當前位置:首頁 » 網路連接 » 網路管理系統NMS與路由器
擴展閱讀
怎麼獲得4g無線網路 2024-12-27 03:46:21
聯通p920怎麼設置網路 2024-12-27 03:44:09

網路管理系統NMS與路由器

發布時間: 2022-02-22 09:45:25

什麼是NMS

預計明年上旬的上海車展,畢竟上海是上海大眾的大本營

② 網路管理系統的系統特點

隨著我國計算機網路的發展和5G時代的來臨,國內網路建設突飛猛進、網路設施規模不斷增加,業務功能越來越強。傳統網路管理方式工作量大、效率低,故而基於三層組織架構的網路管理系統因其易管理、功能強大、可擴展等突出優勢成為未來網路管理系統的發展方向。此外,隨著新興技術的出現,網路管理行業進入了全新發展模式,因此具有智能故障診斷功能的網路管理系統也成為實際的需求和行業重點研究內容之一。
本文在全面綜述的基礎上,深入分析了基於人工智慧技術在網路診斷中的應用,在此基礎上重點研究了以路由介面為對象的BP網路故障診斷模型。論文採用6種物理故障指標、9種運行狀態指標,訓練獲得針對網路介面故障的BP神經網路診斷模型。以此為基礎,經需求分析,根據實際應用設計並實現了智能網路管理系統,系統主要包括:用戶管理、網路監測、配置管理、和故障診斷四個模塊,用戶管理模塊用於記錄管理員相關信息;配置管理模塊可通過Web頁面對網路設備進行配置;故障診斷模塊作為論文研究的重點,採用BP網路故障診斷模型實現網路故障的分析與診斷;網路監測模塊展示網路設備運行參數與運行狀態。
本文將BP神經網路模型與現代網路管理技術相結合,對於此類系統的研究和設計具有一定的借鑒意義和參考價值。
關鍵詞:BP神經網路;網路故障;SNMP;網路管理

