當前位置:首頁 » 網路連接 » 計算機網路tcp通訊實驗報告
擴展閱讀
蘋果icloud的軟體 2025-01-19 23:01:04
計算機網路技術學啥的 2025-01-19 22:33:07

計算機網路tcp通訊實驗報告

發布時間: 2024-05-17 05:34:53

❶ 求一份 計算機網路 乙太網組網實驗 的實驗報告!

ff

❷ 談計算機網路TCP協議的模擬與實現

談計算機網路TCP協議的模擬與實現

TCP是計算機網路中運輸層協議,連接著應用層和網路層,發揮著非常關鍵的作用。那麼,計算機網路TCP協議的模擬與實現是?

作為計算機網路中較為重要的一種運輸層協議,TCP連接著應用層和網路層,發揮著非常關鍵的作用。在TCP/IP協議中,我們重點關注TCP。本文主要立足於TCP協議的特點,詳細介紹了TCP協議的主要特性。

一、TCP協議的概述

(一) TCP協議的特點

首先,TCP提供的連接服務穩定性有保證。相關的連接有著和打電弧相似的建立過程。先撥電話號碼,當對方接通回復“喂”的時候,再告知對方自己是誰,完成任務後釋放;其次,TCP提供連接必須是只針對兩個客戶端,也就是實現一對一的傳輸;最後,TCP提供全雙工通信。這個特點就是保證通信的兩端在使用TCP的時候可以隨時通信,這樣就可以及時傳輸數據。

(二) TCP埠號和套接字地址

TCP埠號:埠號只能對計算機中的進程進行標記,一般使用兩個位元組來完成標記工作,這也就是埠號的本地意義。當埠號並不是我們熟悉的狀況時,要使用數值為1024~49151的等記埠號,使用的過程中要在UANA上登記,避免中間重復使用。無連接的UDP和TCP也有著自己的埠號,但是兩個埠號彼此之間是相互獨立的,各自有著不同的用途。套接字地址:CP中的套接字,一般在表達的過程中會用同一個名詞表達不一樣的含義。也就是說,當套接字被一個程序使用,那麼socket函數中使用的函數以及調用它的埠都會叫做scocket。當緊急URG給系統發出有關緊急數據傳輸的通知時,相關的緊急數據應該作為優先順序任務,盡快被傳送。

二、 TCP的連接與釋放

(一)建立連接

全雙工是TCP傳輸數據的主要方式,在整個過程中有三次握手的方式來完成對該項目的建立,並且TCP的連接和釋放都是使用客戶—伺服器方式,連接的建立也是從伺服器開始。首先將SYN設置為1,然後將數據包頭部的那個確認欄位設置為x+1,接下來將最開始的序列號放在數據包頭部的數列中。當這個鏈接的數據段被接受之後,那麼相應的數據段就會被送到緩沖區,同時,伺服器也能夠及時收到客戶端從另外一邊發來的數據段,最後完成相關輸出的確認。

(二) TCP的連接釋放

TCP傳輸數據的'主要方式是全雙工,因此,數據傳輸結束後,所有的連接都會被釋放,並且每個連接的釋放都是單個放行的。首先,當被A發送的數據能夠到達B,為了杜絕失效的報文段在文本中存在,最後一個一個ACK被發送完後,相關的環節就會處理。這種辦法就能夠及時高效地處理掉連接過程中請求報文段的問題。

(三) TCP的連接復位

一般情況下,有三種情況需要復位。首先,當TCP連接的埠並不存在時,另一端TCP就能發送一個報文段,這時需要關閉相關的連接;其次,如果一端的TCP出現一些異常情況,那麼就可以通過發送復位來終止連接;最後一種情況是,當一端的TCP長時間沒有使用,那麼就可以發送復位信息報,將其關閉。

(四) TCP擁塞控制

TCP的擁塞控制是TCP工作中存在的一種現實問題,會對整個工作造成一定程度的影響,因此,必須針對這種情況進行改進。首先,慢啟動和擁塞避免。TCP用來發送數據是慢啟動和擁塞避免演算法展開的依據,這種演算法的實現必須通過在TCP中增加兩個變數;其次,快恢復和快重傳。這種主要是針對發送端展開的,多種網路會導致埠查收到重復ACK,因此,應該找到事故原因,及時處理。

三、TCP的模擬實驗

(一)模擬實驗的設置

我們都知道TCP是有鏈接的可靠的傳輸層協議,所以在傳輸運用過程中也會出現錯誤。下面我們通過以下模擬實驗,來了解TCP在傳輸FTP文件時一數據報丟失的情況,來詳細分析下這一解決過程。

我們用OPNET來做TCP的模擬實驗,這只是在一個比較簡單的環境下在做關於TCP的模擬實驗,測試出數據圖通過分析和比較來觀察TCP處理數據丟失包的具體工作原理和過程。選擇“結果- - > >安排Pannels顯示所有“查看保存結果。

頂部多媒體的快速decovery conquestion窗口由於“TCP雷諾”,在重新傳輸。這個conquestion窗口只是減少了一半,而不是1MSS,從而快速恢復。graphe的底部顯示了發送之間的關系序列號碼和收到seqment ack伺服器上的數量。伺服器故意把一個數據包給丟失,這時客戶伺服器就會發出三個ACK,會被重新發送。

這時把FTP的Command Mix的值設置為100%,把Inter-Requests設置為constant 3600,把File Size設置為FTP,把Server,type of serveice值設置為best effort,把RSVP parameters值設置為 None;用NotUsed來設置Back-End Custom Application值。

