A. 校園網路的拓撲結構圖
結構圖如下:
由網路節點設備和通信介質構成的網路結構圖。網路拓撲定義了各種計算機、列印機、網路設備和其他設備的連接方式。換句話說,網路拓撲描述了線纜和網路設備的布局以及數據傳輸時所採用的路徑。網路拓撲會在很大程度上影響網路如何工作。
(1)路由器網路構造圖擴展閱讀
星型網路拓撲結構的一種擴充便是星行樹,如左圖所示。每個Hub與端用戶的連接仍為星型,Hub的級連而形成樹。然而,應當指出,Hub級連的個數是有限制的,並隨廠商的不同而有變化。
樹型結構是分級的集中控制式網路,與星型相比,它的通信線路總長度短,成本較低,節點易於擴充,尋找路徑比較方便,但除了葉節點及其相連的線路外,任一節點或其相連的線路故障都會使系統受到影響。
適用場合:只適用於低速、不用阻抗控制的信號,比如在沒有電源層的情況下,電源的布線就可以採用這種拓撲。
B. 繪制一個網路結構圖,伺服器一台、PC機3台,交換機一台、路由器一台。
C. 畫出由路由器和四台計算機組成的網路結構圖
將LAN1 LAN2 LAN3 LAN4分別接線到電腦1234
WAN口進線為ADSL過來的,即可。
拓撲結構圖是指由網路節點設備和通信介質構成的網路結構圖。
網路拓撲定義了各種計算機、列印機、網路設備和其他設備的連接方式。換句話說,網路拓撲描述了線纜和網路設備的布局以及數據傳輸時所採用的路徑。網路拓撲會在很大程度上影響網路如何工作。
網路拓撲包括物理拓撲和邏輯拓撲。物理拓撲是指物理結構上各種設備和傳輸介質的布局。物理拓撲通常有匯流排型、星型、環型、樹型、網狀型等幾種。
附:拓撲結構示意圖
E. 請用圖示說明internet的基本結構
1. C是交換機,B是網關伺服器。
2. A是一台路由器,該設備為DNS伺服器提供INTERNET 接入。
3. D的IP地址:(192.168.1.2~254)、掩碼:255.255.255.0、網關192.168.1.1 DNS:210.5.9.88
計算機網路通常不是在通信的每兩台計算機之間聯接一條專用的線路,相反,網路系統中的多台計算機共享底層的硬體設備。
就像使用的電話系統一樣,每一家電話只有兩根線,一個進一個出,而不是在每兩個有電話的地方都連上兩根線,這種共享是出於經濟的考慮:多台設備共享一條傳輸線路降低了成本。
因為這樣可以只使用少量的線路和少量的交換設備。所以,共享傳輸路徑(線路)的優點是可以節約資金。
(5)路由器網路構造圖擴展閱讀:
計算機網路涉及計算機技術,通信,使用多個方便,復雜而有秩序。網路普遍存在於軍事、工業、教學、家庭、公司集團等。在網路的管理中有著嚴格的管理秩序。計算機網路體系就是通過網路將所有的計算機連接在一起,實現信息的共享,但是其有通信防議和介面服務。計算機網路的便利。
計算機網路把看上去是將一個很龐大的世界關連成了一個整體,實際上讓這個世界變得又似乎很小。因為通過計算機網路,原來根本不認識的人,可能認識了,原來不了解不懂得問題,現在也明白了。人與人之間可以通過計算甲網路進行交流和溝通。
科學技術是第一生產力,科學生產技術催生了網路的成長,同樣網路也促進科學技術的進步,可謂是相輔相城。網路的出現促進了經濟方式和社會的改變,但是同樣也對網路的發展提出更加嚴格的要求,網路在社會不斷的促進中不斷的發展。
在網路高速發展的現代,人們逐漸習慣了使用銀行卡,手機的普遍使用,逐漸的發展形成了網上的支付方式,支付寶微信等軟體的出現更加促進了網路的進步,人們的生活也更加的便利。電予商務也擁有良好的發展前景。
F. 根據以下網路拓撲結構圖,配置路由器的靜態IP路由表。(在Cisco Packet Tracer環境下模擬)
如果你的需求是R1/R2能訪問PC 或者PC能訪問R1 R2
R1:ip route 190.1.0.0 255.255.0.0 30.0.0.1
R2:ip route 190.1.0.0 255.255.0.0 20.0.0.2
R3上有 R1和R2 、PC的直連路由,所有可以直接通信,保證PC上配置默認網關為190.1.1.1
G. 路由器結構