1緒論
1.1研究背景與研究目的意義
中國互聯網路信息中心(CNNIC,2018)發布了截至2018年12月的第43次中國互聯網發展統計報告。根據該報告,截至2018年12月,中國互聯網用戶數量為8.29億,並且每年保持在5000多萬增量。而且這種趨勢將在未來幾年繼續保持。5G時代的來臨將會加快促進互聯網與其他產業融合,網路規模必然會進一步增大。
傳統的網路管理系統以分布式網路應用系統為基礎,採用軟體和硬體相結合的方式。SNMP協議是目前網路管理領域運用最為廣泛的網路管理協議,它將從各類網路設備中獲取數據方式進行了統一化,幾乎所有的網路設備生產廠商都支持此協議。然而傳統的基於SNMP的網路管理軟體大多基於C/S架構,存在著擴展性和靈活性差,升級維護困難等缺點,對網為網路的管理帶來了一定程度的不便。因此,基於三層的網管系統己經成為發展趨勢,隨著Web技術迅猛發展,誕生了以Web瀏覽器和伺服器為核心,基於B/S ( Browser/Server)架構的「Web分布式網路管理系統」,它具有不依賴特定的客戶端應用程序,跨平台,方便易用,支持分布式管理,並且可動態擴展和更新等優點。
本文將重點研究基於BP故障診斷模型,實現了一種以介面故障為研究對象的智能網路管理系統模型,並以此為基礎,設計與實現基於web的智能網路管理系統,不僅可以通過對網路數據實時監控,而且基於BP網路故障診斷模型可以診斷通信網中的介面故障,在一定程度上實現網路故障管理的自動化。該系統在保證網路設備提供穩定可靠的網路服務同時,也可以降低企業在維護網路設備上的成本。
1.2國內外研究現狀
網路設備管理是指對各種網路設備(如核心層、匯接層、接入層路由與交換設備、伺服器和計算機)進行各種操作和相關配置,管理伺服器(Manager)用來處理網路信息,配合管理伺服器對網路信息處理並管理的實體被稱為代理伺服器(Agent),被管對象是指用於提供網路服務或使用網路服務等設備的全部資源信息,各種不同的被管對象構成了管理信息庫。在實際的網路管理過程當中,管理伺服器和代理伺服器以及代理伺服器和被管對象三種實體之間都是通過規范的網路管理協議來進行信息的交互(王鶴 2015)。
相比國外的網路管理系統及產品,國內相應的網路管理系統和產品起步比較晚,但是隨著互聯網技術的發展網路管理軟體發展勢頭迅猛,誕生了很多優秀的網路管理軟體,這些軟體已經廣泛運用在我國網路管理領域。
1.2.1國外研究現狀
目前國外大型網路服務商都有與其產品相對應的網路管理系統。從最初步的C/S架構逐步過渡到現在的B/S架構。比較著名的:Cabletron系統公司的SPECTRUM,Cisco公司的CiscoWorks,HP公司的OpenView,Tivoli系統公司的TH NetView。這些網路管理產品均與自家產品相結合,實現了網路管理的全部功能,但是相對專業化的系統依舊採用C/S架構。
NetView這款管理軟體在網路管理領域最為流行。NetView可以通過分布式的方式實時監控網路運行數據,自動獲取網路拓撲中的變化生成網路拓撲。另外,該系統具有強大的歷史數據備份功能,方便管理員對歷史數據統計管理。
OpenView具有良好的兼容性,該軟體集成了各個網路管理軟體的優勢,支持更多協議標准,異種網路管理能力十分強大。
CiscoWorks是Cisco產品。該軟體支持遠程式控制制網路設備,管理員通過遠程式控制制終端管理網路設備,提供了自動發現、網路數據可視化、遠程配置設備和故障管理等功能。使用同一家產品可以更好的服務,因此CiscoWorks結合Cisco平台其他產品針對Cisco設備可以提供更加細致的服務。
Cabletron的SPECTRUM是一個具有靈活性和擴展性的網路管理平台,它採用面向對象和人工智慧的方法,可以管理多種對象實體,利用歸納模型檢查不同的網路對象和事件,找到它們的共同點並歸納本質。同時,它也支持自動發現設備,並能分布式管理網路和設備數據。
1.2.2國內研究現狀
隨著國內計算機發展迅猛,網路設備規模不斷擴大,拓撲結構復雜性也隨之日益增加,為應對這些問題,一大批優秀的網路管理軟體應運而生。像南京聯創OSS綜合網路管理系統、邁普公司Masterplan等多個網路管理系統。華為公司的iManager U2000網路管理系統,北京智和通信自主研發的SugarNMS開源網路管理平台,均得到較為廣泛應用。
Masterplan主要特點是能夠對網路應用實現良好的故障診斷和性能管理,適用於網路內伺服器、網路設備以及設備上關鍵應用的監測管理。
SugarNMS具有一鍵自動發現、可視化拓撲管理、網路資源管理、故障管理、日誌管理、支付交付等功能,並提供C/S和B/S兩種使用方式。
iManager U2000定位於電信網路的網元管理層和網路管理層,採用開放、標准、統一的北向集成,很大程度上縮短OSS集成時間,系統運行以業務為中心,縮短故障處理時間,從而減少企業故障處理成本。
近些年來,隨著人工智慧技術的崛起,越來越多的企業開始將人工智慧技術應用在網路管理上面,替代傳統的集中式網路管理方式。為了減小企業維護網路的成本,提高網管人員工作效率,智能化、自動化的網路管理系統成為許多學者研究的熱點。
1.3神經網路在網路管理中的適用性分析
網路管理的功能就是對網路資源進行管控、監測通信網路的運行狀態以及排查網路故障。管控網路資源,本質上就是管理員為了滿足業務需求下發相關設備配置命令改變網路設備狀態,以保證穩定的服務;監測網路運行狀態一般是指周期的或者實時的獲取設備運行狀態進行可視化,以方便管理員進行分析當前設備是否正常運行。排查網路故障是管理員通過分析網路設備運行數據與以往數據進行比較或者根據自身經驗進行分析,確定故障源頭、故障類別、產生原因、解決方法。故障排除是針對前一階段發現的網路故障進行特徵分析,按照診斷流程得出結果,執行特定的指令動作來恢復網路設備正常運行(洪國棟,2016)。
神經網路具有並行性和分布式存儲、自學習和自適應能力、非線性映射等基本特點。當下最為流行的神經網路模型就是BP(Back-Propagation)神經網路,是一種按照誤差逆向傳播演算法訓練多層前饋神經網路,屬於監督式學習神經網路的一種。該模型分為輸入層、隱含層以及輸出層,網路模型在外界輸入樣本的刺激不斷改變連接權值,將輸出誤差以某種形式通過隱含層向輸入層逐層反轉,使得網路輸出不斷逼近期望輸出,其本質就是連接權值的動態調整。BP神經網路擁有突出的泛化能力,善於處理分類問題。
BP網路是目前常用的誤差處理方式,在眾多領域得到了廣泛的應用,它的處理單元具有數據量大、結構簡單等特點,並且神經網路以對大腦的生理研究成果為基礎,模擬大腦某些機制與機理組成十分繁雜的非線性動力學系統,其在處理網路設備運行中的數據時以及在比較模糊信號問題的時候,能夠自主學習並得出需要的結果。能夠將模型中輸入輸出矢量進行分類、連接、來適應復雜的傳輸存儲處理。因此,本文會基於現有網路管理技術結合BP神經網路去解決網路故障問題。
1.4本文主要研究目標
1.4.1本文研究目標
針對傳統網路管理中故障方案的問題與不足,本文探究基於BP神經網路的方法來構建基於通信網介面故障診斷模型。通過構建的通信網介面故障診斷模型可以有效的診斷介面故障並判別出故障類型。推動現有網路管理系統更趨近於智能化。以此為基礎,分析、設計、實現基於三層架構的智能網路管理系統
1.4.2技術路線
智能網路研究首先要確定該系統的開發技術路線,課題研究的主要過程首先是在查閱相關科研資料的基礎上,搭建實驗環境。在保證網路正常通信的前提下採集各個埠的流入流出流量,記錄設備的運行狀態並對設備進信息進行管理。同時布置實驗環境相應故障,包括:改變埠狀態、更改埠ip地址、子網掩碼,採集通訊網路介面故障發生時網路拓撲中產生的異常數據。查閱BP神經網路在故障在診斷方面的相關論文,基於網路通訊設備介面的常見故障以及相關故障文檔構建BP神經網路故障模型,並判斷故障模型的有效性。逐步地實現系統的全部功能。最後進行系統測試,得出結論,應用於實際。
1.5本文組織結構
本文主要由六個章節構成,各章節主要內容如下:
第一章緒論。本章首先簡要介紹了網路管理系統當前的發展及應用現狀從而進一步分析出建立智能網路管理系統的重要意義。闡述了網路管理系統國內外研究現狀。最後論述了本文研究目的與組織結構。
第二章相關概念及相關技術。本章對SNMP的相關技術進行詳細介紹,SNMP組織模型 、SNMP管理模型、SNMP信息模型、SNMP通訊模型。然後對前端框架Vue和繪圖插件Echarts技術進行介紹,其次介紹了常見的故障分析技術,專家系統、神經網路等,最後對神經網路基本概念和分類進行簡要描述。
第三章基於BP神經網路故障推理模型。介紹了BP神經網路的基本概念、網路結構、設計步驟、訓練過程,以介面故障為例詳細介紹了BP神經網路故障模型的構建過程。
第四章智能網路管理系統分析與系統設計。首先進行了需求分析,其次對體系結構設計、系統總體模塊結構設計進行說明,對系統各個功能模塊分析設計結合活動圖進行詳細說明,最後對資料庫設計進行簡要說明。
第五章智能網路管理系統的實現。對整體開發流程進行了說明,對用戶管理模塊、配置管理模塊、設備監控模塊、故障診斷模塊實現流程進行描述並展示實現結果。
第六章系統測試與結論。並對系統的部分功能和性能進行了測試,並加以分析。
第七章總結與展望。總結本文取得的研究成果和存在的問題,並提出下一步改進系統的設想與對未來的展望。