(二)模擬實驗的過程

針對TCP數據傳輸開始時,擁塞窗口設置為最大的MSS值,慢啟動演算法開始,cwnd被設置為200,那麼400,800,1600.......以103S,擁塞窗口達到6500的最大閾值,為了不讓擁塞窗口將不會太增加網路阻塞引起的,然後執行擁塞避免演算法,每一個RTT,擁塞窗口將增加一個單位,然後在107s當FTP數據包丟失,然後進行處理,擁塞窗口的值下降,TCP協議在慢啟動和擁塞避免演算法的實現,窗口的大小增長將呈現線性增長。設置最大窗口閾值,根據3響應消息重復判斷丟包,重傳丟失的數據包和直接的閾值,為當前擁塞窗口6500的一半,這是快速重傳(Tahoe),然後轉移到慢啟動。然後再轉入慢開始。

在窗口大小到達大約80000後,應該是收到3個連續ACK,若根據3個重復的應答報文就會知道有沒有丟包,而且丟失的分組會被重傳,此時的ssthresh的值就為擁塞窗口的一半,這樣就進入了進入擁塞避免階段。

(三)模擬實驗小結

用OPNET做TCP的模擬實驗,數據包丟失,TCP數據的變化都被形象的描繪出來了,很好的詮釋了這一失誤和改正過程。為TCP以後出錯改正做了很好的例子。

四、結語

綜上所述,網路普及的這個時代,讓我們不斷地認識到了計算機網路的重要性,學生們也開始越來越重視對TCP的研究。在簡單的OSI體系中,TCP發揮著較為重要的作用,因此,我們必須深入研究其工作原理,便於在運輸層中順利地運用TCP協議。

;

❸ 計算機網路自學筆記:TCP

如果你在學習這門課程,僅僅為了理解網路工作原理,那麼只要了解TCP是可靠傳輸,數據傳輸丟失時會重傳就可以了。如果你還要參加研究生考試或者公司面試等,那麼下面內容很有可能成為考查的知識點,主要的重點是序號/確認號的編碼、超時定時器的設置、可靠傳輸和連接的管理。

1 TCP連接

TCP面向連接,在一個應用進程開始向另一個應用進程發送數據之前,這兩個進程必須先相互「握手」,即它們必須相互發送某些預備報文段,以建立連接。連接的實質是雙方都初始化與連接相關的發送/接收緩沖區,以及許多TCP狀態變數。

這種「連接」不是一條如電話網路中端到端的電路,因為它們的狀態完全保留在兩個端系統中。

TCP連接提供的是全雙工服務 ,應用層數據就可在從進程B流向進程A的同時,也從進程A流向進程B。

TCP連接也總是點對點的 ,即在單個發送方與單個接收方之間建立連接。

一個客戶機進程向伺服器進程發送數據時,客戶機進程通過套接字傳遞數據流。

客戶機操作系統中運行的 TCP軟體模塊首先將這些數據放到該連接的發送緩存里 ,然後會不時地從發送緩存里取出一塊數據發送。

TCP可從緩存中取出並放入報文段中發送的數據量受限於最大報文段長MSS,通常由最大鏈路層幀長度來決定(也就是底層的通信鏈路決定)。 例如一個鏈路層幀的最大長度1500位元組,除去數據報頭部長度20位元組,TCP報文段的頭部長度20位元組,MSS為1460位元組。

報文段被往下傳給網路層,網路層將其封裝在網路層IP數據報中。然後這些數據報被發送到網路中。

當TCP在另一端接收到一個報文段後,該報文段的數據就被放人該連接的接收緩存中。應用程序從接收緩存中讀取數據流(注意是應用程序來讀,不是操作系統推送)。

TCP連接的每一端都有各自的發送緩存和接收緩存。

因此TCP連接的組成包括:主機上的緩存、控制變數和與一個進程連接的套接字變數名,以及另一台主機上的一套緩存、控制變數和與一個進程連接的套接字。

在這兩台主機之間的路由器、交換機中,沒有為該連接分配任何緩存和控制變數。

2報文段結構

TCP報文段由首部欄位和一個數據欄位組成。數據欄位包含有應用層數據。

由於MSS限制了報文段數據欄位的最大長度。當TCP發送一個大文件時,TCP通常是將文件劃分成長度為MSS的若干塊。

TCP報文段的結構。

首部包括源埠號和目的埠號,它用於多路復用/多路分解來自或送至上層應用的數據。另外,TCP首部也包括校驗和欄位。報文段首部還包含下列欄位:

32比特的序號欄位和32比特的確認號欄位。這些欄位被TCP發送方和接收方用來實現可靠數據傳輸服務。

16比特的接收窗口欄位,該欄位用於流量控制。該欄位用於指示接收方能夠接受的位元組數量。

4比特的首部長度欄位,該欄位指示以32比特的字為單位的TCP首部長度。一般TCP首部的長度就是20位元組。

可選與變長的選項欄位,該欄位用於當發送方與接收方協商最大報文段長度,或在高速網路環境下用作窗口調節因子時使用。

標志欄位ACK比特用於指示確認欄位中的ACK值的有效性,即該報文段包括一個對已被成功接收報文段的確認。 SYN和FIN比特用於連接建立和拆除。 PSH、URG和緊急指針欄位通常沒有使用。

