當前位置:首頁 » 網路連接 » 神經網路分層延時連接
擴展閱讀
看手機電池性能軟體 2024-11-09 03:10:02
網站如何查詢ip 2024-11-09 03:07:45

神經網路分層延時連接

發布時間: 2022-12-12 21:52:48

『壹』 人工神經網路分層結構包括

品牌型號:華為MateBook D15
系統:Windows 11

人工神經網路分層結構包括神經元、層和網路三個部分。

1、神經元是人工神經網路最基本的單元。單元以層的方式組,每一層的每個神經元和前一層、後一層的神經元連接,共分為輸入層、輸出層和隱藏層,三層連接形成一個神經網路。

2、輸入層只從外部環境接收信息,是由輸入單元組成,而這些輸入單元可接收樣本中各種不同的特徵信息。該層的每個神經元相當於自變數,不完成任何計算,只為下一層傳遞信息;隱藏層介於輸入層和輸出層之間,這些層完全用於分析,其函數聯系輸入層變數和輸出層變數,使其更配適數據。而最後,輸出層生成最終結果,每個輸出單元會對應到某一種特定的分類,為網路送給外部系統的結果值,,整個網路由調整鏈接強度的程序來達成學習的目的。

3、神經網路是一種運算模型,由大量的節點(或稱神經元)之間相互聯接構成。每個節點代表一種特定的輸出函數,稱為激勵函數(activation function)。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為權重,這相當於人工神經網路的記憶。網路的輸出則依網路的連接方式,權重值和激勵函數的不同而不同。

『貳』 神經網路(Neural Network)

(1)結構:許多樹突(dendrite)用於輸入,一個軸突 (axon)用於輸出。

(2)特性:興奮性和傳導性。興奮性是指當信號量超過某個閾值時,細胞體就會被激活,產生電脈沖。傳導性是指電脈沖沿著軸突並通過突觸傳遞到其它神經元。

(3)有兩種狀態的機器:激活時為「是」,不激活時為「否」。神經細胞的狀態取決於從其他神經細胞接收到的信號量,以及突觸的性質(抑制或加強)。

(1)神經元——不重要

① 神經元是包含權重和偏置項的 函數 :接收數據後,執行一些計算,然後使用激活函數將數據限制在一個范圍內(多數情況下)。

② 單個神經元:線性可分的情況下,本質是一條直線, ,這條直線將數據劃分為兩類。而線性分類器本身就是一個單層神經網路。

③ 神經網路:非線性可分的情況下,神經網路通過多個隱層的方法來實現非線性的函數。

(2)權重/參數/連接(Weight)——最重要

每一個連接上都有一個權重。一個神經網路的訓練演算法就是讓權重的值調整到最佳,以使得整個網路的預測效果最好。

(3)偏置項(Bias Units)——必須

① 如果沒有偏置項,所有的函數都會經過原點。

② 正則化偏置會導致欠擬合:若對偏置正則化,會導致激活變得更加簡單,偏差就會上升,學習的能力就會下降。

③ 偏置的大小度量了神經元產生激勵(激活)的難易程度。

(1)定義:也稱為轉換函數,是一種將輸入 (input) 轉成輸出 (output) 的函數。

(2)作用:一般直線擬合的精確度要比曲線差很多,引入激活函數能給神經網路 增加一些非線性 的特性。

(3)性質:

① 非線性:導數不是常數,否則就退化成直線。對於一些畫一條直線仍然無法分開的問題,非線性可以把直線變彎,就能包羅萬象;

② 可微性:當優化方法是基於梯度的時候,處處可導為後向傳播演算法提供了核心條件;

③ 輸出范圍:一般限定在[0,1],使得神經元對一些比較大的輸入會比較穩定;

④ 非飽和性:飽和就是指,當輸入比較大的時候輸出幾乎沒變化,會導致梯度消失;

⑤ 單調性:導數符號不變,輸出不會上躥下跳,讓神經網路訓練容易收斂。

(1)線性函數 (linear function)—— purelin()

(2)符號函數 (sign function)—— hardlim() 

① 如果z值高於閾值,則激活設置為1或yes,神經元將被激活。

② 如果z值低於閾值,則激活設置為0或no,神經元不會被激活。

(3)對率函數 (sigmoid function)—— logsig()