2相關概念及相關技術
2.1網路管理概述
網路管理就是通過合適手段和方法,確保通信網路可以根據設計目標穩定,高效運行。不僅需要准確定位網路故障,還需要通過分析數據來預先預測故障,並通過優化設置來降低故障的發生率。
網路管理系統的五大基本功能,分別為:配置管理、性能管理、故障管理、計費管理和安全管理:
1)配置管理:配置管理是最重要和最基礎的部分。它可以設置網路通訊設備的相關參數,從而管理被管設備,依據需求周期的或實時的獲取設備信息和運行狀態,檢查和維護設備狀態列表,生成數據表格,為管理員提供參考和介面以更改設備配置。
2)性能管理:性能管理是評估系統網路的運行狀態和穩定性,主要工作內容包括從被管理對象獲取與網路性能相關數據,對這些數據進行統計和分析,建立模型以預測變化趨勢、評估故障風險,通過配置管理模塊修改網路參數,以確保網路性能最優利用網路資源保證通信網路平穩運行。
3)故障管理:故障管理的主要功能就是及時辨別出網路中出現的故障,找出故障原因,分析並處理故障。故障管理一般分為四個部分:(1)探測故障。通過被管設備主動向管理站發送故障信息或者管理站主動輪詢被管設備兩種方式發現故障源。(2)發出告警。管理站發現故障信息之後,會以簡訊、信號燈等方式提示管理員。(3)解決故障。對故障信息進行分析,明確其故障原因和類型,找到對應方法得以解決。(4)保存歷史故障數據。對歷史故障數據進行維護備份,為以後的故障提供一定依據,使得處理網路故障更為高效。
4)計費管理:計費管理主要功能是為客戶提供一個合理的收費依據,通過將客戶的網路資源的使用情況進行統計,例如將客戶消費流量計算成本從而向客戶計費。
5)安全管理:目的就是保證網路能夠平穩安全的運行,可以避免或者抵禦來自外界的惡意入侵,防止重要數據泄露,例如用戶的個人隱私泄露問題等。
根據網路管理系統的體系結構和ISO定義的基本功能,基於Web的網路管理系統基本模型如圖基於Web的網路管理系統基本模型所示,整個模型包括六個組成部分:Web瀏覽器,Web伺服器,管理服務集,管理信息庫,網路管理協議,被管資源。