•序號和確認號

TCP報文段首部兩個最重要的欄位是序號欄位和確認號欄位。

TCP把數據看成一個無結構的但是有序的位元組流。TCP序號是建立在傳送的位元組流之上,而不是建立在傳送的報文段的序列之上。

一個報文段的序號是該報文段首位元組在位元組流中的編號。

例如,假設主機A上的一個進程想通過一條TCP連接向主機B上的一個進程發送一個數據流。主機A中的TCP將對數據流中的每一個位元組進行編號。假定數據流由一個包含4500位元組的文件組成(可以理解為應用程序調用send函數傳遞過來的數據長度),MSS為1000位元組(鏈路層一次能夠傳輸的位元組數),如果主機決定數據流的首位元組編號是7。TCP模塊將為該數據流構建5個報文段(也就是分5個IP數據報)。第一個報文段的序號被賦為7;第二個報文段的序號被賦為1007,第三個報文段的序號被賦為2007,以此類推。前面4個報文段的長度是1000,最後一個是500。

確認號要比序號難理解一些。前面講過,TCP是全雙工的,因此主機A在向主機B發送數據的同時,也可能接收來自主機B的數據。從主機B到達的每個報文段中的序號欄位包含了從B流向A的數據的起始位置。 因此主機B填充進報文段的確認號是主機B期望從主機A收到的下一報文段首位元組的序號。

假設主機B已收到了來自主機A編號為7-1006的所有位元組,同時假設它要發送一個報文段給主機A。主機B等待主機A的數據流中位元組1007及後續所有位元組。所以,主機B會在它發往主機A的報文段的確認號欄位中填上1007。

再舉一個例子,假設主機B已收到一個來自主機A的包含位元組7-1006的報文段,以及另一個包含位元組2007-3006的報文段。由於某種原因,主機A還沒有收到位元組1007-2006的報文段。

在這個例子中,主機A為了重組主機B的數據流,仍在等待位元組1007。因此,A在收到包含位元組2007-3006的報文段時,將會又一次在確認號欄位中包含1007。 因為TCP只確認數據流中至第一個丟失報文段之前的位元組數據,所以TCP被稱為是採用累積確認。

TCP的實現有兩個基本的選擇:

1接收方立即丟棄失序報文段;

2接收方保留失序的位元組,並等待缺少的位元組以填補該間隔。

一條TCP連接的雙方均可隨機地選擇初始序號。 這樣做可以減少將那些仍在網路中的來自兩台主機之間先前連接的報文段,誤認為是新建連接所產生的有效報文段的可能性。

•例子telnet

Telnet由是一個用於遠程登錄的應用層協議。它運行在TCP之上,被設計成可在任意一對主機之間工作。

假設主機A發起一個與主機B的Telnet會話。因為是主機A發起該會話,因此主機A被標記為客戶機,主機B被標記為伺服器。用戶鍵入的每個字元(在客戶機端)都會被發送至遠程主機。遠程主機收到後會復制一個相同的字元發回客戶機,並顯示在Telnet用戶的屏幕上。這種「回顯」用於確保由用戶發送的字元已經被遠程主機收到並處理。因此,在從用戶擊鍵到字元顯示在用戶屏幕上之間的這段時間內,每個字元在網路中傳輸了兩次。

現在假設用戶輸入了一個字元「C」,假設客戶機和伺服器的起始序號分別是42和79。前面講過,一個報文段的序號就是該報文段數據欄位首位元組的序號。因此,客戶機發送的第一個報文段的序號為42,伺服器發送的第一個報文段的序號為79。前面講過,確認號就是主機期待的數據的下一個位元組序號。在TCP連接建立後但沒有發送任何數據之前,客戶機等待位元組79,而伺服器等待位元組42。

如圖所示,共發了3個報文段。第一個報文段是由客戶機發往伺服器,其數據欄位里包含一位元組的字元「C」的ASCII碼,其序號欄位里是42。另外,由於客戶機還沒有接收到來自伺服器的任何數據,因此該報文段中的確認號欄位里是79。

第二個報文段是由伺服器發往客戶機。它有兩個目的:第一個目的是為伺服器所收到的數據提供確認。伺服器通過在確認號欄位中填入43,告訴客戶機它已經成功地收到位元組42及以前的所有位元組,現在正等待著位元組43的出現。第二個目的是回顯字元「C」。因此,在第二個報文段的數據欄位里填入的是字元「C」的ASCII碼,第二個報文段的序號為79,它是該TCP連接上從伺服器到客戶機的數據流的起始序號,也是伺服器要發送的第一個位元組的數據。

這里客戶機到伺服器的數據的確認被裝載在一個伺服器到客戶機的數據的報文段中,這種確認被稱為是捎帶確認.

第三個報文段是從客戶機發往伺服器的。它的唯一目的是確認已從伺服器收到的數據。

3往返時延的估計與超時

TCP如同前面所講的rdt協議一樣,採用超時/重傳機制來處理報文段的丟失問題。最重要的一個問題就是超時間隔長度的設置。顯然,超時間隔必須大於TCP連接的往返時延RTT,即從一個報文段發出到收到其確認時。否則會造成不必要的重傳。

•估計往返時延

TCP估計發送方與接收方之間的往返時延是通過採集報文段的樣本RTT來實現的,就是從某報文段被發出到對該報文段的確認被收到之間的時間長度。

也就是說TCP為一個已發送的但目前尚未被確認的報文段估計sampleRTT,從而產生一個接近每個RTT的采樣值。但是,TCP不會為重傳的報文段計算RTT。

為了估計一個典型的RTT,採取了某種對RTT取平均值的辦法。TCP據下列公式來更新

EstimatedRTT=(1-)*EstimatedRTT+*SampleRTT

即估計RTT的新值是由以前估計的RTT值與sampleRTT新值加權組合而成的。

參考值是a=0.125,因此是一個加權平均值。顯然這個加權平均對最新樣本賦予的權值

要大於對老樣本賦予的權值。因為越新的樣本能更好地反映出網路當前的擁塞情況。從統計學觀點來講,這種平均被稱為指數加權移動平均

除了估算RTT外,還需要測量RTT的變化,RTT偏差的程度,因為直接使用平均值設置計時器會有問題(太靈敏)。

DevRTT=(1-β)*DevRTT+β*|SampleRTT-EstimatedRTT|

RTT偏差也使用了指數加權移動平均。B取值0.25.

