當前位置:首頁 » 網路連接 » 計算機網路體系結構分層的思路
擴展閱讀
鄭州警方網路安全知識 2025-01-18 20:23:07
vivo其他網路連接在哪裡 2025-01-18 20:21:17
網站設計怎麼做有效的 2025-01-18 20:13:44

計算機網路體系結構分層的思路

發布時間: 2024-06-11 01:43:24

❶ 6什麼計算機網路的體系結構為什麼要採用分層次的結構

計算機網路體系結構是指計算機網路層次結構模型,它是各層的協議以及層次之間的埠的集合。

目前廣泛採用的是國際標准化組織(ISO)1997年提出的開放系統互聯(Open
System Interconnection,OSI)參考模型,習慣上稱為ISO/OSI參考模型。

在OSI七層參考模型的體系結構中,由低層至高層分別稱為物理層、數據鏈路層、網路層、運輸層、會話層、表示層和應用層

原因:為把在一個網路結構下開發的系統與在另一個網路結構下開發的系統互聯起來,以實現更高一級的應用,使異種機之間的通信成為可能,便於網路結構標准化;

並且由於全球經濟的發展使得處在不同網路體系結構的用戶迫切要求能夠互相交換信息;

為此,國際標准化組織ISO成立了專門的機構研究該問題,並於1977年提出了一個試圖使各種計算機在世界范圍內互聯成網的標准框架,即著名的開放系統互連基本參考模型OSI/RM (Open System Interconnection Reference Model)。

(1)計算機網路體系結構分層的思路擴展閱讀:

OSI模型體系結構:

物理層(Physical,PH)物理層的任務就是為上層提供一個物理的連接,以及該物理連接表現出來的機械、電氣、功能和過程特性,實現透明的比特流傳輸。

數據鏈路層(Data-link,D)實現的主要功能有:幀的同步、差錯控制、流量控制、定址、幀內定界、透明比特組合傳輸等。

網路層(Network,N)網路層的主要任務是為要傳輸的分組選擇一條合適的路徑,使發送分組能夠正確無誤地按照給定的目的地址找到目的主機,交付給目的主機的傳輸層。

傳輸層(Transport,T)傳輸層向上一層提供一個可靠的端到端的服務,使會話層不知道傳輸層以下的數據通信的細節

會話層(Session,S)提供包括訪問驗證和會話管理在內的建立以及維護應用之間的通信機制。如伺服器驗證用戶登錄便是由會話層完成的。

表示層(Presentation,P)數據的壓縮和解壓縮、加密和解密等工作都由表示層負責。

應用層(Application,A)應用層確定進程之間通信的性質以滿足用戶的需求,以及提供網路與用戶軟體之間的介面服務。

❷ 計算機網路的體系結構

計算機網路的體系結構

計算機網路體系結構關注三方面內容:網路協議如何分層、各層協議、層間介面。下面是我整理的關於計算機網路的體系結構,希望大家認真閱讀!

一、計算機網路體系結構分層思想

首先,你要對計算機網路有一個模糊的認識---計算機網路是一個十分復雜的系統⊙﹏⊙。看看你電腦上有多少服務,那些服務有著各種協議,小白問度娘都不一定能弄懂。可想而知,對於那些計算機科學家(我覺得當年應該有很多玩通信的工程師吧,臆想而已。對這段歷史感興趣可以參考央視《互聯網時代》)來說,設計一種網路體系結構應該可能也是很難的,復雜度不是一般高啊。

可能你學沒學過匯編語言(Assembly Language),那麼請自行查資料。如果你學過匯編語言,不管學沒學好,從一開始接觸匯編語言你就會有感覺---這是什麼鬼。然後隨著歷史的發展,在匯編語言的基礎上出現了結構化程序設計語言,比如Fortran、Basic、C。這些結構化編程語言有別於上一代的是書上說的出現了"函數"的概念,從此寫代碼有了質的改變。自上而下,分而治之便是結構化程序設計的核心思想。

