當前位置:首頁 » 網路連接 » 計算機網路結構體系大全
擴展閱讀
蘋果下載軟體全屏 2025-02-02 09:53:45
移動網路hd是否額外收費 2025-02-02 09:48:57

計算機網路結構體系大全

發布時間: 2023-09-22 18:58:10

1. 計算機網路系統由什麼組成

早期的計算機網路是由計算機——通信路線——終端組成系統。

第一代計算機網路---遠程終端聯機階段。

第二代計算機網路---計算機網路階段。

第三代計算機網路---計算機網路互聯階段。

第四代計算機網路---國際互聯網與信息高速公路階段。

(1)計算機網路結構體系大全擴展閱讀:

三個階段的演進:

1、從單個網路ARPAnet向互聯網發展:1969年美國國防部創建了第一個分組交換網ARPAnet只是一個單個的分組交換網,所有想連接在它上的主機都直接與就近的結點交換機相連,它規模增長很快,到70年代中期,人們認識到僅使用一個單獨的網路無法滿足所有的通信問題。

於是ARPA開始研究很多網路互聯的技術,這就導致後來的互聯網的出現。1983年TCP/IP協議稱為ARPAnet的標准協議。同年,ARPAnet分解成兩個網路,一個進行試驗研究用的科研網ARPAnet,另一個是軍用的計算機網路MILnet。1990,ARPAnet因試驗任務完成正式宣布關閉。

2、建立三級結構的網際網路:1985年起,美國國家科學基金會NSF就認識到計算機網路對科學研究的重要性,1986年,NSF圍繞六個大型計算機中心建設計算機網路NSFnet,它是個三級網路,分主幹網、地區網、校園網。它代替ARPAnet成為internet的主要部分。

1991年,NSF和美國政府認識到網際網路不會限於大學和研究機構,於是支持地方網路接入,許多公司的紛紛加入,使網路的信息量急劇增加,美國政府就決定將網際網路的主幹網轉交給私人公司經營,並開始對接入網際網路的單位收費。

3、多級結構網際網路的形成:1993年開始,美國政府資助的NSFnet就逐漸被若干個商用的網際網路主幹網替代。

這種主幹網也叫網際網路服務提供者ISP,考慮到網際網路商用化後可能出現很多的ISP,為了使不同ISP經營的網路能夠互通,在1994創建了4個網路接入點NAP分別由4個電信公司經營,本世紀初,美國的NAP達到了十幾個。

NAP是最高級的接入點,它主要是向不同的ISP提供交換設備,使它們相互通信。網際網路已經很難對其網路結構給出很精細的描述,但大致可分為五個接入級:網路接入點NAP,多個公司經營的國家主幹網,地區ISP,本地ISP,校園網、企業或家庭PC機上網用戶。

2. 計算機網路拓撲結構有哪些

計算機網路的拓撲結構主要有:匯流排型拓撲、星型拓撲、環型拓撲、樹型拓撲和混合型拓撲。


匯流排型拓撲


匯流排型結構由一條高速公用主幹電纜即匯流排連接若干個結點構成網路。網路中所有的結點通過匯流排進行信息的傳輸基圓。這種結構的特點是結構簡單靈活,建網容易,使用方便,性能好。其缺點是主幹匯流排對網路起決定性作用,匯流排運穗故障將影響整個網路。 匯流排型拓撲是使用最普遍的一種網路。


星型拓撲


星型拓撲由中央結點集線器與各個結點連接組成。這種網路各結點必須通過中央結點才能實現通信。星型結構的特點是結構簡單、建網容易,便於控制和管理。其缺點是中央結點坦旁負擔較重,容易形成系統的「瓶頸」,線路的利用率也不高。


環型拓撲


環型拓撲由各結點首尾相連形成一個閉合環型線路。環型網路中的信息傳送是單向的,即沿一個方向從一個結點傳到另一個結點;每個結點需安裝中繼器,以接收、放大、發送信號。這種結構的特點是結構簡單,建網容易,便於管理。其缺點是當結點過多時,將影響傳輸效率,不利於擴充。


樹型拓撲


樹型拓撲是一種分級結構。在樹型結構的雹謹網路中,任意兩個結點之間不產生迴路,每條通路都支持雙向傳輸。這種結構的特點是擴充方便、靈活,成本低,易推廣,適合於分主次或分等級的層次型管理系統。


網型拓撲


主要用於廣域網,由於結點之間有多條線路相連,所以網路的可靠性較搞高。由於結構比較復雜,建設成本較高。


混合型拓撲


混合型拓撲可以是不規則型的網路讓鋒橡,也可以是點-點相連結構的網路。


蜂窩拓撲結構


蜂窩拓撲結構是無線區域網中常用的結構。它以無線傳輸介質(微波源悄基、衛星、紅外等)點到點和多點傳輸為特徵,是一種無線網,適用於城市網、校園網、企業網。


編輯本段區域網的結構


區域網中常見的結構為匯流排型或星型。

3. 計算機網路的組成和體系結構

一、計算機網路的基本組成

計算機網路是一個很復雜的系統,它由許多計算機軟體、硬體和通信設備組合而成。下面對一個計算機網路所需的主要部分,即伺服器、工作站、外圍設備、網路軟體作簡要介紹。

1.伺服器(Server)

在計算機網路中,伺服器是整個網路系統的核心,一般是指分散在不同地點擔負一定數據處理任務和提供資源的計算機,它為網路用戶提供服務並管理整個網路,它影響著網路的整體性能。一般在大型網路中採用大型機、中型機和小型機作為網路伺服器,可保證網路的可靠性。對於網點不多,網路通信量不大,數據安全性要求不太高的網路,可以選用高檔微機作網路伺服器。根據伺服器在網路中擔負的網路功能的不同,又可分為文件伺服器、通信伺服器和列印伺服器等。在小型區域網中,最常用的是文件伺服器。一般來說網路越大、用戶越多、伺服器負荷越大,對伺服器性能要求越高。