•設置和管理重傳超時間隔

假設已經得到了估計RTT值和RTT偏差值,那麼TCP超時間隔應該用什麼值呢?TCP將超時間隔設置成大於等於估計RTT值和4倍的RTT偏差值,否則將造成不必要的重傳。但是超時間隔也不應該比估計RTT值大太多,否則當報文段丟失時,TCP不能很快地重傳該報文段,從而將給上層應用帶來很大的數據傳輸時延。因此,要求將超時間隔設為估計RTT值加上一定餘量。當估計RTT值波動較大時,這個余最應該大些;當波動比較小時,這個餘量應該小些。因此使用4倍的偏差值來設置重傳時間。

TimeoutInterval=EstimatedRTT+4*DevRTT

4可信數據傳輸

網際網路的網路層服務是不可靠的。IP不保證數據報的交付,不保證數據報的按序交付,也不保證數據報中數據的完整性。

TCP在IP不可靠的盡力而為服務基礎上建立了一種可靠數據傳輸服務。

TCP提供可靠數據傳輸的方法涉及前面學過的許多原理。

TCP採用流水線協議、累計確認。

TCP推薦的定時器管理過程使用單一的重傳定時器,即使有多個已發送但還未被確認的報文段也一樣。重傳由超時和多個ACK觸發。

在TCP發送方有3種與發送和重傳有關的主要事件:從上層應用程序接收數據,定時器超時和收到確認ACK。

從上層應用程序接收數據。一旦這個事件發生,TCP就從應用程序接收數據,將數據封裝在一個報文段中,並將該報文段交給IP。注意到每一個報文段都包含一個序號,這個序號就是該報文段第一個數據位元組的位元組流編號。如果定時器還沒有計時,則當報文段被傳給IP時,TCP就啟動一個該定時器。

第二個事件是超時。TCP通過重傳引起超時的報文段來響應超時事件。然後TCP重啟定時器。

第三個事件是一個來自接收方的確認報文段(ACK)。當該事件發生時,TCP將ACK的值y與變數SendBase(發送窗口的基地址)進行比較。TCP狀態變數SendBase是最早未被確認的位元組的序號。就是指接收方已正確按序接收到數據的最後一個位元組的序號。TCP採用累積確認,所以y確認了位元組編號在y之前的所有位元組都已經收到。如果Y>SendBase,則該ACK是在確認一個或多個先前未被確認的報文段。因此發送方更新其SendBase變數,相當於發送窗口向前移動。

另外,如果當前有未被確認的報文段,TCP還要重新啟動定時器。

快速重傳

超時觸發重傳存在的另一個問題是超時周期可能相對較長。當一個報文段丟失時,這種長超時周期迫使發送方等待很長時間才重傳丟失的分組,因而增加了端到端時延。所以通常發送方可在超時事件發生之前通過觀察冗餘ACK來檢測丟包情況。

冗餘ACK就是接收方再次確認某個報文段的ACK,而發送方先前已經收到對該報文段的確認。

當TCP接收方收到一個序號比所期望的序號大的報文段時,它認為檢測到了數據流中的一個間隔,即有報文段丟失。這個間隔可能是由於在網路中報文段丟失或重新排序造成的。因為TCP使用累計確認,所以接收方不向發送方發回否定確認,而是對最後一個正確接收報文段進行重復確認(即產生一個冗餘ACK)

如果TCP發送方接收到對相同報文段的3個冗餘ACK.它就認為跟在這個已被確認過3次的報文段之後的報文段已經丟失。一旦收到3個冗餘ACK,TCP就執行快速重傳 ,

即在該報文段的定時器過期之前重傳丟失的報文段。

5流量控制

前面講過,一條TCP連接雙方的主機都為該連接設置了接收緩存。當該TCP連接收到正確、按序的位元組後,它就將數據放入接收緩存。相關聯的應用進程會從該緩存中讀取數據,但沒必要數據剛一到達就立即讀取。事實上,接收方應用也許正忙於其他任務,甚至要過很長時間後才去讀取該數據。如果應用程序讀取數據時相當緩慢,而發送方發送數據太多、太快,會很容易使這個連接的接收緩存溢出。

TCP為應用程序提供了流量控制服務以消除發送方導致接收方緩存溢出的可能性。因此,可以說 流量控制是一個速度匹配服務,即發送方的發送速率與接收方應用程序的讀速率相匹配。

前面提到過,TCP發送方也可能因為IP網路的擁塞而被限制,這種形式的發送方的控制被稱為擁塞控制(congestioncontrol)。

TCP通過讓接收方維護一個稱為接收窗口的變數來提供流量控制。接收窗口用於告訴發送方,該接收方還有多少可用的緩存空間。因為TCP是全雙工通信,在連接兩端的發送方都各自維護一個接收窗口變數。 主機把當前的空閑接收緩存大小值放入它發給對方主機的報文段接收窗口欄位中,通知對方它在該連接的緩存中還有多少可用空間。