輸入埠是物理鏈路和輸入包的進口處。埠通常由線卡提供,一塊線卡一般支持4、8或16個埠,一個輸入埠具有許多功能。第一個功能是進行數據鏈路層的封裝和解封裝。第二個功能是在轉發表中查找輸入包目的地址從而決定目的埠(稱為路由查找),路由查找可以使用一般的硬體來實現,或者通過在每塊線卡上嵌入一個微處理器來完成。第三,為了提供QoS(服務質量),埠要對收到的數據包進行業務分類,分成幾個預定義的服務級別。第四,埠可能需要運行諸如SLIP(串列線網際協議)和PPP(點對點協議)這樣的數據鏈路級協議或者諸如PPTP(點對點隧道協議)這樣的網路級協議。一旦路由查找完成,必須用交換開關將包送到其輸出埠。如果路由器是輸入端加隊列的,則有幾個輸入端共享同一個交換開關。這樣輸入埠的最後一項功能是參加對公共資源(如交換開關)的仲裁協議。普通路由器中該部分的功能完全由路由器的中央處理器來執行,制約了數據包的轉發速率(每秒幾千到幾萬個數據包)。高端路由器中普遍實現了分布式硬體處理,介面部分有強大的CPU處理器和大容量的高速緩存,使介面數據速率達到10Gbps,滿足了高速骨幹網路的傳輸要求。
路由器的轉發機制對路由器的性能影響很大,常見的轉發方式有:進程轉發、快速轉發、優化轉發、分布式快速轉發。進程轉發將數據包從介面緩存拷貝到處理器的緩存中進行處理,先查看路由表再查看ARP表,重新封裝數據包後將數據包拷貝到介面緩存中准備傳送出去,兩次查表和拷貝數據極大的佔用CPU的處理時間,所以這是最慢的交換方式,只在低檔路由器中使用。快速交換將兩次查表的結果作了緩存,無需拷貝數據,所以CPU處理數據包的時間縮短了。優化交換在快速交換的基礎上略作改進,將緩存表的數據結構作了改變,用深度為4的256叉樹代替了深度為32的2叉樹或哈希表(hash),CPU的查找時間進一步縮短。這兩種轉發方式在中高檔路由器中普遍加以應用。在骨幹路由器中由於路由表條目的成倍增加,路由表或ARP表的任何變化都會引起大部分路由緩沖失效,以前的交換方式都不再適用,最新的交換方式是分布式快速交換,它在每個介面處理板上構建一個鏡像(mirror)路由表和MAC地址表相結合的轉發表,該表是深度為4的256叉樹,但每個節點的數據部分是指向另一個稱為鄰接表的指針,鄰接表中含有路由器成幀所需要的全部信息。這種結構使得轉發表完全由路由表和ARP表來同步更新,本身不再需要額外的老化進程,克服了其它交換方式需要不斷對緩存表進行老化的缺陷。
交換結構最常見的有匯流排型、共享內存型、Cross-bar空分結構型。匯流排型結構最簡單,所有輸入和輸出介面掛在一個匯流排上,同一時間只有兩個介面通過匯流排交換數據。其缺點是其交換容量受限於匯流排的容量以及為共享匯流排仲裁所帶來的額外開銷。在調度共享數據傳輸通道上必須花費一定的開銷,而且匯流排帶寬的擴展受到限制,制約了交換容量的擴張,一般在中檔路由器中使用這種結構。共享內存型結構中,進來的包被存貯在共享存貯器中,所交換的僅是包的指針,這提高了交換容量,但它受限於內存的訪問速度和存儲器的管理效率,盡管存貯器容量每18個月能夠翻一番,但存貯器的存取時間每年僅降低5%,這是共享存貯器交換開關的一個固有限制。共享內存型結構在早期的中低檔路由器中普遍應用。Cross-bar空分結構相當於多條並行工作的匯流排,具有N×N個交叉點的交叉開關可以被認為具有2N條匯流排。如果一個交叉是閉合,輸入匯流排上的數據在輸出匯流排上可用,否則不可用。對流經它的數據不斷進行開關切換,可見開關速度決定了交換容量,隨著各種高速器件的不斷涌現,這種結構的交換容量普遍達到幾十Gbps以上,成為目前高端路由器和交換機的首選交換結構。
路由計算或處理部分主要是運行動態路由協議。接收和發送路由信息,計算出路由表,為數據包的轉發提供依據。各種檔次的路由器的路由表條目的大小存在很大差異,從幾千條到幾百萬條不等,因此高端路由器的路由表的構造對路由查找速度影響很大,其路由表的數據結構常採用二叉樹的形式,查找與更新的速度都比較快。
輸出埠在包被發送到輸出鏈路之前對包存貯,可以實現復雜的調度演算法以支持優先等級要求。與輸入埠一樣,輸出埠同樣要能支持數據鏈路層的封裝和解封裝,以及許多較高級協議。
一般而言,路由器對一個數據包的交換要經過一系列的復雜處理,主要有以下幾個方面:
1)壓縮和解壓縮
2)加密和解密
3)用輸入/輸出訪問列表進行報文過濾
4)輸入速率限制
5)進行網路地址翻譯(NAT)
6)處理影響本報文的任何策略路由
7)應用防火牆特性對包進行檢查
8)處理Web頁緩沖的重定向
9)物理廣播處理,如幫助性地址(ip help address)
10)利用啟用的QoS機制對數據包排隊
11)TTL值的處理
12)處理IP頭部中的任選項
13)檢查數據包的完整性