2.工作站(Workstation)

工作站有時也稱為「節點」或「客戶機(Client)」,是指通過網路適配器和線纜連接到網路上的計算機,是網路用戶進行信息處理的個人計算機。它和伺服器不同,伺服器是為整個網路提供服務並管理整個網路,而工作站只是一個接入網路的設備,它保持原有計算機的功能,作為獨立的計算機為用戶服務,同時又可按一定的許可權訪問伺服器,享用網路資源。

工作站通常都是普通的個人計算機,有時為了節約經費,不配軟、硬碟,稱為「無盤工作站」。

3.網路外圍設備

是指連接伺服器和工作站的一些連線或連接設備,如同軸電纜、雙絞線、光纖等傳輸介質,網卡(NIC)、中繼器(Repeater)、集線器(Hub)、交換機(Switch)、網橋(Bridge)等,又如用於廣域網的設備:數據機(Modem)、路由器(Router)、網關(Gateway)等,介面設備:T型頭、BNC連接器、終端匹配器、RJ45頭、ST頭、SC頭、FC頭等。

4.網路軟體

前面介紹的都是網路硬體設備。要想網路能很好地運行,還必須有網路軟體。

通常網路軟體包括網路操作系統(NOS)、網路協議軟體和網路通信軟體等。其中,網路操作系統是為了使計算機具備正常運行和連接上網的能力,常見的網路操作系統有UNIX、Linux、Novell Netware、Windows NT、Windows 2000 Server、Windows XP等;網路協議軟體是為了各台計算能使用統一的協議,可以看成是計算機之間相互會話使用的語言;而運用協議進行實際的通信則是由通信軟體完成的。

網路軟體功能的強弱直接影響到網路的性能,因為網路中的資源共享、相互通信、訪問控制和文件管理等都是通過網路軟體實現的。

二、計算機網路的拓撲結構

所謂計算機網路的拓撲結構是指網路中各結點(包括連接到網路中的設備、計算機)的地理分布和互連關系的幾何構形,即網路中結點的互連模式。

網路的拓撲結構影響著整個網路的設計、功能、可靠性和通信費用等指標,常見的網路拓撲結構有匯流排型、星型、環型等,通過使用路由器和交換機等互連設備,可在此基礎上構建一個更大網路。

1.匯流排型

在匯流排型結構中,將所有的入網計算機接入到一條通信傳輸線上,為防止信號反射,一般在匯流排兩端連有終端匹配器如圖6-1(a)。匯流排型結構的優點是信道利用率高,可擴充性好,結構簡單,價格便宜。當數據在匯流排上傳遞時,會不斷地「廣播」,第一節點均可收到此信息,各節點會對比數據送達的地址與自己的地址是否相同,若相同,則接收該數據,否則不必理會該數據。缺點是同一時刻只能有兩個網路結點在相互通信,網路延伸距離有限,網路容納的節點數有限。在匯流排上只要有一個結點連接出現問題,會影響整個網路運行,且不易找到故障點。

圖6-1 網路拓撲結構

2.星型

在星型結構中,以中央結點為中心,其他結點都與中央結點相連。每台計算機通過單獨的通信線路連接到中央結點,由該中央結點向目的結點傳送信息,如圖6-1(b),因此,中央結點必須有較強的功能和較高的可靠性。

在已實現的網路拓撲結構中,這是最流行的一種。跟匯流排型拓撲結構相比,它的主要的優勢是一旦某一個電纜線段被損壞了,只有連接到那個電纜段的主機才會受到影響,結構簡單,建網容易,便於管理。缺點是該拓撲是以點對點方式布線的,故所需線材較多,成本相對較高,此外中央結點易成為系統的「瓶頸」,且一旦發生故障,將導致全網癱瘓。

3.環型

在環型結構中,如圖6-1(c)所示,各網路結點連成封閉環路,數據只能是單向傳遞,每個收到數據包的結點都向它的下一結點轉發該數據包,環游一圈後由發送結點回收。當數據包經過目標結點時,目標結點根據數據包中的目標地址判斷出是自己接收,並把該數據包拷貝到自己的接收緩沖中。

環型拓撲結構的優點是:結構簡單,網路管理比較簡單,實時性強。缺點是:成本較高,可靠性差,網路擴充復雜,網路中若有任一結點發生故障都會使整個網路癱瘓。

三、計算機網路的體系結構

要弄清網路的體系結構,需先弄清網路協議是什麼。

網路協議是兩台網路上的計算機進行通信時使用的語言,是通信的規則和約定。為了在網路上傳輸數據,網路協議定義了數據應該如何被打成包、並且定義了在接收數據時接收計算機如何解包。在同一網路中的兩台計算機為了相互通信,必須運行同一協議,就如同兩個人交談時,必須採用對方聽得懂的語言和語速。

由於網路結點之間的連接可能是很復雜的,因此,為了減少協議設計的復雜性,在制定協議時,一般把復雜成分分解成一些簡單成分,再將它們復合起來,而大多數網路都按層來組織,並且規定:(1)一般是將用戶應用程序作為最高層,把物理通信線路作為最低層,將其間再分為若干層,規定每層處理的任務,也規定每層的介面標准;(2)每一層向上一層提供服務,而與再上一層不發生關系;(3)每一層可以調用下一層的服務傳輸信息,而與再下一層不發生關系。(4)相鄰兩層有明顯的介面。