6 TCP連接管理

客戶機中的TCP會用以下方式與伺服器建立一條TCP連接:

第一步: 客戶機端首先向伺服器發送一個SNY比特被置為1報文段。該報文段中不包含應用層數據,這個特殊報文段被稱為SYN報文段。另外,客戶機會選擇一個起始序號,並將其放置到報文段的序號欄位中。為了避免某些安全性攻擊,這里一般隨機選擇序號。

第二步: 一旦包含TCP報文段的用戶數據報到達伺服器主機,伺服器會從該數據報中提取出TCPSYN報文段,為該TCP連接分配TCP緩存和控制變數,並向客戶機TCP發送允許連接的報文段。這個允許連接的報文段還是不包含應用層數據。但是,在報文段的首部卻包含3個重要的信息。

首先,SYN比特被置為1。其次,該 TCP報文段首部的確認號欄位被置為客戶端序號+1最後,伺服器選擇自己的初始序號,並將其放置到TCP報文段首部的序號欄位中。 這個允許連接的報文段實際上表明了:「我收到了你要求建立連接的、帶有初始序號的分組。我同意建立該連接,我自己的初始序號是XX」。這個同意連接的報文段通常被稱為SYN+ACK報文段。

第三步: 在收到SYN+ACK報文段後,客戶機也要給該連接分配緩存和控制變數。客戶機主機還會向伺服器發送另外一個報文段,這個報文段對伺服器允許連接的報文段進行了確認。因為連接已經建立了,所以該ACK比特被置為1,稱為ACK報文段,可以攜帶數據。

一旦以上3步完成,客戶機和伺服器就可以相互發送含有數據的報文段了。

為了建立連接,在兩台主機之間發送了3個分組,這種連接建立過程通常被稱為 三次握手(SNY、SYN+ACK、ACK,ACK報文段可以攜帶數據) 。這個過程發生在客戶機connect()伺服器,伺服器accept()客戶連接的階段。

假設客戶機應用程序決定要關閉該連接。(注意,伺服器也能選擇關閉該連接)客戶機發送一個FIN比特被置為1的TCP報文段,並進人FINWAIT1狀態。

當處在FINWAIT1狀態時,客戶機TCP等待一個來自伺服器的帶有ACK確認信息的TCP報文段。當它收到該報文段時,客戶機TCP進入FINWAIT2狀態。

當處在FINWAIT2狀態時,客戶機等待來自伺服器的FIN比特被置為1的另一個報文段,

收到該報文段後,客戶機TCP對伺服器的報文段進行ACK確認,並進入TIME_WAIT狀態。TIME_WAIT狀態使得TCP客戶機重傳最終確認報文,以防該ACK丟失。在TIME_WAIT狀態中所消耗的時間是與具體實現有關的,一般是30秒或更多時間。

經過等待後,連接正式關閉,客戶機端所有與連接有關的資源將被釋放。 因此TCP連接的關閉需要客戶端和伺服器端互相交換連接關閉的FIN、ACK置位報文段。

❹ 計算機網路——TCP/UDP協議

計算機網路七層模型中,傳輸層有兩個重要的協議:
(1)用戶數據報協議UDP (User Datagram Protocol)
(2)傳輸控制協議TCP (Transmission Control Protocol)

UDP 在傳送數據之前不需要先建立連接。遠地主機的運輸層在收到UDP 報文後,不需要給出任何確認。雖然UDP 不提供可靠交付,但在某些情況下UDP 卻是一種最有效的工作方式。

TCP 則提供面向連接的服務。在傳送數據之前必須先建立連接,數據傳送結束後要釋放連接。TCP 不提供廣播或多播服務。由於TCP 要提供可靠的、面向連接的運輸服務,因此不可避免地增加了許多的開銷,如確認、流量控制、計時器以及連接管理等。

UDP 的主要特點是:

首部手段很簡單,只有8 個位元組,由四個欄位組成,每個欄位的長度都是兩個位元組。

前面已經講過,每條TCP 連接有兩個端點,TCP 連接的端點叫做套接字(socket)或插口。套接字格式如下:

套接寧socket= (IP 地址:埠號』)

每一條TCP 連接唯一地被通信兩端的兩個端點(即兩個套接宇)所確定。即:
TCP 連接= {socket1, socket2} = {(IP1: port1), (IP2: port2)}

3次握手鏈接

4次握手釋放鏈接

斷開連接請求可以由客戶端發出,也可以由伺服器端發出,在這里我們稱A端向B端請求斷開連接。

各個狀態節點解釋如下:

下面為了討論問題的萬便,我們僅考慮A發送數據而B 接收數據並發送確認。因此A 叫做發送方,而B 叫做接收方。

「停止等待」就是每發送完一個分組就停止發送,等待對方的確認。在收到確認後再發送下一個分組。

使用上述的確認和重傳機制,我們就可以在不可靠的傳輸網路上實現可靠的通信。像上述的這種可靠傳輸協議常稱為自動重傳請求ARQ (Automatic Repeat reQuest)。意思是重傳的請求是自動進行的。接收方不需要請求發送方重傳某個出錯的分組。