同樣,對於計算機網路來說也是這種思路。計算機網路體系結構可以看成一個很大的面向過程程序。如果將所有的內容都寫在一個main函數中,那麼這個程序就太尷尬了,到最後都不知道在寫些什麼了,大大加劇了程序設計的復雜度,以及後來程序維護的.復雜度...等等問題。也就是說不採用分治思想的計算機網路協調性差,設計復雜度高,網路通信出錯可能性也陡增。基於此原因,計算機網路體系結構的"分層"思想誕生了。

"分層"思想,通俗將就是常說的"分而治之"。ARPANET設計時提出的"分層"方法可將龐大而復雜的計算機網路問題,轉化為若干個局部的問題,而這些局部問題可以通過研究逐一攻破,那麼計算機之間通信就成為了可能。

二、OSI/RM模型和TCP/IP協議族的較量

1. OSI/RM

OSI/RM是英文Open System Interconnection Reference Model的縮寫,中文翻譯為"開放系統互聯基本參考模型"。在1983年,ISO發布正式文件後,也就有了現在所謂的七層協議的體系。

2. TCP/IP

TCP/IP並不是單一的協議,而是協議族。分為四層:應用層、運輸層、網際層、網路介面層。

OSI/RM和TCP/IP協議的PK中失敗了,究其原因,我認為主要有如下幾點:

1)OSI/RM 模型各層協議之間有重復功能。這就像寫代碼的時候有重復的代碼,上頭就想抽你倆嘴巴子,錢這么好賺么→_→。

2)OSI/RM 模型層數太多。也就是要說要實現網路互聯,你需要的硬體以及軟體就相對會更多。而且數據傳來傳去多了,運行效率也會降低。

3)OSI/RM 那幫人可能是棒通信領域的專家,這玩意比TCP/IP在實現上得多花不少錢。

基於這些事實,TCP/IP成了非法律上國際標準的事實上國際標准。

三、採用分層體系網路原因總結

1)並不是所有的設備都需要這么多層次。計算機網路中不同設備完成的任務不同,需要的功能也不同。除了計算機網路邊緣部分的端系統需要所有層次協議,其餘計算機網路核心部分部分則不需要這么多層次的協議。而且可以想像,多一層次就意味著多了部分硬體和軟體,成本就會增加。

PS:這里兩圖只是為了說明三層交換機比二層交換機價格高,至於高多少還取決於品牌和帶寬等因素。

2)每層設計實現相對獨立的功能,在層次設計(硬體和軟體設計)完成後,只需要提供向上的介面可供上層調用,。這樣做的好處是就像編程中的函數模塊化設計,我們只要知道高手設計的庫函數的API就行了,不需要具體軟體開發再編寫同樣高質量的代碼,從而服務了代碼搬運工。

3)模塊化協議層次大大的好啊。哪好了?雕版印刷術和活字印刷術的區別。如果某一層的技術發生變化後,只要層間介面不變,只要對某層提供的服務進行修改(添加和修改)即可。你想,這可以省多少錢啊。就像你電腦顯示屏壞了,你總不可能去新買個電腦吧,差不多就這意思。

4)降低實現和維護網路難度。如果那種服務不能使用了,那就查提供此種服務對應的那層,而不需再從頭查起。

;