2.2 SNMP協議
簡單網路管理協議SNMP(Simple Network Management Protocol),既可以作為一種協議,也可以作為一套標准。事實上SNMP己經成為網路管理領域的工業標准,從提出至今共有八個版本,在實踐中得到廣泛應用的有三個版本,分別是SNMPv1, SNMPv2c和SNMPv3(唐明兵2017)。最初的SNMPv1主要是為了滿足基於TCP/IP的網路管理而設計的,但是隨著網路管理行業的迅猛發展,第一版本的SNMP協議已經不適應網路行業的發展,身份驗證、批量數據傳輸問題等暴露導致SNMPv1難以支持日益龐大的網路設備。第二版本就演變成了一個運行於多種網路協議之上的網路管理協議,較第一版本有了長足的進步,不僅提供了更多操作類型,支持更多的數據類型而且提供了更加豐富的錯誤代碼,能夠更加細致的區分錯誤,另外支持的分布式管理在一定程度上大大減輕了伺服器的壓力。但是SNMPv2c依舊是明文傳輸密鑰,其安全性有待提高。直到1998年正式推出SNMPv3,SNMPv3的進步主要體現在安全性能上,他引入USM和VACM技術,USM添加了用戶名和組的概念,可以設置認證和加密功能,對NMS和Agent之間傳輸的報文進行加密,提升其安全性防止竊聽。VACM確定用戶是否允許特定的訪問MIB對象以及訪問方式。
2.2.1 SNMP管理模型與信息模型
SNMP系統包括網路管理系統NMS(Network Management System)、代理進程Agent、被管對象Management object和管理信息庫MIB(Management Informoation Base)四部分組成.管理模型圖如圖所示:
1)NMS稱為網路管理系統,作為網路管理過程當中的核心,NMS通過SNMP協議向網路設備發送報文,並由Agent去接收NMS發來的管理報文從而對設備進行統一管控。NMS可以主動向被管對象發送管理請求,也可以被動接受被管對象主動發出的Trap報文。
2)Agent相當於網路管理過程中的中間件,是一種軟體,用於處理被管理設備的運行數據並響應來自NMS的請求,並把結果返回給NMS。Agent接收到NMS請求後,通過查詢MIB庫完成對應操作,並把數據結果返回給NMS。Agent也可以作為網路管理過程中的中間件不僅可以使得信息從NMS響應到具體硬體設備上,當設備發生故障時,通過配置Trap開啟相應埠,被管設備也可以通過Agent主動將事件發送到NMS,使得NMS及時發現故障。
3)Management object指被管理對象。一個設備可能處在多個被管理對象之中,設備中的某個硬體以及硬體、軟體上配置的參數集合都可以作為被管理對象。
4)MIB是一個概念性資料庫,可以理解為Agent維護的管理對象資料庫,裡面存放了被管設備的相關變數信息。MIB庫定義了被管理設備的一系列屬性:對象的名稱、對象的狀態、對象的訪問許可權和對象的數據類型等。通過讀取MIB變數的值, Agent可以查詢到被管設備的當前運行狀態以及硬體信息等,進而達到監控網路設備的目的。Agent可以利用修改對應設備MIB中的變數值,設置被管設備狀態參數來完成設備配置。
SNMP的管理信息庫是樹形結構,其結構類型與DNS相似,具有根節點且不具有名字。在MIB功能中,每個設備都是作為一個oid樹的某分支末端被管理。每個OID(object identifier,對象標識符)對應於oid樹中的一個管理對象且具有唯一性。有了樹形結構的特性,可以高效迅速地讀取其中MIB中存儲的管理信息及遍歷樹中節點,讀取順序從上至下。目前運用最為廣泛的管理信息庫是MIB-Ⅱ,它在MIB-Ⅰ的基礎上做了擴充和改進。MIB-Ⅱ結構示意圖如2.3圖如所示:
(1)system組:作為MIB中的基本組,可以通過它來獲取設備基本信息和設備系統信息等。
(2)interfac組:定了有關介面的信息,例如介面狀態、錯誤數據包等,在故障管理和性能管理當中時常用到。
(3)address translation組:用於地址映射。
(4)ip組:包含了有關ip的信息,例如網路編號,ip數據包數量等信息。
(5)icmp組:包含了和icmp協議有關信息,例如icmp消息總數、icmp差錯報文輸入和輸出數量。
(6)tcp組:包含於tcp協議相關信息,例如tcp報文數量、重傳時間、擁塞設置等。應用於網路擁塞和流量控制。
(7)udp組:與udp協議相關,可以查詢到udp報文數量,同時也保存了udp用戶ip地址。
(8)egp組:包含EGP協議相關信息,例如EGP協議下鄰居表信息、自治系統數。
(9)cmot組:為CMOT協議保留
(10)transmission組:為傳輸信息保留
(11)snmp組:存儲了SNMP運行與實現的信息,例如收發SNMP消息數據量。
2.2.2 SNMP通訊模型
SNMP規定了5種協議基本數據單元PDU,用於管理進程與代理進程之間交換。
(1)get-request操作:管理進程請求數據。
(2)get-next-request操作:在當前操作MIB變數的基礎上從代理進程處讀取下一個參數的值。
(3)set-request操作:用於對網路設備進行設置操作。
(4)get-response操作:在上面三種操作成功返回後,對管理進程進行數據返回。這個操作是由代理進程返回給管理進程。
(5)trap操作:SNMP代理以非同步的方式主動向SNMP管理站發送Trap數據包。一般用於故障告警和特定事件發生。
SNMP消息報文包含兩個部分:SNMP報頭和協議數據單元PDU。根據TCP/IP模型SNMP是基於UDP的應用層協議,而UDP又是基於IP協議的。因此可以得到完整的SNMP報文示意圖如下:
(1)版本號表示SNMP版本,其中版本欄位的大小是版本號減1,如果SNMPv2則顯示的欄位值是1。
(2)團體名(community)本質上是一個字元串,作為明文密鑰在管理進程和代理進程之間用於加密傳輸的消息,一般默認設置成「public」。