① 優點:光滑S型曲線連續可導,函數閾值有上限。

② 缺點:❶ 函數飽和使梯度消失,兩端梯度幾乎為0,更新困難,做不深;

                ❷ 輸出不是0中心,將影響梯度下降的運作,收斂異常慢;

                ❸ 冪運算相對來講比較耗時

(4)雙曲正切函數(hyperbolic tangent function)—— tansig()

① 優點:取值范圍0中心化,防止了梯度偏差

② 缺點:梯度消失現象依然存在,但相對於sigmoid函數問題較輕

(5)整流線性單元 ReLU 函數(rectified linear unit)

① 優點:❶ 分段線性函數,它的非線性性很弱,因此網路做得很深;

                ❷ 由於它的線性、非飽和性, 對於隨機梯度下降的收斂有巨大的加速作用;

② 缺點:❶ 當x<0,梯度都變成0,參數無法更新,也導致了數據多樣化的丟失;

                ❷ 輸出不是0中心

(6)滲漏型整流線性單元激活函數 Leaky ReLU 函數

① 優點:❶ 是為解決「ReLU死亡」問題的嘗試,在計算導數時允許較小的梯度;

                ❷ 非飽和的公式,不包含指數運算,計算速度快。

② 缺點:❶ 無法避免梯度爆炸問題; (沒有體現優於ReLU)

                ❷ 神經網路不學習 α 值。

(7)指數線性單元 ELU (Exponential Linear Units)

① 優點:❶ 能避免「死亡 ReLU」 問題;

                ❷ 能得到負值輸出,這能幫助網路向正確的方向推動權重和偏置變化;

                ❸ 在計算梯度時能得到激活,而不是讓它們等於 0。

② 缺點:❶ 由於包含指數運算,所以計算時間更長;

                ❷ 無法避免梯度爆炸問題; (沒有體現優於ReLU)

                ❸ 神經網路不學習 α 值。

(8)Maxout(對 ReLU 和 Leaky ReLU的一般化歸納)

① 優點:❶ 擁有ReLU的所有優點(線性和不飽和)

                ❷ 沒有ReLU的缺點(死亡的ReLU單元)

                ❸ 可以擬合任意凸函數

② 缺點 :參數數量增加了一倍。難訓練,容易過擬合

(9)Swish

① 優點:❶ 在負半軸也有一定的不飽和區,參數的利用率更大

                ❷ 無上界有下界、平滑、非單調

                ❸ 在深層模型上的效果優於 ReLU

每個層都包含一定數量的單元(units)。增加層可增加神經網路輸出的非線性。

(1)輸入層:就是接收原始數據,然後往隱層送

(2)輸出層:神經網路的決策輸出

(3)隱藏層:神經網路的關鍵。把前一層的向量變成新的向量,讓數據變得線性可分。

(1)結構:僅包含輸入層和輸出層,直接相連。

(2)作用:僅能表示 線性可分 函數或決策,且一定可以在有限的迭代次數中收斂。

(3)局限:可以建立與門、或門、非門等,但無法建立更為復雜的異或門(XOR),即兩個輸入相同時輸出1,否則輸出0。 (「AI winter」)

(1)目的:擬合某個函數      (兩層神經網路可以逼近任意連續函數)

(2)結構:包含輸入層、隱藏層和輸出層 ,由於從輸入到輸出的過程中不存在與模型自身的反饋連接,因此被稱為「前饋」。    (層與層之間全連接)

(3)作用: 非線性 分類、聚類、預測等,通過訓練,可以學習到數據中隱含的知識。

(4)局限:計算復雜、計算速度慢、容易陷入局部最優解,通常要將它們與其他網路結合形成新的網路。

(5)前向傳播演算法(Forward Propagation)

① 方法:從左至右逐級依賴的演算法模型,即網路如何根據輸入X得到輸出Y,最終的輸出值和樣本值作比較, 計算出誤差 。

② 目的:完成了一次正反向傳播,就完成了一次神經網路的訓練迭代。通過輸出層的誤差,快速求解對每個ω、b的偏導,利用梯度下降法,使Loss越來越小。

② 局限:為使最終的誤差達到最小,要不斷修改參數值,但神經網路的每條連接線上都有不同權重參數,修改這些參數變得棘手。

(6)誤差反向傳播(Back Propagation)