除最低層可水平通信外,其他層只能垂直通信。

層和協議的集合被稱為網路的體系結構。為了幫助大家理解,我們從現實生活中的一個例子來理解網路的層次關系。假如一個只懂得法語的法國文學家和一個只懂得中文的中國文學家要進行學術交流,那麼他們可將論文翻譯成英語或某一種中間語言,然後交給各自的秘書選一種通信方式發給對方,如圖6-2所示。

圖6-2 中法文學家學術交流方式

下面介紹兩個重要的網路體系結構:OSI參考模型和TCP/IP參考模型。

1.OSI參考模型

由於世界各大型計算機廠商推出各自的網路體系結構,不同計算機廠商的設備相互通信困難。為建立更大范圍內的計算機網路,必然要解決異構網路的互連,因而國際標准化組織ISO於1977年提出「開放系統互連參考模型」,即著名的OSI(Open system interconnection/Reference Model)。它將計算機網路規定為物理層、數據鏈路層、網路層、傳輸層、會話層、表示層、應用層等七層,受到計算機界和通信界的極大關注。

2.TCP/IP參考模型

TCP/IP(Transmission Control Protocol/Internet protocol)協議是Internet使用的通信協議,由ARPANET研究中心開發。TCP/IP是一組協議集(Internet protocol suite),而TCP、IP是該協議中最重要最普遍使用的兩個協議,所以用TCP/IP來泛指該組協議。

TCP/IP協議的體系結構被分為四層:

(1)網路介面層 是該模型的最低層,其作用是負責接收IP數據報,並通過網路發送出去,或者從網路上接收網路幀,分離IP數據報。

(2)網路層 IP協議被定義駐留在這一層中,它負責將信息從一台主機傳到指定接收的另一台主機。主要功能是:定址、打包和路由選擇。

(3)傳輸層 提供了兩個協議用於數據傳輸,即傳輸控制協議TCP和通用數據協議UDP,負責提供准確可靠和高效的數據傳送服務。

(4)應用層 位於TCP/IP最高層,為用戶提供一組常用的應用程序協議。例如:簡單郵件傳輸協議SMTP、文件傳協議FTP、遠程登錄協議Telnet、超文本傳輸協議HTTP(該協議是後來擴充的)等。隨著Internet的發展,又開發了許多實用的應用層協議。

圖6-3是TCP/IP模型和OSI模型的簡單比較:

圖6-3 TCP/IP模型和OSI模型的對比

4. 計算機網路體系結構的ISO/OSI網路體系結構

國際標准化組織ISO(International Standards Organization)在80年代提出的開放系統互聯參考模型OSI(Open System Interconnection),這個模型將計算機網路通信協議分為七層。這個模型是一個定義異構計算機連接標準的框架結構,其具有如下特點:
①網路中異構的每個節點均有相同的層次,相同層次具有相同的功能。
②同一節點內相鄰層次之間通過介面通信。
③相鄰層次間介面定義原語操作,由低層向高層提供服務。
④不同節點的相同層次之間的通信由該層次的協議管理,
⑤每層次完成對該層所定義的功能,修改本層次功能不影響其它層、
⑥僅在最低層進行直接數據傳送。
⑦定義的是抽象結構,並非具體實現的描述。
在OSI網路體系結構中、除了物理層之外,網路中數據的實際傳輸方向是垂直的。數據由用戶發送進程發送給應用層,向下經表示層、會話層等到達物理層,再經傳輸媒體傳到接收端,由接收端物理層接收,向上經數據鏈路層等到達應用層,再由用戶獲取。數據在由發送進程交給應用層時,由應用層加上該層有關控制和識別信息,再向下傳送,這一過程一直重復到物理層。在接收端信息向上傳遞時,各層的有關控制和識別信息被逐層剝去,最後數據送到接收進程。
現在一般在制定網路協議和標准時,都把ISO/OSI參考模型作為參照基準,並說明與該參照基準的對應關系。例如,在IEEE802區域網LAN標准中,只定義了物理層和數據鏈路層,並且增強了數據鏈路層的功能。在廣域網WAN協議中,CCITT的X.25建議包含了物理層、數據鏈路層和網路層等三層協議。一般來說,網路的低層協議決定了一個網路系統的傳輸特性,例如所採用的傳輸介質、拓撲結構及介質訪問控制方法等,這些通常由硬體來實現;網路的高層協議則提供了與網路硬體結構無關的,更加完善的網路服務和應用環境,這些通常是由網路操作系統來實現的。 物理層建立在物理通信介質的基礎上,作為系統和通信介質的介面,用來實現數據鏈路實體間透明的比特 (bit) 流傳輸。只有該層為真實物理通信,其它各層為虛擬通信。物理層實際上是設備之間的物理介面,物理層傳輸協議主要用於控制傳輸媒體。
(1)物理層的特性
物理層提供與通信介質的連接,提供為建立、維護和釋放物理鏈路所需的機械的、電氣的、功能的和規程的特性,提供在物理鏈路上傳輸非結構的位流以及故障檢測指示。物理層向上層提供位 (bit) 信息的正確傳送。
其中機械特性主要規定介面連接器的尺寸、芯數和芯的位置的安排、連線的根數等。電氣特性主要規定了每種信號的電平、信號的脈沖寬度、允許的數據傳輸速率和最大傳輸距離。功能特性規定了介面電路引腳的功能和作用。規程特性規定了介面電路信號發出的時序、應答關系和操作過程,例如,怎樣建立和拆除物理層連接,是全雙工還是半雙工等。
(2)物理層功能
為了實現數據鏈路實體之間比特流的透明傳輸,物理層應具有下述功能:
①物理連接的建立與拆除
當數據鏈路層請求在兩個數據鏈路實體之間建立物理連接時,物理層能夠立即為它們建立相應的物理連接。若兩個數據鏈路實體之間要經過若干中繼數據鏈路實體時,物理層還能夠對這些中繼數據鏈路實體進行互聯,以建立起一條有效的物理連接。當物理連接不再需要時,由物理層立即拆除。
②物理服務數據單元傳輸
物理層既可以採取同步傳輸方式,也可以採取非同步傳輸方式來傳輸物理服務數據單元。
③物理層管理
對物理層收發進行管理,如功能的激活 (何時發送和接收、異常情況處理等)、差錯控制 (傳輸中出現的奇偶錯和格式錯)等。 數據鏈路層為網路層相鄰實體間提供傳送數據的功能和過程;提供數據流鏈路控制;檢測和校正物理鏈路的差錯。物理層不考慮位流傳輸的結構,而數據鏈路層主要職責是控制相鄰系統之間的物理鏈路,傳送數據以幀為單位,規定字元編碼、信息格式,約定接收和發送過程,在一幀數據開頭和結尾附加特殊二進制編碼作為幀界識別符,以及發送端處理接收端送回的確認幀,保證數據幀傳輸和接收的正確性,以及發送和接收速度的匹配,流量控制等。
(1)數據鏈路層的目的
提供建立、維持和釋放數據鏈路連接以及傳輸數據鏈路服務數據單元所需的功能和過程的手段。數據鏈路連接是建立在物理連接基礎上的,在物理連接建立以後,進行數據鏈路連接的建立和數據鏈路連接的拆除。具體說,每次通信前後,雙方相互聯系以確認一次通信的開始和結束,在一次物理連接上可以進行多次通信。數據鏈路層檢測和校正在物理層出現的錯誤。
(2)數據鏈路層的功能和服務
數據鏈路層的主要功能是為網路層提供連接服務,並在數據鏈路連接上傳送數據鏈路協議數據單元L-PDU,一般將L-PDU稱為幀。數據鏈路層服務可分為以下三種:
①無應答、無連接服務。發送前不必建立數據鏈路連接,接收方也不做應答,出錯和數據丟失時也不做處理。這種服務質量低,適用於線路誤碼率很低以及傳送實時性要求高的 (例如語音類的)信息等。
②有應答、無連接服務。當發送主機的數據鏈路層要發送數據時,直接發送數據幀。目標主機接收數據鏈路的數據幀,並經校驗結果正確後,向源主機數據鏈路層返回應答幀;否則返回否定幀,發送端可以重發原數據幀。這種方式發送的第一個數據幀除傳送數據外,也起數據鏈路連接的作用。這種服務適用於一個節點的物理鏈路多或通信量小的情況,其實現和控制都較為簡單。
③面向連接的服務。該服務一次數據傳送分為三個階段:數據鏈路建立,數據幀傳送和數據鏈路的拆除。數據鏈路建立階段要求雙方的數據鏈路層作好傳送的准備;數據傳送階段是將網路層遞交的數據傳送到對方;數據鏈路拆除階段是當數據傳送結束時,拆除數據鏈路連接。這種服務的質量好,是ISO/OSI參考模型推薦的主要服務方式。
(3)數據鏈路數據單元
數據鏈路層與網路層交換數據格式為服務數據單元。數據鏈路服務數據單元,配上數據鏈路協議控制信息,形成數據鏈路協議數據單元。
數據鏈路層能夠從物理連接上傳輸的比特流中,識別出數據鏈路服務數據單元的開始和結束,以及識別出其中的每個欄位,實現正確的接收和控制。能按發送的順序傳輸到相鄰結點。
(4)數據鏈路層協議
數據鏈路層協議可分為面向字元的通信規程和面向比特的通信規程。