滑動窗口協議比較復雜,是TCP 協議的精髓所在。這里先給出連續ARQ 協議最基本的概念,但不涉提到許多細節問題。詳細的滑動窗口協議將在後面討論。

下圖表示發送方維持的發送窗口,它的意義是:位於發送窗口內的5 個分組都可連續發送出去,而不需要等待對方的確認。這樣,信道利用率就提高了。

連續ARQ 協議規定,發送方每收到一個確認,就把發送窗口向前滑動一個分組的位置。

接收方一般都是採用 累積確認 的方式。這就是說,接收方不必對收到的分組逐個發送確認,而是可以在收到幾個分組後,對按序到達的最後一個分組發送確認,這樣就表示:到這個分組為止的所有分組都己正確收到了。

累積確認 的優點是容易實現,即使確認丟失也不必重傳。但缺點是不能向發送方反映出接收方己經正確收到的所有分組的信息。

例如,如果發送方發送了前5 個分組,而中間的第3 個分組丟失了。這時接收方只能對前兩個分組發出確認。發送方無法知道後面三個分組的下落,而只好把後面的三個分組都再重傳一次。這就叫做Go-back-N (回退N ),表示需要再退回來重傳己發送過的N 個分組。可見當通信線路質量不好時,連續ARQ 協議會帶來負面的影響。

TCP 的滑動窗口是以位元組為單位的。現假定A 收到了B 發來的確認報文段,其中窗口是20 (位元組),而確認號是31 (這表明B 期望收到的下一個序號是31 ,而序號30 為止的數據己經收到了)。根據這兩個數據, A 就構造出自己的發送窗口,其位置如圖所示。

發送窗口表示:在沒有收到B 的確認的情況下, A可以連續把窗口內的數據都發送出去。凡是己經發送過的數據,在未收到確認之前都必須暫時保留,以便在超時重傳時使用。

發送窗口後沿的後面部分表示己發送且己收到了確認。這些數據顯然不需要再保留了。而發送窗口前沿的前面部分表示不允許發送的,因為接收方都沒有為這部分數據保留臨時存放的緩存空間。

現在假定A 發送了序號為31 ~ 41 的數據。這時發送窗口位置並未改變,但發送窗口內靠後面有11個位元組(灰色小方框表示)表示己發送但未收到確認。而發送窗口內靠前面的9 個位元組( 42 ~ 50 )是允許發送但尚未發送的。】

再看一下B 的接收窗口。B 的接收窗口大小是20,在接收窗口外面,到30 號為止的數據是已經發送過確認,並且己經交付給主機了。因此在B 可以不再保留這些數據。接收窗口內的序號(31~50)足允許接收的。B 收到了序號為32 和33 的數據,這些數據沒有按序到達,因為序號為31 的數據沒有收到(也許丟失了,也許滯留在網路中的某處)。 請注意, B 只能對按序收到的數據中的最高序號給出確認,因此B 發送的確認報文段中的確認號仍然是31 (即期望收到的序號)。

現在假定B 收到了序號為31 的數據,並把序號為31~33的數據交付給主機,然後B刪除這些數據。接著把接收窗口向前移動3個序號,同時給A 發送確認,其中窗口值仍為20,但確認號是34,這表明B 已經收到了到序號33 為止的數據。我們注意到,B還收到了序號為37, 38 和40 的數據,但這些都沒有按序到達,只能先存在接收窗口。A收到B的確認後,就可以把發送窗口向前滑動3個序號,指針P2 不動。可以看出,現在A 的可用窗口增大了,可發送的序號范圍是42~53。整個過程如下圖:

A 在繼續發送完序號42-53的數據後,指針P2向前移動和P3重合。發送窗口內的序號都已用完,但還沒有再收到確認。由於A 的發送窗口己滿,可用窗口己減小到0,因此必須停止發送。

上面已經講到, TCP 的發送方在規定的時間內沒有收到確認就要重傳已發送的報文段。這種重傳的概念是很簡單的,但重傳時間的選擇卻是TCP 最復雜的問題之一。

TCP採用了一種自適應演算法 ,它記錄一個報文段發出的時間,以及收到相應的確認的時間。這兩個時間之差就是報文段的往返時間RTT,TCP 保留了RTT的一個加權平均往返時間RTTs (這又稱為平滑的往返時間, S 表示Smoothed 。因為進行的是加權平均,因此得出的結果更加平滑)。每當第一次測量到RTT樣本時, RTTs值就取為所測量到的RTT樣本值。但以後每測量到一個新的RTT樣本,就按下式重新計算一次RTTs:

新的RTTs = (1 - α)×(舊的RTTs) + α ×(新的RTT樣本)

α 越大表示新的RTTs受新的RTT樣本的影響越大。推薦的α 值為0.125,用這種方法得出的加權平均往返時間RTTs 就比測量出的RTT值更加平滑。

顯然,超時計時器設置的超時重傳時間RTO (RetransmissionTime-Out)應略大於上面得出的加權平均往返時間RTTs。RFC 2988 建議使用下式計算RTO:

RTO = RTTs + 4 × RTTd

RTTd是RTT 的偏差的加權平均值,它與RTTs和新的RTT樣本之差有關。計算公式如下:

新的RTTd= (1- β)×(舊的RTTd) + β × |RTTs-新的RTT樣本|

發現問題: 如圖所示,發送出一個報文段。設定的重傳時間到了,還沒有收到確認。於是重
傳報文段。經過了一段時間後,收到了確認報文段。現在的問題是:如何判定此確認報文段是對先發送的報文段的確認,還是對後來重傳的報文段的確認?