(3)請求標識符(request ID)用於消息識別。由管理進程發送消息時自帶一個整數值,當代理進程返回消息時帶上該標識符。管理進程可以通過該標識符識別出是哪一個代理進程返回的數據從而找到對應請求的報文。
(4)差錯狀態(error status)表示出現錯誤時由代理進程返回時填入差錯狀態符0~5中的某一數字,數字對應相關錯誤信息。差錯狀態描述符如下表:
(5)差錯索引(error index)表示在通信過程當中出現上表2.2的差錯時,代理進程在應答請求時設置一個整數,整數大小對應差錯變數在變數列表中偏移大小。
(6)變數名-值對以key-value的方式存儲變數名稱和對應值。
(7)trap報文是代理進程主動向管理進程發送的報文,不必等待管理進程下一次輪詢。SNMPv2的trap報文格式較SNMPv1的trap報文格式更趨近於普通的SNMP響應報文,更加統一化。以SNMPv2為例的trap報文格式如下:
trap類型已定義的特定trap共有7種,後面的則是由供養商自己定製。Trap類型如下表所示:
2.2.3 SNMP組織模型
SNMP代理組織分成分散式和集中式模型。在分散模型中,每一個伺服器對應一個SNMP代理,可以理解為一一對應的關系,管理站分別與每個被管伺服器上的代理進行通信。
集中模型當中,在管理伺服器上只創建一個SNMP代理。管理站只與管理管理伺服器上的SNMP代理進行通信, SNMP代理接收來自某一固定區域的所有數據。如圖2.6所示:
2.3 Vue
為實現前後端分離開發的理念,Vue應運而生。作為構建用戶界面框架的Vue.js簡單易上手使得前端開發人員不必再編寫復雜的DOM操作通過this來回尋找相關節點,很大程度上提高了開發的效率。通過MVVM框架,可以自動完成視圖同步數據更新,在對實例new Vue(data:data)進行聲明後data中數據將與之相應的視圖綁定,一旦data中的數據發生變更,視圖中對應數據也會發生相應改變。Vue.js基於MVVM框架實現了視圖與數據一致性,MVVM框架可以分為三個部分:Model、ViewModel、View。MVVM框架模式:
Vue.js的理念是「一切皆為組件」,可以說組件是Vue.js的最強大功能。組件可以擴展HTML元素,將HTML、CSS、JavaScript封裝成可重用的代碼組件,可以應用在不同的場景,大大提高效率。它與傳統的JavaScript相比,採用虛擬DOM渲染頁面。當有數據發生變更時,生成虛擬DOM結構與實際頁面結構對比,重新渲染差離部分,進一步提供了頁面性能。
2.4 Echarts
Echarts(Enterprise Charts),它是由網路公司研發的純JavaScript圖表庫,可以流暢的運行在PC和移動設備上。ECharts兼容當前主流瀏覽器,底層依賴輕量級Canvas庫ZRender,Echarts提供直觀、生動、交互性強、高度自定義化的可視化圖標。ECharts包含了以下特性:
1)豐富的可視化類型:既有柱狀圖、折線圖、餅圖等常規圖,也有可用於地理數據可視化的熱力圖、線圖等,還有多維數據可視化的平行坐標。
2)支持多種數據格式共存:在4.0+版本中內置的dataset屬性支持直接傳入包括二維表中。
3)多維數據的支持:可以傳入多維度數據。
4)移動端優化:特別針對移動端可視化進行了一定程度優化,可以使用手指在坐標系中進行縮放、平移。
5)動態類型切換:支持不同類型圖形隨意切換,既可以用柱形圖也可以用折線圖展示統一數據,可以從不同角度展現數據。
6)時間軸:對數據進行可視化的同時,可以分為周期或者定時進行展示,所有利用時間軸可以

③ 網路管理系統

你們每個房客分網路用的是(交換機)還是(路由器);如果是(交換機)的話那就會狠卡;如果是(路由器)的話就沒事!因為交換機就是分網路,2M的網7個人分那就是每間房只有256KB/s的網路,路由器就不會因為路由器是網路自由互不幹擾網路2M的網每個人都是2M。

④ 什麼是網路信息管理系統 有什麼應用前景

網路
管理
系統(NMS:
Network
Management
System)
網路管理系統(NMS)是硬體和用於監控和管理一個網路的軟體的結合。一個NMS可能執行一項或下列功能的幾項:網路性能管理,網路設備和應用配置管理,網路利用和清算管理,網路設備和應用故障管理,和
安全
管理

⑤ 什麼是路由器的網路管理功能

路由器
要解釋路由器的概念,首先要介紹什麼是路由。所謂「路由」,是指把數據從一個地方傳送到另一個地方的行為和動作,而路由器,正是執行這種行為動作的機器,它的英文名稱為Router。

簡單的講,路由器主要有以下幾種功能:

第一,網路互連,路由器支持各種區域網和廣域網介面,主要用於互連區域網和廣域網,實現不同網路互相通信;

第二,數據處理,提供包括分組過濾、分組轉發、優先順序、復用、加密、壓縮和防火牆等功能;

第三,網路管理,路由器提供包括配置管理、性能管理、容錯管理和流量控制等功能。

為了完成「路由」的工作,在路由器中保存著各種傳輸路徑的相關數據--路由表(Routing Table),供路由選擇時使用。路由表中保存著子網的標志信息、網上路由器的個數和下一個路由器的名字等內容。路由表可以是由系統管理員固定設置好的,也可以由系統動態修改,可以由路由器自動調整,也可以由主機控制。在路由器中涉及到兩個有關地址的名字概念,那就是:靜態路由表和動態路由表。由系統管理員事先設置好固定的路由表稱之為靜態(static)路由表,一般是在系統安裝時就根據網路的配置情況預先設定的,它不會隨未來網路結構的改變而改變。動態(Dynamic)路由表是路由器根據網路系統的運行情況而自動調整的路由表。路由器根據路由選擇協議(Routing Protocol)提供的功能,自動學習和記憶網路運行情況,在需要時自動計算數據傳輸的最佳路徑。

為了簡單地說明路由器的工作原理,現在我們假設有這樣一個簡單的網路。如圖所示,A、B、C、D四個網路通過路由器連接在一起。

現在我們來看一下在如圖所示網路環境下路由器又是如何發揮其路由、數據轉發作用的。現假設網路A中一個用戶A1要向C網路中的C3用戶發送一個請求信號時,信號傳遞的步驟如下:

第1步:用戶A1將目的用戶C3的地址C3,連同數據信息以數據幀的形式通過集線器或交換機以廣播的形式發送給同一網路中的所有節點,當路由器A5埠偵聽到這個地址後,分析得知所發目的節點不是本網段的,需要路由轉發,就把數據幀接收下來。

第2步:路由器A5埠接收到用戶A1的數據幀後,先從報頭中取出目的用戶C3的IP地址,並根據路由表計算出發往用戶C3的最佳路徑。因為從分析得知到C3的網路ID號與路由器的C5網路ID號相同,所以由路由器的A5埠直接發向路由器的C5埠應是信號傳遞的最佳途經。