面向字元的通信規程是利用控制字元控制報文的傳輸。報文由報頭和正文兩部分組成。報頭用於傳輸控制,包括報文名稱、源地址、目標地址、發送日期以及標識報文開始和結束的控制字元。正文則為報文的具體內容。目標節點對收到的源節點發來的報文,進行檢查,若正確,則向源節點發送確認的字元信息;否則發送接收錯誤的字元信息。
面向比特的通信規程典型是以幀為傳送信息的單位,幀分為控制幀和信息幀。在信息幀的數據欄位 (即正文)中,數據為比特流。比特流用幀標志來劃分幀邊界,幀標志也可用作同步字元。 廣域網路一般都劃分為通信子網和資源子網,物理層、數據鏈路層和網路層組成通信子網,網路層是通信子網的最高層,完成對通信子網的運行控制。網路層和傳輸層的界面,既是層間的介面,又是通信子網和用戶主機組成的資源子網的界限,網路層利用本層和數據鏈路層、物理層兩層的功能向傳輸層提供服務。
數據鏈路層的任務是在相鄰兩個節點間實現透明的無差錯的幀級信息的傳送,而網路層則要在通信子網內把報文分組從源節點傳送到目標節點。在網路層的支持下,兩個終端系統的傳輸實體之間要進行通信,只需把要交換的數據交給它們的網路層便可實現。至於網路層如何利用數據鏈路層的資源來提供網路連接,對傳輸層是透明的。
網路層控制分組傳送操作,即路由選擇,擁塞控制、網路互連等功能,根據傳輸層的要求來選擇服務質量,向傳輸層報告未恢復的差錯。網路層傳輸的信息以報文分組為單位,它將來自源的報文轉換成包文,並經路徑選擇演算法確定路徑送往目的地。網路層協議用於實現這種傳送中涉及的中繼節點路由選擇、子網內的信息流量控制以及差錯處理等。
(1)網路層功能
網路層的主要功能是支持網路層的連接。網路層的具體功能如下:
①建立和拆除網路連接
在數據鏈路層提供的數據鏈路連接的基礎上,建立傳輸實體間或者若干個通信子網的網路連接。互連的子網可採用不同的子網協議。
②路徑選擇、中繼和多路復用
網際的路徑和中繼不同與網內的路徑和和中繼,網路層可以在傳輸實體的兩個網路地址之間選擇一條適當的路徑,或者在互連的子網之間選擇一條適當的路徑和中繼。並提供網路連接多路復用的數據鏈路連接,以提高數據鏈路連接的利用率。
③分組、組塊和流量控制
數據分組是指將較長的數據單元分割為一些相對較小的數據單元;數據組塊是指將一些相對較小的數據單元組成塊後一起傳輸。用以實現網路服務數據單元的有序傳輸,以及對網路連接上傳輸的網路服務數據單元進行有效的流量控制,以免發生信息堵塞現象。
④差錯的檢測與恢復
利用數據鏈路層的差錯報告,以及其他的差錯檢測能力來檢測經網路連接所傳輸的數據單元,檢測是否出現異常情況。並可以從出錯狀態中解脫出來。
(2)數據報和虛電路
網路層中提供兩種類型的網路服務,即無連接服務和面向連接的服務。它們又被稱為數據報服務和虛電路服務。
①數據報 (Datagram)服務
在數據報方式,網路層從傳輸層接受報文,拆分為報文分組,並且獨立地傳送,因此數據報格式中包含有源和目標節點的完整網路地址、服務要求和標識符。發送時,由於數據報每經過一個中繼節點時,都要根據當時情況按照一定的演算法為其選擇一條最佳的傳輸路徑,因此,數據報服務不能保證這些數據報按序到達目標節點,需要在接收節點根據標識符重新排序。
數據報方式對故障的適應性強,若某條鏈路發生故障,則數據報服務可以繞過這些故障路徑而另選擇其他路徑,把數據報傳送至目標節點。數據報方式易於平衡網路流量,因為中繼節點可為數據報選擇一條流量較少的路由,從而避開流量較高的路由。數據報傳輸不需建立連接,目標節點在收到數據報後,也不需發送確認,因而是一種開銷較小的通信方式。但是發方不能確切地知道對方是否准備好接收、是否正在忙碌,故數據報服務的可靠性不是很高。而且數據報發送每次都附加源和目標主機的全網名稱降低了信道利用率。
②虛電路 (Virtue Circuit) 服務
在虛電路傳輸方式下,在源主機與目標主機通信之前,必須為分組傳輸建立一條邏輯通道,稱為虛電路。為此,源節點先發送請求分組Call-Request,Call-Request包含了源和目標主機的完整網路地址。Call-Request途徑每一個通信網路節點時,都要記下為該分組分配的虛電路號,並且路由器為它選擇一條最佳傳輸路由發往下一個通信網路節點。當請求分組到達目標主機後,若它同意與源主機通信,沿著該虛電路的相反方向發送請求分組Call-Request給源節點,當在網路層為雙方建立起一條虛電路後,每個分組中不必再填上源和目標主機的全網地址,而只需標上虛電路號,即可以沿著固定的路由傳輸數據。當通信結束時,將該虛電路拆除。
虛電路服務能保證主機所發出的報文分組按序到達。由於在通信前雙方已進行過聯系,每發送完一定數量的分組後,對方也都給予了確認,故可靠性較高。
③路由選擇
網路層的主要功能是將分組從源節點經過選定的路由送到目標節點,分組途經多個通信網路節點造成多次轉發,存在路由選擇問題。路由選擇或稱路徑控制,是指網路中的節點根據通信網路的情況 (可用的數據鏈路、各條鏈路中的信息流量),按照一定的策略 (傳輸時間最短、傳輸路徑最短等)選擇一條可用的傳輸路由,把信息發往目標節點。
網路路由選擇演算法是網路層軟體的一部分,負責確定所收到的分組應傳送的路由。當網路內部採用無連接的數據報方式時,每傳送一個分組都要選擇一次路由。當網路層採用虛電路方式時,在建立呼叫連接時,選擇一次路徑,後繼的數據分組就沿著建立的虛電路路徑傳送,路徑選擇的頻度較低。
路由選擇演算法可分為靜態演算法和動態演算法。靜態路由演算法是指總是按照某種固定的規則來選擇路由,例如,擴散法、固定路由選擇法、隨機路由選擇法和流量控制選擇法。動態路由演算法是指根據拓撲結構以及通信量的變化來改變路由,例如,孤立路由選擇法、集中路由選擇法、分布路由選擇法、層次路由選擇法等 從傳輸層向上的會話層、表示層、應用層都屬於端一端的主機協議層。傳輸層是網路體系結構中最核心的一層,傳輸層將實際使用的通信子網與高層應用分開。從這層開始,各層通信全部是在源與目標主機上的各進程間進行的,通信雙方可能經過多個中間節點。傳輸層為源主機和目標主機之間提供性能可靠、價格合理的數據傳輸。具體實現上是在網路層的基礎上再增添一層軟體,使之能屏蔽掉各類通信子網的差異,向用戶提供一個通用介面,使用戶進程通過該介面,方便地使用網路資源並進行通信。