若收到的確認是對重傳報文段的確認,但卻被源主機當成是對原來的報文段的確認,則這樣計算出的RTTs 和超時重傳時間RTO 就會偏大。若後面再發送的報文段又是經過重傳後才收到確認報文段,則按此方法得出的超時重傳時間RTO 就越來越長。

若收到的確認是對原來的報文段的確認,但被當成是對重傳報文段的確認,則由此計算出的RTTs 和RTO 都會偏小。這就必然導致報文段過多地重傳。這樣就有可能使RTO 越來越短。

Kam 提出了一個演算法:在計算加權平均RTTs 時,只要報文段重傳了就不採用其往返時間樣本。這樣得出的加權平均RTTs 和RTO 就較准確。

新問題: 設想出現這樣的情況:報文段的時延突然增大了很多。因此在原來得出的重傳時間內,不會收到確認報文段。於是就重傳報文段。但根據Kam 演算法,不考慮重傳的報文段的往返時間樣本。這樣,超時重傳時間就無法更新。

解決方案: 對Kam 演算法進行修正,方法是z報文段每重傳一次,就把超時重傳時間RTO 增大一些。典型的做法是取新的重傳時間為2 倍的舊的重傳時間。當不再發生報文段的重傳時,才根據上面給出的公式計算超時重傳時間。

流量控制(flow control)就是讓發送方的發送速率不要太快,要讓接收方來得及接收。

利用滑動窗口機制可以很方便地在TCP 連接上實現對發送方的流量控制。

接收方的主機B 進行了三次流量控制。第一次把窗口減小到rwnd =300,第二次又減到rwnd = 100 ,最後減到rwnd = 0 ,即不允許發送方再發送數據了。這種使發送方暫停發送的狀態將持續到主機B 重新發出一個新的窗口值為止。我們還應注意到,B 向A 發送的三個報文段都設置了ACK=1,只有在ACK=1 時確認號欄位才有意義。

發生死鎖: 現在我們考慮一種情況。上圖中, B 向A 發送了零窗口的報文段後不久, B 的接收緩存又有了一些存儲空間。於是B 向A 發送了rwnd = 400 的報文段。然而這個報文段在傳送過程中丟失了。A 一直等待收到B 發送的非零窗口的通知,而B 也一直等待A 發送的數據。如果沒有其他措施,這種互相等待的死鎖局面將一直延續下去。

解決方案: TCP 為每一個連接設有一個 持續計時器(persistence timer) 。只要TCP 連接的一方收到對方的零窗口通知,就啟動持續計時器。若持續計時器設置的時間到期,就發送一個 零窗口探測報文段 (僅攜帶1 宇節的數據),而對方就在確認這個探測報文段時給出了現在的窗口值。

1 TCP連接時是三次握手,那麼兩次握手可行嗎?

在《計算機網路》中是這樣解釋的:已失效的連接請求報文段」的產生在這樣一種情況下:client發出的第一個連接請求報文段並沒有丟失,而是在某個網路結點長時間的滯留了,以致延誤到連接釋放以後的某個時間才到達server。本來這是一個早已失效的報文段。但server收到此失效的連接請求報文段後,就誤認為是client再次發出的一個新的連接請求。於是就向client發出確認報文段,同意建立連接。假設不採用「三次握手」,那麼只要server發出確認,新的連接就建立了。由於現在client並沒有發出建立連接的請求,因此不會理睬server的確認,也不會向server發送ACK包。這樣就會白白浪費資源。而經過三次握手,客戶端和伺服器都有應有答,這樣可以確保TCP正確連接。

2 為什麼TCP連接是三次,揮手確是四次?

在TCP連接中,伺服器端的SYN和ACK向客戶端發送是一次性發送的,而在斷開連接的過程中,B端向A端發送的ACK和FIN是是分兩次發送的。因為在B端接收到A端的FIN後,B端可能還有數據要傳輸,所以先發送ACK,等B端處理完自己的事情後就可以發送FIN斷開連接了。

3 為什麼在第四次揮手後會有2個MSL的延時?

MSL是Maximum Segment Lifetime,最大報文段生存時間,2個MSL是報文段發送和接收的最長時間。假定網路不可靠,那麼第四次發送的ACK可能丟失,即B端無法收到這個ACK,如果B端收不到這個確認ACK,B端會定時向A端重復發送FIN,直到B端收到A的確認ACK。所以這個2MSL就是用來處理這個可能丟失的ACK的。

1 文件傳送協議

文件傳送協議FTP (File Transfer Protocol) [RFC 959]是網際網路上使用得最廣泛的文件傳送協議,底層採用TCP協議。

盯P 使用客戶伺服器方式。一個FTP 伺服器進程可同時為多個客戶進程提供服務。FTP的伺服器進程由兩大部分組成:一個主進程,負責接受新的請求:另外有若干個從屬進程,負責處理單個請求。

在進行文件傳輸時,客戶和伺服器之間要建立兩個並行的TCP 連接:「控制連接」(21埠)和「數據連接」(22埠)。控制連接在整個會話期間一直保持打開, FTP 客戶所發出的傳送請求,通過控制連接發送給伺服器端的控制進程,但控制連接並不用來傳送文件。實際用於傳輸文件的是「數據連接」。伺服器端的控制進程在接收到FTP 客戶發送來的文件傳輸請求後就創建「數據傳送進程」和「數據連接」,用來連接客戶端和伺服器端的數據傳送進程。

2 簡單文件傳送協議TFTP

TCP/IP 協議族中還有一個簡單文件傳送協議TFfP (Trivial File Transfer Protocol),它是一個很小且易於實現的文件傳送協議,埠號69。