第3步:路由器的C5埠再次取出目的用戶C3的IP地址,找出C3的IP地址中的主機ID號,如果在網路中有交換機則可先發給交換機,由交換機根據MAC地址表找出具體的網路節點位置;如果沒有交換機設備則根據其IP地址中的主機ID直接把數據幀發送給用戶C3,這樣一個完整的數據通信轉發過程也完成了。

從上面可以看出,不管網路有多麼復雜,路由器其實所作的工作就是這么幾步,所以整個路由器的工作原理基本都差不多。當然在實際的網路中還遠比上圖所示的要復雜許多,實際的步驟也不會像上述那麼簡單,但總的過程是這樣的。

增加路由器涉及的基本協議

路由器英文名稱為Router,是一種用於連接多個網路或網段的網路設備。這些網路可以是幾個使用不同協議和體系結構的網路(比如互聯網與區域網),可以是幾個不同網段的網路(比如大型互聯網中不同部門的網路),當數據信息從一個部門網路傳輸到另外一個部門網路時,可以用路由器完成。現在,家庭區域網也越來越多地採用路由器寬頻共享的方式上網。

路由器在連接不同網路或網段時,可以對這些網路之間的數據信息進行「翻譯」,然後「翻譯」成雙方都能「讀」懂的數據,這樣就可以實現不同網路或網段間的互聯互通。同時,它還具有判斷網路地址和選擇路徑的功能以及過濾和分隔網路信息流的功能。目前,路由器已成為各種骨幹網路內部之間、骨幹網之間以及骨幹網和互聯網之間連接的樞紐。

NAT:全稱Network Address Translation(網路地址轉換),路由器通過NAT功能可以將區域網內部的IP地址轉換為合法的IP地址並進行Internet的訪問。比如,區域網內部有個IP地址為192.168.0.1的計算機,當然通過該IP地址可以和內網其他的計算機通信;但是如果該計算機要訪問外部Internet網路,那麼就需要通過NAT功能將192.168.0.1轉換為合法的廣域網IP地址,比如210.113.25.100。

DHCP:全稱Dynamic Host Configuration Protocol(動態主機配置協議),通過DHCP功能,路由器可以為網路內的主機動態指定IP地址,而不需要每個用戶去設置靜態IP地址,並將TCP/IP配置參數分發給區域網內合法的網路客戶端。

DDNS:全稱Dynamic Domain Name Server(動態域名解析系統),通常稱為「動態DNS」,因為對於普通的寬頻上網使用的都是ISP(網路服務商)提供的動態IP地址。如果在區域網內建立了某個伺服器需要Internet用戶進行訪問,那麼,可以通過路由器的DDNS功能將動態IP地址解析為一個固定的域名,比如www.cpcw.com,這樣Internet用戶就可以通過該固定域名對內網伺服器進行訪問。

PPPoE:全稱PPP over Ethernet(乙太網上的點對點協議),通過PPPoE技術,可以讓寬頻數據機(比如ADSL Modem)用戶獲得寬頻網的個人身份驗證訪問,能為每個用戶創建虛擬撥號連接,這樣就可以高速連接到Internet。路由器具備該功能,可以實現PPPoE的自動撥號連接,這樣與路由器連接的用戶可以自動連接到Internet。

ICMP:全稱Internet Control Message Protocol(Internet控制消息協議),該協議是TCP/IP協議集中的一個子協議,主要用於在主機與路由器之間傳遞控制信息,包括報告錯誤、交換受限控制和狀態信息等。
總的來說,路由器與交換機的主要區別體現在以下幾個方面:

(1)工作層次不同

最初的的交換機是工作在OSI/RM開放體系結構的數據鏈路層,也就是第二層,而路由器一開始就設計工作在OSI模型的網路層。由於交換機工作在OSI的第二層(數據鏈路層),所以它的工作原理比較簡單,而路由器工作在OSI的第三層(網路層),可以得到更多的協議信息,路由器可以做出更加智能的轉發決策。

(2)數據轉發所依據的對象不同

交換機是利用物理地址或者說MAC地址來確定轉發數據的目的地址。而路由器則是利用不同網路的ID號(即IP地址)來確定數據轉發的地址。IP地址是在軟體中實現的,描述的是設備所在的網路,有時這些第三層的地址也稱為協議地址或者網路地址。MAC地址通常是硬體自帶的,由網卡生產商來分配的,而且已經固化到了網卡中去,一般來說是不可更改的。而IP地址則通常由網路管理員或系統自動分配。

(3)傳統的交換機只能分割沖突域,不能分割廣播域;而路由器可以分割廣播域

由交換機連接的網段仍屬於同一個廣播域,廣播數據包會在交換機連接的所有網段上傳播,在某些情況下會導致通信擁擠和安全漏洞。連接到路由器上的網段會被分配成不同的廣播域,廣播數據不會穿過路由器。雖然第三層以上交換機具有VLAN功能,也可以分割廣播域,但是各子廣播域之間是不能通信交流的,它們之間的交流仍然需要路由器。

(4)路由器提供了防火牆的服務

路由器僅僅轉發特定地址的數據包,不傳送不支持路由協議的數據包傳送和未知目標網路數據包的傳送,從而可以防止廣播風暴。

交換機一般用於LAN-WAN的連接,交換機歸於網橋,是數據鏈路層的設備,有些交換機也可實現第三層的交換。 路由器用於WAN-WAN之間的連接,可以解決異性網路之間轉發分組,作用於網路層。他們只是從一條線路上接受輸入分組,然後向另一條線路轉發。這兩條線路可能分屬於不同的網路,並採用不同協議。相比較而言,路由器的功能較交換機要強大,但速度相對也慢,價格昂貴,第三層交換機既有交換機線速轉發報文能力,又有路由器良好的控制功能,因此得以廣泛應用。