(1) 傳輸層功能
傳輸層獨立於所使用的物理網路,提供傳輸服務的建立、維護和連接拆除的功能;選擇網路層提供的最適合的服務。傳輸層接收會話層的數據,分成較小的信息單位,再送到網路層,實現兩傳輸層間數據的無差錯透明傳送。
傳輸層可以使源與目標主機之間以點對點的方式簡單地連接起來。真正實現端一端間可靠通信。傳輸層服務是通過服務原語提供給傳輸層用戶(可以是應用進程或者會話層協議),傳輸層用戶使用傳輸層服務是通過傳送服務埠TSAP實現的。當一個傳輸層用戶希望與遠端用戶建立連接時,通常定義傳輸服務訪問點TSAP。提供服務的進程在本機TSAP埠等待傳輸連接請求,當某一節點機的應用程序請求該服務時,向提供服務的節點機的TSAP埠發出傳輸連接請求,並表明自己的埠和網路地址。如果提供服務的進程同意,就向請求服務的節點機發確認連接,並對請求該服務的應用程序傳遞消息,應用程序收到消息後,釋放傳輸連接。
傳輸層提供面向連接和無連接兩種類型的服務。這兩種類型的服務和網路層的服務非常相似。傳輸層提供這兩種類型服務的原因是因為,用戶不能對通信子網加以控制,無法通過使用通信處理機來改善服務質量。傳輸層提供比網路層更可靠的端一端間數據傳輸,更完善的查錯糾錯功能。傳輸層之上的會話層、表示層、應用層都不包含任何數據傳送的功能。
(2)傳輸層協議類型
傳輸層協議和網路層提供的服務有關。網路層提供的服務於越完善,傳輸層協議就越簡單,網路層提供的服務越簡單,傳輸層協議就越復雜。傳輸層服務可分成五類:
0類:提供最簡單形式的傳送連接,提供數據流控制。
1類:提供最小開銷的基本傳輸連接,提供誤差恢復。
2類:提供多路復用,允許幾個傳輸連接多路復用一條鏈路。
3類:具有0類和1類的功能,提供重新同步和重建傳輸連接的功能。
4類:用於不可靠傳輸層連接,提供誤差檢測和恢復。
基本協議機制包括建立連接、數據傳送和拆除連接。傳輸連接涉及四種不同類型的標識:
用戶標識:即服務訪問點SAP,允許實體多路數據傳輸到多個用戶。
網路地址:標識傳輸層實體所在的站。
協議標識:當有多個不同類型的傳輸協議的實體,對網路服務標識出不同類型的協議。
連接標識:標識傳送實體,允許傳輸連接多路復用。 會話是指兩個用戶進程之間的一次完整通信。會話層提供不同系統間兩個進程建立、維護和結束會話連接的功能;提供交叉會話的管理功能,有一路交叉、兩路交叉和兩路同時會話的3種數據流方向控制模式。會話層是用戶連接到網路的介面。
(1)會話層的主要功能
會話層的目的是提供一個面向應用的連接服務。建立連接時,將會話地址映射為傳輸地址。會話連接和傳輸連接有三種對應關系,一個會話連接對應一個傳輸連接;多個會話連接建立在一個傳輸連接上;一個會話連接對應多個傳輸連接。
數據傳送時,可以進行會話的常規數據、加速數據、特權數據和能力數據的傳送。
會話釋放時,允許正常情況下的有序釋放;異常情況下由用戶發起的異常釋放和服務提供者發起的異常釋放。
(2)會話活動
會話服務用戶之間的交互對話可以劃分為不同的邏輯單元,每個邏輯單元稱為活動。每個活動完全獨立於它前後的其他活動,且每個邏輯單元的所有通信不允許分隔開。
會話活動由會話令牌來控制,保證會話有序進行。會話令牌分為四種,數據令牌、釋放令牌、次同步令牌和主同步令牌。令牌是互斥使用會話服務的手段。
會話用戶進程間的數據通信一般採用互動式的半雙工通信方式。由會話層給會話服務用戶提供數據令牌來控制常規數據的傳送,有數據令牌的會話服務用戶才可發送數據,另一方只能接收數據。當數據發完之後,就將數據令牌轉讓給對方,對方也可請求令牌。
(3)會話同步
在會話服務用戶組織的一個活動中,有時要傳送大量的信息,如將一個文件連續發送給對方,為了提高數據發送的效率,會話服務提供者允許會話用戶在傳送的數據中設置同步點。一個主同步點表示前一個對話單元的結束及下一個對話單元的開始。在一個對話單元內部或者說兩個主同步點之間可以設置次同步點,用於會話單元數據的結構化。當會話用戶持有數據令牌、次同步令牌和主同步令牌時就可在發送數據流中用相應的服務原語設置次同步點和主同步點。
一旦出現高層軟體錯誤或不符合協議的事件則發生會話中斷,這時會話實體可以從中斷處返回到一個已知的同步點繼續傳送,而不必從文件的開頭恢復會話。會話層定義了重傳功能,重傳是指在已正確應答對方後,在後期處理中發現出錯而請求的重傳,又稱為再同步。為了使發送端用戶能夠重傳,必須保存數據緩沖區中已發送的信息數據,將重新同步的范圍限制在一個對話單元之內,一般返回到前一個次同步點,最多返回到最近一個主同步點。 應用層作為用戶訪問網路的介面層,給應用進程提供了訪問OSI環境的手段。
應用進程藉助於應用實體 (AE)、實用協議和表示服務來交換信息,應用層的作用是在實現應用進程相互通信的同時,完成一系列業務處理所需的服務功能。當然這些服務功能與所處理的業務有關。
應用進程使用OSI定義和通信功能,這些通信功能是通過OSI參考模型各層實體來實現的。應用實體是應用進程利用OSI通信功能的唯一窗口。它按照應用實體間約定的通信協議 (應用協議),傳送應用進程的要求,並按照應用實體的要求在系統間傳送應用協議控制信息,有些功能可由表示層和表示層以下各層實現。
應用實體由一個用戶元素和一組應用服務元素組成。用戶元素是應用進程在應用實體內部,為完成其通信目的,需要使用的那些應用服務元素的處理單元。實際上,用戶元素向應用進程提供多種形式的應用服務調用,而每個用戶元素實現一種特定的應用服務使用方式。用戶元素屏蔽應用的多樣性和應用服務使用方式的多樣性,簡化了應用服務的實現。應用進程完全獨立於OSI環境,它通過用戶元素使用OSI服務。
應用服務元素可分為兩類,公共應用服務元素 (CASE)和特定應用服務元素 (SASE)。公共應用服務元素是用戶元素和特定應用服務元素公共使用的部分,提供通用的最基本的服務,它使不同系統的進程相互聯系並有效通信。它包括聯系控制元素、可靠傳輸服務元素、遠程操作服務元素等;特定應用服務元素提供滿足特定應用的服務。包括虛擬終端、文件傳輸和管理、遠程資料庫訪問、作業傳送等。對於應用進程和公共應用服務元素來說,用戶元素具有發送和接收能力。對特定服務元素來說,用戶元素是請求的發送者,也是響應的最終接收者。