TFfP 也使用客戶伺服器方式,但它使用UDP 數據報,因此TFfP 需要有自己的差錯改正措施。TFfP 只支持文件傳輸而不支持交耳。

3 TELNET

TELNET 是一個簡單的遠程終端協議,底層採用TCP協議。TELNET 也使用客戶伺服器方式。在本地系統運行TELNET 客戶進程,而在遠地主機則運行TELNET 伺服器進程,佔用埠23。

4 郵件傳輸協議

一個電子郵件系統應具如圖所示的三個主要組成構件,這就是用戶代理、郵件伺服器,以及郵件發送協議(如SMTP )和郵件讀取協議(如POP3), POP3 是郵局協議(Post Office Protocol)的版本3 。

SMTP 和POP3 (或IMAP )都是在TCP 連接的上面傳送郵件,使用TCP 的目的是為了使郵件的傳送成為可靠的。

❺ 計算機通信的主要原理是什麼

計算機網路通消陵信的工作原理1)TCP/IP協議的數據傳輸過程:
TCP/IP協議所採用的通信方式是分組交換方式。所謂分組交換,簡叢兆單說就是數據在傳輸時分成若干段,每個數據段稱為一個數據包,TCP/IP協議的基本傳輸單位是數據包,TCP/IP協議主要包括兩個主要的協議,即TCP協議和IP協議,這兩個協議可以聯合使用,也可以與其他協議聯合使用,它們在數據傳輸過程中主要完成以下功能:
1)首先由TCP協議把數據分成若干數據包,給每個數據包寫上序號,以便接收端把數據還原成原來的格式。
2)IP協議給每個數據包寫上發送主機和接收主機的地址,一旦寫上的源地址和目的地址,數據包就可以在物理網上傳送數據了。IP協議還具有利用路由演算法進行路由選擇的功能。
3)這些數據包可以通過不同的傳輸途徑(路由)進行傳輸,由於路徑不同,加上其它的原因,可能出現順序顛倒、數據丟失、數據失真甚至重復的現象。這些問題都由TCP協議來處理,它具有檢查滲橋租和處理錯誤的功能,必要時還可以請求發送端重發。
簡言之,IP協議負責數據的傳輸,而TCP協議負責數據的可靠性。

❻ 在計算機網路中,TCP實施過程有哪些內容

當應用層向TCP層發送用於網間傳輸的、用8位位元組表示的數據流,TCP則把數據流分割成適當長度的報文段,最大傳輸段大小(MSS)通常受該計算機連接的網路的數據鏈路層的最大傳送單元(MTU)限制。之後TCP把數據包傳給IP層,由它來通過網路將包傳送給接收端實體的TCP層。

TCP為了保證報文傳輸的可靠,就給每個包一個序號,同時序號也保證了傳送到接收端實體的包的按序接收。然後接收端實體對已成功收到的位元組發回一個相應的確認(ACK);如果發送端實體在合理的往返時延(RTT)內未收到確認,那麼對應的數據(假設丟失了)將會被重傳。

正常情況下, tcp需要經過三次握手建立連接, 四次揮手斷開連接,第一次:客戶端 - - > 伺服器 此時伺服器知道了客戶端要建立連接了;第二次:客戶端 < - - 伺服器 此時客戶端知道伺服器收到連接請求了;第三次:客戶端 - - > 伺服器 此時伺服器知道客戶端收到了自己的回應到這里, 就可以認為客戶端與伺服器已經建立了連接。

❼ 計算機實驗報告總結怎麼

一、實驗目的

1、掌握幾種常用的網路命令,通過使用這些命令能檢測常見網路故障。

2、理解各命令的含義,並能解釋其顯示內容的意義。

二、實驗內容

1、運行windows常用的網路命令,ipconfig、ping、stat、nbtstat、arp、route、tracert。

2、利用子網掩碼、實現子網的劃分。

3、了解vrp的各種視圖及各視圖下的常用命令。

三、實驗原理、方法、手段

該實驗通過執行一些常用的網路命令,來了解網路的狀況,並對一些網路協議能更好地理解。

實驗中用到的網路命令:

1、pconfig命令

該命令顯示ip協議的具體配置信息,命令可以顯示網路適配器的物理地址、主機的ip地址、子網掩碼以及默認網關等,還可以查看主機名、dns伺服器、節點類型等相關信息。

2、ping命令

該命令用於測試網路連接狀況以及信息發送和接收狀況。該命令用於檢驗網路連接情況,它可以顯示當前正在活動的網路連接的詳細信息。

3、nbtstat命令

該命令用於查看本地計算機或遠程計算機上的bios的統計數據,顯示協議統計情況以及當前tcp/ip的連接所使用bios情況,運用bios,可以查看本地計算機或遠程計算機上的bios名字列表。

4、arp命令

使用arp命令,你能夠查看本地計算機或另一台計算機的arp高速緩存中的當前內容,也可以用人工方式輸入靜態的網卡物理地址/ip地址對,有助於減少網路上的信息量。


四、實驗步驟

1、執行ipconfig,獲取計算機網路參數。

2、執行ping,測試到其它計算機的連通。

3、執行stat,查看當前正在活動的網路連接的詳細信息。

4、執行nbtstat,查看使用nbt的協議統計信息,以及當前使用nbt的tcp/ip連接。

5、執行arp,查看當前記錄的ip地址與mac地址映。

6、執行route,查看計算機路由信息。