① 原理:梯度下降法求局部極值

② 方法:從後往前,從輸出層開始計算 L 對當前層的微分,獲得各層的誤差信號,此誤差信號即作為修正單元權值的依據。計算結束以後,所要的兩個參數矩陣的 梯度 就都有了。

③ 局限:如果激活函數是飽和的,帶來的缺陷就是系統迭代更新變慢,系統收斂就慢,當然這是可以有辦法彌補的,一種方法是使用 交叉熵函數 作為損失函數。

(1)原理:隨著網路的層數增加,每一層對於前一層次的抽象表示更深入。在神經網路中,每一層神經元學習到的是前一層神經元值的更抽象的表示。通過抽取更抽象的特徵來對事物進行區分,從而獲得更好的區分與分類能力。

(2)方法:ReLU函數在訓練多層神經網路時,更容易收斂,並且預測性能更好。

(3)優點:① 易於構建,表達能力強,基本單元便可擴展為復雜的非線性函數

                      ② 並行性號,有利於在分布是系統上應用

(4)局限:① 優化演算法只能獲得局部極值,性能與初始值相關

                      ② 調參理論性缺乏

                      ③ 不可解釋,與實際任務關聯性模糊

(1)原理:由手工設計卷積核變成自動學習卷積核

(2)卷積(Convolutional layer): 輸入與卷積核相乘再累加 (內積、加權疊加)

① 公式:

② 目的:提取輸入的不同特徵,得到維度很大的 特徵圖(feature map)

③ 卷積核:需要訓練的參數。一般為奇數維,有中心像素點,便於定位卷積核

④ 特點:局部感知、參數變少、權重共享、分層提取

(3)池化(Pooling Layer):用更高層的抽象表達來表示主要特徵,又稱「降采樣」

① 分類: 最大 (出現與否)、平均(保留整體)、隨機(避免過擬合)

② 目的:降維,不需要訓練參數,得到新的、維度較小的特徵

(4)步長(stride):若假設輸入大小是n∗n,卷積核的大小是f∗f,步長是s,則最後的feature map的大小為o∗o,其中

(5)填充(zero-padding)

① Full模式:即從卷積核(fileter)和輸入剛相交開始做卷積,沒有元素的部分做補0操作。

② Valid模式:卷積核和輸入完全相交開始做卷積,這種模式不需要補0。

③ Same模式:當卷積核的中心C和輸入開始相交時做卷積。沒有元素的部分做補0操作。

(7)激活函數:加入非線性特徵

(8)全連接層(Fully-connected layer)

如果說卷積層、池化層和激活函數層等是將原始數據映射到隱層特徵空間(決定計算速度),全連接層則起到將學到的「分布式特徵表示」映射到樣本標記空間的作用(決定參數個數)。

參考:

[1]  神經網路(入門最詳細)_ruthy的博客-CSDN博客_神經網路演算法入門

[2]  神經網路(容易被忽視的基礎知識) - Evan的文章 - 知乎

[3]  人工神經網路——王的機器

[4]  如何簡單形象又有趣地講解神經網路是什麼? - 舒小曼的回答 - 知乎

[5]  神經網路15分鍾入門!足夠通俗易懂了吧 - Mr.括弧的文章 - 知乎

[6]  神經網路——最易懂最清晰的一篇文章_illikang的博客-CSDN博客_神經網路

[7]  直覺化深度學習教程——什麼是前向傳播——CSDN

[8]  「反向傳播演算法」過程及公式推導(超直觀好懂的Backpropagation)_aift的專欄-CSDN

[9]  卷積、反卷積、池化、反池化——CSDN

[10]  浙大機器學習課程- bilibili.com

『叄』 人工神經元網路的拓撲結構主要有哪幾種謝謝大俠~~~

神經網路的拓撲結構包括網路層數、各層神經元數量以及各神經元之間相互連接的方式。

人工神經網路的模型從其拓撲結構角度去看,可分為層次型和互連型。層次型模型是將神經網路分為輸入層(Input Layer)、隱層(Hidden Layer)和輸出層(Output Layer),各層順序連接。其中,輸入層神經元負責接收來自外界的輸入信息,並將其傳遞給隱層神經元。隱層負責神經網路內部的信息處理、信息變換。通常會根據變換的需要,將隱層設計為一層或多層。

(3)神經網路分層延時連接擴展閱讀:

人工神經網路模型主要考慮網路連接的拓撲結構、神經元的特徵、學習規則等。目前,已有近40種神經網路模型,其中有反傳網路、感知器、自組織映射、Hopfield網路、波耳茲曼機、適應諧振理論等。

