當前位置:首頁 » 網路連接 » 簡述五層計算機網路體系結構
擴展閱讀
平板電腦排名和價格 2025-02-05 00:35:40

簡述五層計算機網路體系結構

發布時間: 2025-02-04 21:56:26

『壹』 簡述具有五層協議的網路體系結構中各層的主要功能。

物理層:乙太網·數據機· 電力線通信(PLC) ·SONET/SDH· G.709 ·光導纖維· 同軸電纜 · 雙絞線等

物理層(或稱物理層,Physical Layer)是計算機網路OSI模型中最低的一層。物理層規定:為傳輸數據所需要的物理鏈路創建、維持、拆除,而提供具有機械的,電子的,功能的和規范的特性。簡單的說,物理層確保原始的數據可在各種物理媒體上傳輸。區域網與廣域網皆屬第1、2層。

物理層是OSI的第一層,它雖然處於最底層,卻是整個開放系統的基礎。物理層為設備之間的數據通信提供傳輸媒體及互連設備,為數據傳輸提供可靠的環境。如果您想要用盡量少的詞來記住這個第一層,那就是「信號和介質」。

OSI採納了各種現成的協議,其中有RS-232、RS-449、X.21、V.35、ISDN、以及FDDI、IEEE802.3、IEEE802.4、和IEEE802.5的物理層協議。

數據鏈路層:Wi-Fi(IEEE 802.11) · WiMAX(IEEE 802.16) ·ATM · DTM ·令牌環·乙太網·FDDI ·幀中繼· GPRS · EVDO ·HSPA · HDLC ·PPP· L2TP ·PPTP · ISDN·STP 等

數據鏈路層是OSI參考模型中的第二層,介乎於物理層和網路層之間。數據鏈路層在物理層提供的服務的基礎上向網路層提供服務,其最基本的服務是將源自網路層來的數據可靠地傳輸到相鄰節點的目標機網路層。為達到這一目的,數據鏈路必須具備一系列相應的功能,主要有:如何將數據組合成數據塊,在數據鏈路層中稱這種數據塊為幀(frame),幀是數據鏈路層的傳送單位;如何控制幀在物理信道上的傳輸,包括如何處理傳輸差錯,如何調節發送速率以使與接收方相匹配;以及在兩個網路實體之間提供數據鏈路通路的建立、維持和釋放的管理。

移動通信系統中Uu口協議的第二層,也叫層二或L2。

網路層協議:IP (IPv4 · IPv6) · ICMP· ICMPv6·IGMP ·IS-IS · IPsec · ARP · RARP等

網路層是OSI參考模型中的第三層,介於傳輸層和數據鏈路層之間,它在數據鏈路層提供的兩個相鄰端點之間的數據幀的傳送功能上,進一步管理網路中的數據通信,將數據設法從源端經過若干個中間節點傳送到目的端,從而向運輸層提供最基本的端到端的數據傳送服務。主要內容有:虛電路分組交換和數據報分組交換、路由選擇演算法、阻塞控制方法、X.25協議、綜合業務數據網(ISDN)、非同步傳輸模式(ATM)及網際互連原理與實現。

傳輸層協議:TCP · UDP · TLS ·DCCP· SCTP · RSVP · OSPF 等

傳輸層(Transport Layer)是ISO OSI協議的第四層協議,實現端到端的數據傳輸。該層是兩台計算機經過網路進行數據通信時,第一個端到端的層次,具有緩沖作用。當網路層服務質量不能滿足要求時,它將服務加以提高,以滿足高層的要求;當網路層服務質量較好時,它只用很少的工作。傳輸層還可進行復用,即在一個網路連接上創建多個邏輯連接。

傳輸層在終端用戶之間提供透明的數據傳輸,向上層提供可靠的數據傳輸服務。傳輸層在給定的鏈路上通過流量控、分段/重組和差錯控制。一些協議是面向鏈接的。這就意味著傳輸層能保持對分段的跟蹤,並且重傳那些失敗的分段。

應用層協議:DHCP ·DNS· FTP · Gopher · HTTP· IMAP4 · IRC · NNTP · XMPP ·POP3 · SIP · SMTP ·SNMP · SSH ·TELNET · RPC · RTCP · RTP ·RTSP· SDP · SOAP · GTP · STUN · NTP· SSDP · BGP · RIP 等

應用層位於物聯網三層結構中的最頂層,其功能為「處理」,即通過雲計算平台進行信息處理。應用層與最低端的感知層一起,是物聯網的顯著特徵和核心所在,應用層可以對感知層採集數據進行計算、處理和知識挖掘,從而實現對物理世界的實時控制、精確管理和科學決策。