目前個人比較多寬頻接入方式就是ADSL,因此筆者就ADSL的接入來簡單的說明一下。現在購買的ADSL貓大多具有路由功能(很多的時候廠家在出廠時將路由功能屏蔽了,因為電信安裝時大多是不啟用路由功能的,啟用DHCP。打開ADSL的路由功能),如果個人上網或少數幾台通過ADSL本身就可以了,如果電腦比較多你只需要再購買一個或多個集線器或者交換機。考慮到如今集線器與交換機的 價格相差十分小,不是特殊的原因,請購買一個交換機。不必去追求高價,因為如今產品同質化十分嚴重,我最便宜的交換機現在沒有任 何問題。給你一個參考報價,建議你購買一個8口的,以滿足擴充需求,一般的價格100元左右。接上交換機,所有電腦再接到交換機上就行了。餘下所要做的事情就只有把各個機器的網線插入交換機的介面,將貓的網線插入uplink介面。然後設置路由功能,DHCP等, 就可以共享上網了。

看完以上的解說讀者應該對交換機、集線器、路由器有了一些了解,目前的使用主要還是以交換機、路由器的組合使用為主,具體的組合方式可根據具體的網路情況和需求來確定。
路由器是互聯網路中必不可少的網路設備之一,路由器是一種連接多個網路或網段的網路設備,它能將不同網路或網段之間的數據信息進行「翻譯」,以使它們能夠相互「讀」懂對方的數據,從而構成一個更大的網路。 路由器有兩大典型功能,即數據通道功能和控制功能。數據通道功能包括轉發決定、背板轉發以及輸出鏈路調度等,一般由特定的硬體來完成;控制功能一般用軟體來實現,包括與相鄰路由器之間的信息交換、系統配置、系統管理等。

⑥ 如何管理網路中所有的路由器和交換機

SNMPc 來監控和管理,所有路由器和交換機,在SNMPc 可雙擊路由或交換機圖標,即可telnet 上去。可一般 出現故障的時候 用SecureCRT 來登陸路由器和 交換機 配置,或排除障礙。

⑦ 網路管理型交換機和管理型路由器有什麼不同之處,不同在哪裡

網管型交換機可以獨立分配、管理DHCP。可以對每一個介面理行細致許可權的分配,網管型的交換機相對比較貴。

⑧ 是什麼SNMP,NMS

SNMP
Simple Network Management Protocol

簡單網路管理協議(SNMP)首先是由Internet工程任務組織(Internet Engineering Task Force)(IETF)的研究小組為了解決Internet上的路由器管理問題而提出的。它可以在IP,IPX,AppleTalk,OSI以及其他用到的傳輸協議上被使用。

簡單網路管理協議(SNMP)是最早提出的網路管理協議之一,它一推出就得到了廣泛的應用和支持,特別是很快得到了數百家廠商的支持,其中包括IBM,HP,SUN等大公司和廠商。目前SNMP已成為網路管理領域中事實上的工業標准,並被廣泛支持和應用,大多數網路管理系統和平台都是基於SNMP的。

一、 SNMP概述

SNMP的前身是簡單網關監控協議(SGMP),用來對通信線路進行管理。隨後,人們對SGMP進行了很大的修改,特別是加入了符合Internet定義的SMI和MIB:體系結構,改進後的協議就是著名的SNMP。SNMP的目標是管理互聯網Internet上眾多廠家生產的軟硬體平台,因此SNMP受Internet標准網路管理框架的影響也很大。現在SNMP已經出到第三個版本的協議,其功能較以前已經大大地加強和改進了。

SNMP的體系結構是圍繞著以下四個概念和目標進行設計的:保持管理代理(agent)的軟體成本盡可能低;最大限度地保持遠程管理的功能,以便充分利用Internet的網路資源;體系結構必須有擴充的餘地;保持SNMP的獨立性,不依賴於具體的計算機、網關和網路傳輸協議。在最近的改進中,又加入了保證SNMP體系本身安全性的目標。

另外,SNMP中提供了四類管理操作:get操作用來提取特定的網路管理信息;get-next操作通過遍歷活動來提供強大的管理信息提取能力;set操作用來對管理信息進行控制(修改、設置);trap操作用來報告重要的事件。

二、 SNMF管理控制框架與實現

1.SNMP管理控制框架

SNMP定義了管理進程(manager)和管理代理(agent)之間的關系,這個關系稱為共同體(community)。描述共同體的語義是非常復雜的,但其句法卻很簡單。位於網路管理工作站(運行管理進程)上和各網路元素上利用SNMP相互通信對網路進行管理的軟體統統稱為SNMP應用實體。若干個應用實體和SNMP組合起來形成一個共同體,不同的共同體之間用名字來區分,共同體的名字則必須符合Internet的層次結構命名規則,由無保留意義的字元串組成。此外,一個SNMP應用實體可以加入多個共同體。

SNMP的應用實體對Internet管理信息庫中的管理對象進行操作。一個SNMP應用實體可操作的管理對象子集稱為SNMP MIB授權范圍。SNMP應用實體對授權范圍內管理對象的訪問仍然還有進一步的訪問控制限制,比如只讀、可讀寫等。SNMP體系結構中要求對每個共同體都規定其授權范圍及其對每個對象的訪問方式。記錄這些定義的文件稱為「共同體定義文件」。