人工神經網路採用了與傳統人工智慧和信息處理技術完全不同的機理,克服了傳統的基於邏輯符號的人工智慧在處理直覺、非結構化信息方面的缺陷,具有自適應、自組織和實時學習的特點。

『肆』 前饋型神經網路中各個層之間是什麼的

前饋型神經網路的中各個層之間是無環的,反饋型神經網路中各個層之間是有環的。
前饋神經網路
前饋神經網路是一種最簡單的神經網路,各神經元分層排列。每個神經元只與前一層的神經元相連。接收前一層的輸出,並輸出給下一層.各層間沒有反饋。
前饋神經網路的基本結構和要素前饋神經網路也叫做多層感知機,網路中無迴路,輸入的信息總是向前傳播,神經網路訓練過程中,輸入層/輸出層節點數通常固定,隱藏層節點數根據網路效果調節,神經網路結構在訓練過程中的重點在於神經元之間的連接線的權重的確定

"/>

『伍』 神經網路連接方式分為哪幾類每一類有哪些特點

神經網路模型的分類
人工神經網路的模型很多,可以按照不同的方法進行分類。其中,常見的兩種分類方法是,按照網路連接的拓樸結構分類和按照網路內部的信息流向分類。
1 按照網路拓樸結構分類
網路的拓樸結構,即神經元之間的連接方式。按此劃分,可將神經網路結構分為兩大類:層次型結構和互聯型結構。
層次型結構的神經網路將神經元按功能和順序的不同分為輸出層、中間層(隱層)、輸出層。輸出層各神經元負責接收來自外界的輸入信息,並傳給中間各隱層神經元;隱層是神經網路的內部信息處理層,負責信息變換。根據需要可設計為一層或多層;最後一個隱層將信息傳遞給輸出層神經元經進一步處理後向外界輸出信息處理結果。

而互連型網路結構中,任意兩個節點之間都可能存在連接路徑,因此可以根據網路中節點的連接程度將互連型網路細分為三種情況:全互連型、局部互連型和稀疏連接型
2 按照網路信息流向分類
從神經網路內部信息傳遞方向來看,可以分為兩種類型:前饋型網路和反饋型網路。
單純前饋網路的結構與分層網路結構相同,前饋是因網路信息處理的方向是從輸入層到各隱層再到輸出層逐層進行而得名的。前饋型網路中前一層的輸出是下一層的輸入,信息的處理具有逐層傳遞進行的方向性,一般不存在反饋環路。因此這類網路很容易串聯起來建立多層前饋網路。
反饋型網路的結構與單層全互連結構網路相同。在反饋型網路中的所有節點都具有信息處理功能,而且每個節點既可以從外界接受輸入,同時又可以向外界輸出。

『陸』 BP神經網路

神經網路能很好地解決不同的機器學習問題。神經網路模型是許多邏輯單元按照不同層級組織起來的網路,每一層的輸出變數都是下一層的輸入變數。

上圖顯示了人工神經網路是一個分層模型,邏輯上可以分為三層:

輸入層 :輸入層接收特徵向量 x

輸出層 :輸出層產出最終的預測 h

隱含層 :隱含層介於輸入層與輸出層之間,之所以稱之為隱含層,是因為當中產生的值並不像輸入層使用的樣本矩陣 X或者輸出層用到的標簽矩陣 y 那樣直接可見。

下面引入一些標記法來幫助描述模型:

!$ a^{(j)}_{i} $ 代表第j層的第i個激活單元。 !$ heta^{(j)} $ 代表從第 j 層映射到第 j+1 層時的權重的矩陣,例如 !$ heta^{(1)} $ 代表從第一層映射到第二層的權重的矩陣。其尺寸為:以第 j+1層的激活單元數量為行數,以第 j 層的激活單元數加一為列數的矩陣。例如:上圖所示的神經網路中 !$ heta^{(1)} $ 的尺寸為 3*4。

對於上圖所示的模型,激活單元和輸出分別表達為:

!$ a^{(2)}_{1} = g( heta^{(1)}_{10}x_0 + heta^{(1)}_{11}x_1 + heta^{(1)}_{12}x_2 + heta^{(1)}_{13}x_3 ) $