5. 計算機網路的基本組成部分有哪些

計算機網路的基本組成部分包括以下幾個方面:

  • 硬體設備:計算機網路中的硬體設備包括計算機、伺服器、路由器、交換機、集線器、網卡等,這些設備可以相互連接形成網路拓撲結構,使得數據能夠在網路中進行傳輸。

  • 軟體協議:計算機網路中的軟體協議用於規范數據在網路中的傳輸方式和通信規則。常見的協議包括TCP/IP、HTTP、FTP、SMTP、POP3等。這些協議規定了數據傳輸的格式、數據包的分組、路由選擇、差錯檢測和糾錯等方面的細節,以確保網路中的數據能夠安全、高效地傳輸。

  • 網路服務:計算機網路提供了多種網路服務,如Web服務、電子郵件服務、文件傳輸服務、遠程登錄服務、多媒體傳輸服務等,使得用戶能夠通過網路進行數據交換、信息傳遞和資源共享。

  • 網路協議和安全技術:為了保障網路安全,計算機網路需要採用多種網路協議和安全技術,如IPSec、SSL/TLS、防火牆、入侵檢測系統等,以保護網路的安全和數旁陪據的隱私。

  • 網路管理和監控:計算機網路需要進行管理和監控,以確保網路的正常運行。網路管理員需要通過網路管理工具來管理網路中的設備、資源、用戶、安全和性能等方面運亮蠢,以便及時排除故障,提高網路的可靠性和性能。

  • 綜上所述鍵圓,計算機網路的基本組成部分包括硬體設備、軟體協議、網路服務、網路協議和安全技術以及網路管理和監控等方面,它們共同構成了計算機網路的基礎架構和功能體系。

-------FunNet超有趣學網路

6. 計算機網路的體系結構

要想讓兩台計算機進行通信,必須使它們採用相同的信息交換規則。我們把在計算機網路中用於規定信息的格式以及如何發送和接收信息的一套規則稱為網路協議(network protocol)或通信協議(communication protocol)。
為了減少網路協議設計的復雜性,網路設計者並不是設計一個單一、巨大的協議來為所有形式的通信規定完整的細節,而是採用把通信問題劃分為許多個小問題,然後為每個小問題設計一個單獨的協議的方法。這樣做使得每個協議的設計、分析、編碼和測試都比較容易。分層模型(layering model)是一種用於開發網路協議的設計方法。本質上,分層模型描述了把通信問題分為幾個小問題(稱為層次)的方法,每個小問題對應於一層。
在計算機網路中要做到有條不紊地交換數據,就必須遵守一些事先約定好的規則。這些規則明確規定了所交換的數據格式以及有關的同步問題。這里所說的同步不是狹義的(即同頻或同頻同相)而是廣義的,即在一定的條件下應當發生什麼事件(如發送一個應答信息),因而同步含有時序的意思。這些為進行網路中的數據交換而建立的規則、標准或約定稱為網路協議,網路協議也可簡稱為協議。網路協議主要由以下三個要素組成。
① 語法,即數據與控制信息的結構或格式。
② 語義,即需要發出何種控制信息,完成何種動作以及做出何種響應。
③ 同步,即事件實現順序的詳細說明。
網路協議是計算機網路的不可缺少的組成部分。
協議通常有兩種不同的形式。一種是使用便於人來閱讀和理解的文字描述,另一種是使用計算機能夠理解的程序代碼。
對於非常復雜的計算機網路協議,其結構應該是層次式的。分層可以帶來許多好處。
① 各層之間是獨立的。某一層並不需要知道它的下一層是如何實現的,而僅僅需要知道該層通過層間的介面(即界面)所提供的服務。由於每一層只實現一種相對獨立的功能,因而可將一個難以處理的復雜問題分解為若干個較容易處理的更小一些的問題。這樣,整個問題的復雜程度就下降了。
② 靈活性好。當任何一層發生變化時(例如由於技術的變化),只要層間介面關系保持不變,則在這層以上或以下各層均不受影響。此外,對某一層提供的服務還可進行修改。當某層提供的服務不再需要時,甚至可以將這層取消。
③ 結構上可分割開。各層都可以採用最合適的技術來實現。
④ 易於實現和維護。這種結構使得實現和調試一個龐大而又復雜的系統變得易於處理,因為整個的系統已被分解為若干個相對獨立的子系統。
⑤ 能促進標准化工作。因為每一層的功能及其所提供的服務都已有了精確的說明。
分層時應注意使每一層的功能非常明確。若層數太少,就會使每一層的協議太復雜。但層數太多又會在描述和綜合各層功能的系統工程任務時遇到較多的困難。
我們把計算機網路的各層及其協議的集合,稱為網路的體系結構。換種說法,計算機網路的體系結構就是這個計算機網路及其構件所應完成的功能的精確定義。需要強調的是:這些功能究竟是用何種硬體或軟體完成的,則是一個遵循這種體系結構的實現的問題。體系結構的英文名詞architecture的原意是建築學或建築的設計和風格。但是它和一個具體的建築物的概念很不相同。我們也不能把一個具體的計算機網路說成是一個抽象的網路體系結構。總之,體系結構是抽象的,而實現則是具體的,是真正在運行的計算機硬體和軟體。
圖5.8所示是計算機網路體系結構示意圖。其中圖5.8(a)是OSI的七層協議體系結構圖、圖5.8(b)是TCP/IP四層體系結構、圖5.8(c)是五層協議的體系結構。五層協議的體系結構綜合了前兩種體系結構的優點,既簡潔又能將概念闡述清楚。