物聯網應用層的核心功能圍繞兩個方面:

一是「數據」,應用層需要完成數據的管理和數據的處理;

二是「應用」,僅僅管理和處理數據還遠遠不夠,必須將這些數據與各行業應用相結合。例如在智能電網中的遠程電力抄表應用:安置於用戶家中的讀表器就是感知層中的感測器,這些感測器在收集到用戶用電的信息後,通過網路發送並匯總到發電廠的處理器上。該處理器及其對應工作就屬於應用層,它將完成對用戶用電信息的分析,並自動採取相關措施。

(1)簡述五層計算機網路體系結構擴展閱讀

TCP/IP協議毫無疑問是這三大協議中最重要的一個,作為互聯網的基礎協議,沒有它就根本不可能上網,任何和互聯網有關的操作都離不開TCP/IP協議。不過TCP/IP協議也是這三大協議中配置起來最麻煩的一個,單機上網還好,而通過區域網訪問互聯網的話,就要詳細設置IP地址,網關,子網掩碼,DNS伺服器等參數。

TCP/IP盡管是目前最流行的網路協議,但TCP/IP協議在區域網中的通信效率並不高,使用它在瀏覽「網上鄰居」中的計算機時,經常會出現不能正常瀏覽的現象。此時安裝NetBEUI協議就會解決這個問題。

NetBEUI即NetBios Enhanced User Interface ,或NetBios增強用戶介面。它是NetBIOS協議的增強版本,曾被許多操作系統採用,例如Windows for Workgroup、Win 9x系列、Windows NT等。NETBEUI協議在許多情形下很有用,是WINDOWS98之前的操作系統的預設協議。NetBEUI協議是一種短小精悍、通信效率高的廣播型協議,安裝後不需要進行設置,特別適合於在「網路鄰居」傳送數據。所以建議除了TCP/IP協議之外,小型區域網的計算機也可以安上NetBEUI協議。另外還有一點要注意,如果一台只裝了TCP/IP協議的WINDOWS98機器要想加入到WINNT域,也必須安裝NetBEUI協議。

IPX/SPX協議本來就是Novell開發的專用於NetWare網路中的協議,但是也非常常用--大部分可以聯機的游戲都支持IPX/SPX協議,比如星際爭霸,反恐精英等等。雖然這些游戲通過TCP/IP協議也能聯機,但顯然還是通過IPX/SPX協議更省事,因為根本不需要任何設置。除此之外,IPX/SPX協議在非區域網絡中的用途似乎並不是很大.如果確定不在區域網中聯機玩游戲,那麼這個協議可有可無。

參考資料:網路-網路七層協議

『貳』 五層協議的網路體系結構要點。

五層協議的網路體系結構各層的結構要點如下:

1、物理層:

物理層的任務就是透明地傳送比特流,確定連接電纜插頭的定義及連接法。

2、數據鏈路層:

數據鏈路層的任務是在兩個相鄰結點間的線路上無差錯地傳送以幀(frame)為單位的數據。每一幀包括數據和必要的控制信息。

3、網路層:

網路層的任務就是要選擇合適的路由,使發送站的運輸層所傳下來的分組能夠正確無誤地按照地址找到目的站,並交付給目的站的運輸層。

4運輸層:

運輸層的任務是向上一層的進行通信的兩個進程之間提供一個可靠的端到端服務,使它們看不見運輸層以下的數據通信的細節。

5、應用層:

應用層直接為用戶的應用進程提供服務。

網路協議為計算機網路中進行數據交換而建立的規則、標准或約定的集合。例如,網路中一個微機用戶和一個大型主機的操作員進行通信,由於這兩個數據終端所用字元集不同,因此操作員所輸入的命令彼此不認識。

為了能進行通信,規定每個終端都要將各自字元集中的字元先變換為標准字元集的字元後,才進入網路傳送,到達目的終端之後,再變換為該終端字元集的字元。

『叄』 網路五層結構

計算機網路五層結構是指應用層、傳輸層、網路層、數據鏈路層、物理層。

1、應用層

專門針對某些應用提供服務。

2、傳輸層

網路層只把數據送到主機,但不會送到進程。傳輸層負責負責進程與主機間的傳輸,主機到主機的傳輸交由網路層負責。傳輸層也稱為端到端送。

3、網路層

把包裡面的目的地址拿出來,進行路由選擇,決定要往哪個方向傳輸。

負責從源通過路由選擇到目的地的過程,達到從源主機傳輸數據到目標主機的目的。

4、數據鏈路層

通過物理網路傳送包,這里的包是通過網路層交過來的數據報。

只完成一個節點到另一個節點的傳送(單跳)。

5、物理層

通過線路(可以是有形的線也可以是無線鏈路)傳送原始的比特流。

只完成一個節點到另一個節點的傳送(單跳)。

(3)簡述五層計算機網路體系結構擴展閱讀:

計算機網路是指將地理位置不同的具有獨立功能的多台計算機及其外部設備,通過通信線路連接起來,在網路操作系統,網路管理軟體及網路通信協議的管理和協調下,實現資源共享和信息傳遞的計算機系統。

計算機網路也稱計算機通信網。關於計算機網路的最簡單定義是:一些相互連接的、以共享資源為目的的、自治的計算機的集合。若按此定義,則早期的面向終端的網路都不能算是計算機網路,而只能稱為聯機系統(因為那時的許多終端不能算是自治的計算機)。但隨著硬體價格的下降,許多終端都具有一定的智能,因而「終端」和「自治的計算機」逐漸失去了嚴格的界限。若用微型計算機作為終端使用,按上述定義,則早期的那種面向終端的網路也可稱為計算機網路。

『肆』 試述具有五層協議的網路體系結構要點,包括

五層協議的網路體系結構應用層、運輸層、網路層、數據鏈路層、物理層。

互聯網概述:

互聯網(internet)又稱網際網路,即廣域網、城域網、區域網及單機按照一定的通訊協議組成的國際計算機網路。互聯網是指將兩台計算機或者是兩台以上的計算機終端、客戶端、服務端通過計算機信息技術的手段互相聯系起來的結果,人們可以與遠在千里之外的朋友相互發送郵件、共同完成一項工作、共同娛樂。

同時拆斗,互聯網還是物聯網的重要組成部分,根據中國物聯網校企聯盟的定義,物聯網是當下幾乎所有技術與計算機互聯網技術的結合,讓信息更快更准得收集、傳遞、處理並執行。

『伍』 典型的計算機網路體系結構有哪些

OSI七層模型、TCP/IP四層模型、五層體系結構

一、OSI七層模型

OSI七層協議模型主要是:應用層(Application)、表示層(Presentation)、會話層(Session)、傳輸層(Transport)、網路層(Network)、數據鏈路層(DataLink)、物理層(Physical)。

二、TCP/IP四層模型

TCP/IP是一個四層的體系結構,主要包括:應用層、運輸層、網際層和網路介面層。從實質上講,只有上邊三層,網路介面層沒有什麼具體的內容。

三、五層體系結構

五層體系結構包括:應用層、運輸層、網路層、數據鏈路層和物理層。五層協議只是OSI和TCP/IP的綜合,實際應用還是TCP/IP的四層結構。為了方便可以把下兩層稱為網路介面層。

(5)簡述五層計算機網路體系結構擴展閱讀:

世界上第一個網路體系結構是美國IBM公司於1974年提出的,它取名為系統網路體系結構SNA(System Network Architecture)。凡是遵循SNA的設備就稱為SNA設備。這些SNA設備可以很方便地進行互連。此後,很多公司也紛紛建立自己的網路體系結構,這些體系結構大同小異,都採用了層次技術。

『陸』 計算機網路的七層結構、五層結構和四層結構

計算機網路體系結構分為三種主要模型:OSI(七層)、TCP/IP(四層)和五層結構。其中,TCP/IP體系結構在實際應用中更為常見,而OSI模型則是一個理論上的網路通信模型。

五層網路體系結構包括應用層、表示層、會話層、傳輸層和網路介面層。每一層都有其特定的功能和職責,它們共同協作以實現數據傳輸。應用層負責應用程序的交互,表示層處理數據的編碼和解碼,會話層管理連接和會話,傳輸層提供可靠的端到端數據傳輸,網路介面層負責物理層的數據傳輸。

TCP/IP體系結構則包括應用層、傳輸層、互聯網層和網路介面層。這種結構比五層結構更簡潔,且在現代網路中廣泛使用。TCP/IP協議數據交換的示意圖顯示了數據如何在各層之間流動。

總結來說,OSI模型提供了一個詳盡的網路通信框架,但實際應用中,TCP/IP四層模型因其簡潔性和高效性成為了主流選擇。五層結構在功能上介於兩者之間,提供了一種平衡的體系結構。