❸ 網路協議體系分層的基本思想是什麼

為了促進計算機網路的發展,國際標准化組織(ISO)在現有網路的基礎上,提出了不基於具體機型、操作系統或公司的網路體系結構,稱為開放系統互聯模型(OSI)。這個模型把網路通信的工作分為7層:物理層、數據鏈路層、網路層、轉輸層、會話層、表示層、應用層;每層完成的任務不同,物理層規定了通信設備的機械的、電氣的、功能的和規程的特性,用以建立、維護和拆除物理鏈路連接。鏈路層在物理層提供比特流服務的基礎上,建立相鄰結點之間的數據鏈路,通過差錯控制提供數據幀在信道上無差錯的傳輸,在不可靠的物理介質上提供可靠的傳輸,完成物理地址定址、數據的成幀、流量控制、數據的檢錯、重發。網路層將數據鏈路層的幀組成數據包,包中封裝有網路層包頭,其中含有邏輯地址信息,選擇合適的網間路由和交換結點,確保數據及時傳送。傳輸層的數據單元也稱為數據包,但TCP的數據單元稱為段,而UDP的數據單元稱為數據報,這個層負責獲取全部信息,為上層提供端到端的透明的、可靠的數據傳輸服務。會話層稱為對話層或會晤層,在會話層及以上的高層次中,數據傳送的單位不在另外命名,統稱為報文。會話層提供包括訪問驗證和會話管理在內的建立和維護應用之間通信的機制。表示層解決用戶信息的語法表示問題。提供格式化的表示和轉換數據服務,數據的壓縮和解壓縮,數據的加密和解密。應用層為操作系統或網路應用程序提供訪問網路服務的介面。
因此,網路協議體系分層的基本思想是:使網路協議體系有統一的規定和規則;各層分別完成不同的任務,利於網路的維護,出現錯誤時,更方便管理人員按層驗察錯誤。

❹ 計算機網路的分層體系結構

第一層:物理層(PhysicalLayer),規定通信設備的機械的、電氣的、功能的和過程的特性,用以建立、維護和拆除物理鏈路連接。具體地講,機械特性規定了網路連接時所需接插件的規格尺寸、引腳數量和排列情況等;電氣特性規定了在物理連接上傳輸bit流時線路上信號電平的大小、阻抗匹配、傳輸速率距離限制等;功能特性是指對各個信號先分配確切的信號含義,即定義了DTE和DCE之間各個線路的功能;規程特性定義了利用信號線進行bit流傳輸的一組操作規程,是指在物理連接的建立、維護、交換信息是,DTE和DCE雙放在各電路上的動作系列。
在這一層,數據的單位稱為比特(bit)。
屬於物理層定義的典型規范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45等。

第二層:數據鏈路層(DataLinkLayer):在物理層提供比特流服務的基礎上,建立相鄰結點之間的數據鏈路,通過差錯控制提供數據幀(Frame)在信道上無差錯的傳輸,並進行各電路上的動作系列。
數據鏈路層在不可靠的物理介質上提供可靠的傳輸。該層的作用包括:物理地址定址、數據的成幀、流量控制、數據的檢錯、重發等。
在這一層,數據的單位稱為幀(frame)。
數據鏈路層協議的代表包括:SDLC、HDLC、PPP、STP、幀中繼等。

第三層是網路層(Network layer)

在計算機網路中進行通信的兩個計算機之間可能會經過很多個數據鏈路,也可能還要經過很多通信子網。網路層的任務就是選擇合適的網間路由和交換結點, 確保數據及時傳送。網路層將數據鏈路層提供的幀組成數據包,包中封裝有網路層包頭,其中含有邏輯地址信息- -源站點和目的站點地址的網路地址。

如果你在談論一個IP地址,那麼你是在處理第3層的問題,這是「數據包」問題,而不是第2層的「幀」。IP是第3層問題的一部分,此外還有一些路由協議和地址解析協議(ARP)。有關路由的一切事情都在第3層處理。地址解析和路由是3層的重要目的。網路層還可以實現擁塞控制、網際互連等功能。
在這一層,數據的單位稱為數據包(packet)。
網路層協議的代表包括:IP、IPX、RIP、OSPF等。