7. 計算機網路的拓撲結構主要有哪幾種

計算機網路的拓撲結構如下:

1、星型拓撲:以一個電腦為中心,向四周分散開。這個結構簡單,擴展性大,傳輸時間少。但是當中心部分出現錯誤後,全部的網路都會癱瘓。

2、匯流排拓撲:所有的電腦網路都連在一條線上。這個結構所需要的電線短,電線少;但是當這個結構出現故障後很難找到故障問題。

3、環形拓撲:所有的網路形成一個環形結構。這個結構可以節約設備,但是當其中網路出現問題時候不容易找到故障的設備。

4、樹形拓撲:以一個中心開始像下面發展,像一棵樹的形狀。這樣的結構擴展性強,分支多,但是當頂端網路出現錯誤的時候整個網路都容易癱瘓。

5、網性拓撲:所有的網路連接構成一個網狀。這個結構應用廣泛,利用性強,而且當一個網路出現錯誤的時候其他結構仍然可以使用,但是這個結構復雜,成本高。

6、混合式拓撲:是以上的拓撲結構混合而成。

8. 計算機網路通常由哪些部分組成

計算機網路通常由以下幾個部分組成:

  • 硬體:包括計算機、路由器、交換機、數據機等硬體設備,用於在網路中傳輸和處理數據。

  • 1、軟體:包括操作系統、網路協議、網路服務、應用程序等軟體,用於控制網路硬體設備的操作,並提供各種網路服務。

  • 2、協議:網路協議規定了網路中數據的傳輸方式和處理方式。常見的協議包括TCP/IP協議、HTTP協議、FTP協議、SMTP協議等。

  • 3、拓撲結構:網路拓撲結構指的是網路中各個設備之間的物理連接方式。常見的拓撲結構包括星型拓撲、匯流排型拓撲、環型拓撲等。

  • 4、網路服務:網路服務是網路中的各種應用程序,包括電子郵件、文件傳輸、遠程登錄、網頁瀏覽等服務。

  • 5、安全機制:網路安全是網路中一個重要的方面,包括防火牆、加密技術、身份認證、訪問控制等安全機制,用於保護網路中的數據和設備免受攻擊和威脅。

總之,計算機網路是由硬體、軟體、協議、拓撲結構、網路服務和安全機制等多個組成部分構成的復雜系統。這些組成部分相互作用,共同實現了計算機網路中的數據傳輸、處理、存儲和管理等功能。

-------FunNet超有趣學網路

9. 計算機網路體系結構的組成結構

一、計算機系統和終端
計算機系統和終端提供網路服務界面。地域集中的多個獨立終端可通過一個終端控制器連入網路。
二、通信處理機
通信處理機也叫通信控制器或前端處理機,是計算機網路中完成通信控制的專用計算機,通常由小型機、微機或帶有CPU的專用設備充當。在廣域網中,採用專門的計算機充當通信處理機:在區域網中,由於通信控制功能比較簡單,所以沒有專門的通信處理機,而是在計算機中插入一個網路適配器(網卡)來控制通信。
三、通信線路和通信設備
通信線路是連接各計算機系統終端的物理通路。通信設備的採用與線路類型有很大關系:如果是模擬線路,在線中兩端使用Modem(數據機);如果是有線介質,在計算機和介質之間就必須使用相應的介質連接部件。
四、操作系統
計算機連入網路後,還需要安裝操作系統軟體才能實現資源共享和管理網路資源。如:Windows 98、Windows 2000、Windows xp等。
五、網路協議
網路協議是規定在網路中進行相互通信時需遵守的規則,只有遵守這些規則才能實現網路通信。常見的協議有:TCT/IP協議、IPX/SPX協議、NetBEUI協議等。

10. 典型的計算機網路體系結構有哪些

OSI七層模型、TCP/IP四層模型、五層體系結構

一、OSI七層模型

OSI七層協議模型主要是:應用層(Application)、表示層(Presentation)、會話層(Session)、傳輸層(Transport)、網路層(Network)、數據鏈路層(DataLink)、物理層(Physical)。

二、TCP/IP四層模型

TCP/IP是一個四層的體系結構,主要包括:應用層、運輸層、網際層和網路介面層。從實質上講,只有上邊三層,網路介面層沒有什麼具體的內容。

三、五層體系結構

五層體系結構包括:應用層、運輸層、網路層、數據鏈路層和物理層。五層協議只是OSI和TCP/IP的綜合,實際應用還是TCP/IP的四層結構。為了方便可以把下兩層稱為網路介面層。

(10)計算機網路結構體系大全擴展閱讀:

世界上第一個網路體系結構是美國IBM公司於1974年提出的,它取名為系統網路體系結構SNA(System Network Architecture)。凡是遵循SNA的設備就稱為SNA設備。這些SNA設備可以很方便地進行互連。此後,很多公司也紛紛建立自己的網路體系結構,這些體系結構大同小異,都採用了層次技術。