 釋放網路層連接,收回原來分配出去的 IP 地址。接著,LCP 釋放數據鏈路層連接。最後釋放的是物理層的連接。
可見,PPP 協議已不是純粹的數據鏈路層的協議,它還包含了物理層和網路層的內容。
3.6、媒體接入控制(介質訪問控制)——廣播信道
媒體接入控制(介質訪問控制)使用一對多的廣播通信方式
Medium Access Control 翻譯成媒體接入控制,有些翻譯成介質訪問控制
區域網的數據鏈路層
區域網最主要的 特點 是:
網路為一個單位所擁有;
地理范圍和站點數目均有限。
區域網具有如下 主要優點 :
具有廣播功能,從一個站點可很方便地訪問全網。區域網上的主機可共享連接在區域網上的各種硬體和軟體資源。
便於系統的擴展和逐漸地演變,各設備的位置可靈活調整和改變。
提高了系統的可靠性、可用性和殘存性。
數據鏈路層的兩個子層
為了使數據鏈路層能更好地適應多種區域網標准,IEEE 802 委員會就將區域網的數據鏈路層拆成 兩個子層 :
邏輯鏈路控制 LLC (Logical Link Control)子層;
媒體接入控制 MAC (Medium Access Control)子層。
與接入到傳輸媒體有關的內容都放在 MAC子層,而 LLC 子層則與傳輸媒體無關。 不管採用何種協議的區域網,對 LLC 子層來說都是透明的。
基本概念
為什麼要媒體接入控制(介質訪問控制)?
共享信道帶來的問題
若多個設備在共享信道上同時發送數據,則會造成彼此干擾,導致發送失敗。
隨著技術的發展,交換技術的成熟和成本的降低,具有更高性能的使用點對點鏈路和鏈路層交換機的交換式區域網在有線領域已完全取代了共享式區域網,但由於無線信道的廣播天性,無線區域網仍然使用的是共享媒體技術
靜態劃分信道
信道復用
頻分復用FDM (Frequency Division Multiplexing)
將整個帶寬分為多份,用戶在分配到一定的頻帶後,在通信過程中自始至終都佔用這個頻帶。
頻分復用 的所有用戶在同樣的時間 佔用不同的帶寬資源 (請注意,這里的「帶寬」是頻率帶寬而不是數據的發送速率)。
F. 關於計算機網路的問題兩題連在一起,答案在題的後面不是完全明白,誰給我一個詳盡的解答,謝謝
25題
答:
t=0時,A,B開始傳輸數據;
t=225比特時間,A和B同時檢測到發生碰撞;
t=225+48=273比特時間,完成了干擾信號的傳輸;
開始各自進行退避演算法:
A: 因為rA=0,則A在干擾信號傳輸完之後立即開始偵聽
t=273+225(傳播時延)=498比特時間,A檢測到信道開始空閑
t=498+96(幀間最小間隔)=594比特時間,A開始重傳數據
-----第一問A的重傳時間 t=594+225 (傳播時延)=819比特時間,A重傳完畢 ----第二問A重傳的數據幀到達B的時間 B: 因為rB=1,則B在干擾信號傳輸完之後1倍的爭用期,即512比特時間才開始偵聽 t=273+512=785比特時間,B開始偵聽
若偵聽空閑,則 t=785+96(幀間最小間隔)=881比特時間,B開始重傳數據
若偵聽費空閑,則繼續退避演算法
又因為t=819比特時間的時候,A才重傳數據完畢,所以B在785比特時間偵聽的時候,肯定會偵聽信道非空閑,即B在預定的881比特時間之前偵聽到信道忙,
所以,第四問的答案:B在預定的881比特時間是停止發送數據的。
即第三問A重傳的數據不會和B重傳的數據再次發生碰撞