SNMP的報文總是源自每個應用實體,報文中包括該應用實體所在的共同體的名字。這種報文在SNMP中稱為「有身份標志的報文」,共同體名字是在管理進程和管理代理之間交換管理信息報文時使用的。管理信息報文中包括以下兩部分內容:

(1)共同體名,加上發送方的一些標識信息(附加信息),用以驗證發送方確實是共同體中的成員,共同體實際上就是用來實現管理應用實體之間身份鑒別的;

(2)數據,這是兩個管理應用實體之間真正需要交換的信息。

在第三版本前的SNMP中只是實現了簡單的身份鑒別,接收方僅憑共同體名來判定收發雙方是否在同一個共同體中,而前面提到的附加倍息尚未應用。接收方在驗明發送報文的管理代理或管理進程的身份後要對其訪問許可權進行檢查。訪問許可權檢查涉及到以下因素:

(1)一個共同體內各成員可以對哪些對象進行讀寫等管理操作,這些可讀寫對象稱為該共同體的「授權對象」(在授權范圍內);

(2)共同體成員對授權范圍內每個對象定義了訪問模式:只讀或可讀寫;

(3)規定授權范圍內每個管理對象(類)可進行的操作(包括get,get-next,set和trap);

(4)管理信息庫(MIB)對每個對象的訪問方式限制(如MIB中可以規定哪些對象只能讀而不能寫等)。

管理代理通過上述預先定義的訪問模式和許可權來決定共同體中其他成員要求的管理對象訪問(操作)是否允許。共同體概念同樣適用於轉換代理(Proxy agent),只不過轉換代理中包含的對象主要是其他設備的內容。

2.SNMP實現方式為了提供遍歷管理信息庫的手段,SNMP在其MIB中採用了樹狀命名方法對每個管理對象實例命名。每個對象實例的名字都由對象類名字加上一個後綴構成。對象類的名字是不會相互重復的,因而不同對象類的對象實例之間也少有重名的危險。

在共同體的定義中一般要規定該共同體授權的管理對象范圍,相應地也就規定了哪些對象實例是該共同體的「管轄范圍」,據此,共同體的定義可以想像為一個多叉樹,以詞典序提供了遍歷所有管理對象實例的手段。有了這個手段,SNMP就可以使用get-next操作符,順序地從一個對象找到下一個對象。get-next(object-instance)操作返回的結果是一個對象實例標識符及其相關信息,該對象實例在上面的多叉樹中緊排在指定標識符;bject-instance對象的後面。這種手段的優點在於,即使不知道管理對象實例的具體名字,管理系統也能逐個地找到它,並提取到它的有關信息。遍歷所有管理對象的過程可以從第一個對象實例開始(這個實例一定要給出),然後逐次使用get-next,直到返回一個差錯(表示不存在的管理對象實例)結束(完成遍歷)。

由於信息是以表格形式(一種數據結構)存放的,在SNMP的管理概念中,把所有表格都視為子樹,其中一張表格(及其名字)是相應子樹的根節點,每個列是根下面的子節點,一列中的每個行則是該列節點下面的子節點,並且是子樹的葉節點,如下圖所示。因此,按照前面的子樹遍歷思路,對表格的遍歷是先訪問第一列的所有元素,再訪問第二列的所有元素……,直到最後一個元素。若試圖得到最後一個元素的「下一個」元素,則返回差錯標記。

SNMP樹形表格結構示意圖

SNMP中各種管理信息大多以表格形式存在,一個表格對應一個對象類,每個元素對應於該類的一個對象實例。那麼,管理信息表對象中單個元素(對象實例)的操作可以用前面提到的get-next方法,也可以用後面將介紹的get/set等操作。下面主要介紹表格內一行信息的整體操作。

(1)增加一行:通過SNMP只用一次set操作就可在一個表格中增加一行。操作中的每個變數都對應於待增加行中的一個列元素,包括對象實例標識符。如果一個表格中有8列,則set操作中必須給出8個操作數,分別對應8個列中的相應元素。

(2)刪除一行:刪除一行也可以通過SNMP調用一次set操作完成,並且比增加一行還簡單。刪除一行只需要用set操作將該行中的任意一個元素(對象實例)設置成「非法」即可。但該操作有一個例外:地址翻譯組對象中有一個特殊的表(地址變換表),該表中未定義一個元素的「非法」條件。因此,SNMP中採用的辦法是將該表中的地址設置成空串,而空字元串將被視為非法元素。

至於刪除一行時,表中的一行元素是否真的在表中消失,則與每個設備(管理代理)的具體實現有關。因此,網路管理操作中,運行管理進程可能從管理代理中得到「非法」數據,即已經刪除的不再使用的元素的內容,因此管理進程必須能通過各數據欄位的內容來判斷數據的合法性。

NMS
NMS是Network Management System的縮寫,意思是網路管理系統,簡稱網管。告警,性能,配置,安全,計費是網管的五大功能。

只能找到這么多了

⑨ 幾個關於網路管理的問題

網路管理的問題有好多,BER比較不錯。

⑩ 請問,網路管理系統(NMS)是通過什麼協議採集設備信息的啊!是snmp嗎

我是研究網路管理的。現在Internet上的大多數設備都是基於SNMP協議管理的。一般每個比較大的廠商都有自己的網路管理系統用於管理自己的設備,它們與一般的網管平台不同的是可以使用自己的私有MIB增強自己設備的管理能力。H3C在早期不是使用SNMP,但現在也是使用使用SNMP協議管理。現在比較好的網管平台有HP發布網路管理平台OpenView NNM 中文版,Cisco的Cisco Works for Windows網路管理軟體等均是不錯的網管系統。