第四層是處理信息的傳輸層(Transport layer)。第4層的數據單元也稱作數據包(packets)。但是,當你談論TCP等具體的協議時又有特殊的叫法,TCP的數據單元稱為段(segments)而UDP協議的數據單元稱為「數據報(datagrams)」。這個層負責獲取全部信息,因此,它必須跟蹤數據單元碎片、亂序到達的數據包和其它在傳輸過程中可能發生的危險。第4層為上層提供端到端(最終用戶到最終用戶)的透明的、可靠的數據傳輸服務。所為透明的傳輸是指在通信過程中傳輸層對上層屏蔽了通信傳輸系統的具體細節。
傳輸層協議的代表包括:TCP、UDP、SPX等。

第五層是會話層(Session layer)

這一層也可以稱為會晤層或對話層,在會話層及以上的高層次中,數據傳送的單位不再另外命名,統稱為報文。會話層不參與具體的傳輸,它提供包括訪問驗證和會話管理在內的建立和維護應用之間通信的機制。如伺服器驗證用戶登錄便是由會話層完成的。

第六層是表示層(Presentation layer)

這一層主要解決用戶信息的語法表示問題。它將欲交換的數據從適合於某一用戶的抽象語法,轉換為適合於OSI系統內部使用的傳送語法。即提供格式化的表示和轉換數據服務。數據的壓縮和解壓縮, 加密和解密等工作都由表示層負責。

第七層應用層(Application layer),應用層為操作系統或網路應用程序提供訪問網路服務的介面。
應用層協議的代表包括:Telnet、FTP、HTTP、SNMP等。

❺ 計算機網路體系分為哪四層

1.、應用層

應用層對應於OSI參考模型的高層,為用戶提供所需要的各種服務,例如:FTP、Telnet、DNS、SMTP等.

2.、傳輸層

傳輸層對應於OSI參考模型的傳輸層,為應用灶拍游層實體提供端到端的通信功能,保證了數據包的順序傳送及數據的完整性。該層定義了兩個主要的協議:傳輸控制協議(TCP)和用戶數據報協議(UDP).

TCP協議提供的是一種可靠的、通過「三次握手」來連接的數據傳輸服務;而UDP協議提供的則是不保證可靠的(並不是不可靠)、無連接的數據傳輸服務.

3.、網際互聯層

網際互聯層對應於OSI參考模型的網路層,主要解決主機到主機的通信問題。它所包含的協議設計數據包在整個網路上的邏輯傳輸。注重重新賦予主機一個IP地址來完成對主機的定址,它還負責數據包在多種網路中的路由。

該層有三個主要協議:網際協議(IP)、互聯網組管理協議(IGMP)和互聯網控制報文賀嘩協議(ICMP)。

IP協議是網際互聯層最重要的協議,它提供的是一個可靠、無連接的數據報傳遞服務。

4.、網路接入層(即主機-網路層)

網路接入層與OSI參考模型中的物理層和數據鏈路層相對應。它負責監視數據在主機和網路之間的交換。事實上,TCP/IP本身並未定義該層的協議,而由參與互連的各網路使用自己的物理層和數據鏈路層協議,然後與TCP/IP的網路接入層進行連接。地址解析協議(ARP)工作在此層,即OSI參考模型的數據鏈路層。

(5)計算機網路體系結構分層的思路擴展閱讀:

OSI將計算機網路體系結構(architecture)劃分為以下七層:

物理層: 將數據轉換為可通過物理介質傳送的電子信號相當於郵局中的搬運工人。

數據鏈路層: 決定訪問網路介質的方式。

在此層將數據分幀,並處理流控制。本層指定拓撲結構並提供硬體定址,相當於郵局中的裝拆箱工人。

網路層: 使用權數據路由經過大型網路 相當於郵局中的排序工人。

傳輸層: 提供終端到終端的可靠連接 相當於公司中跑郵局的送信職員。

會話層: 允許用戶使用簡單易記的名稱建立連接 相當於公司中收寄信、寫信封與拆信封的秘書。

表示層: 協商數據交換格式 相當公司中簡報老闆、替老闆寫信的助理。

應用層: 用戶的應用程序和網路之間的介面老闆。