!$a^{(2)}_{2} = g( heta^{(1)}_{20}x_0 + heta^{(1)}_{21}x_1 + heta^{(1)}_{22}x_2 + heta^{(1)}_{23}x_3 ) $

!$a^{(2)}_{3} = g( heta^{(1)}_{30}x_0 + heta^{(1)}_{31}x_1 + heta^{(1)}_{32}x_2 + heta^{(1)}_{33}x_3 ) $

!$h_{ heta}{(x)} = g( heta^{(2)}_{10}a^{2}_{0} + heta^{(2)}_{11}a^{2}_{1} + heta^{(2)}_{12}a^{2}_{2} + heta^{(2)}_{13}a^{2}_{3} ) $

下面用向量化的方法以上面的神經網路為例,試著計算第二層的值:

對於多類分類問題來說:

我們可將神經網路的分類定義為兩種情況:二類分類和多類分類。

二類分類: !$ S_{L} = 0,y = 0,y = 1$

多類分類: !$ S_{L} = k, y_{i} = 1表示分到第i類;(k>2)$

在神經網路中,我們可以有很多輸出變數,我們的 !$h_{ heta}{(x)} $ 是一個維度為K的向量,並且我們訓練集中的因變數也是同樣維度的一個向量,因此我們的代價函數會比邏輯回歸更加復雜一些,為: !$ h_{ heta}{(x)} in R^{K}(h_{ heta}{(x)})_{i} = i^{th} output$

我們希望通過代價函數來觀察演算法預測的結果與真實情況的誤差有多大,唯一不同的是,對於每一行特徵,我們都會給出K個預測,基本上我們可以利用循環,對每一行特徵都預測K個不同結果,然後在利用循環在K個預測中選擇可能性最高的一個,將其與y中的實際數據進行比較。

正則化的那一項只是排除了每一層 !$ heta_0$ 後,每一層的 矩陣的和。最里層的循環j循環所有的行(由 +1 層的激活單元數決定),循環i則循環所有的列,由該層( !$ s_l$ 層)的激活單元數所決定。即: !$h_{ heta}{(x)}$ 與真實值之間的距離為每個樣本-每個類輸出的加和,對參數進行 regularization bias 項處理所有參數的平方和。

由於神經網路允許多個隱含層,即各層的神經元都會產出預測,因此,就不能直接利用傳統回歸問題的梯度下降法來最小化 !$J( heta)$ ,而需要逐層考慮預測誤差,並且逐層優化。為此,在多層神經網路中,使用反向傳播演算法(Backpropagation Algorithm)來優化預測,首先定義各層的預測誤差為向量 !$ δ^{(l)} $

訓練過程:

當我們對一個較為復雜的模型(例如神經網路)使用梯度下降演算法時,可能會存在一些不容易察覺的錯誤,意味著,雖然代價看上去在不斷減小,但最終的結果可能並不是最優解。

為了避免這樣的問題,我們採取一種叫做梯度的數值檢驗( Numerical Gradient Checking )方法。這種方法的思想是通過估計梯度值來檢驗我們計算的導數值是否真的是我們要求的。

對梯度的估計採用的方法是在代價函數上沿著切線的方向選擇離兩個非常近的點然後計算兩個點的平均值用以估計梯度。即對於某個特定的 ,我們計算出在 !$ heta - epsilon$ 處和 !$ heta + epsilon$ 的代價值(是一個非常小的值,通常選取 0.001),然後求兩個代價的平均,用以估計在 !$ heta$ 處的代價值。

當 !$ heta$ 是一個向量時,我們則需要對偏導數進行檢驗。因為代價函數的偏導數檢驗只針對一個參數的改變進行檢驗,下面是一個只針對 !$ heta_1$ 進行檢驗的示例:

如果上式成立,則證明網路中BP演算法有效,此時關閉梯度校驗演算法(因為梯度的近似計算效率很慢),繼續網路的訓練過程。

『柒』 神經網路:卷積神經網路(CNN)

神經網路 最早是由心理學家和神經學家提出的,旨在尋求開發和測試神經的計算模擬。

粗略地說, 神經網路 是一組連接的 輸入/輸出單元 ,其中每個連接都與一個 權 相關聯。在學習階段,通過調整權值,使得神經網路的預測准確性逐步提高。由於單元之間的連接,神經網路學習又稱 連接者學習。

神經網路是以模擬人腦神經元的數學模型為基礎而建立的,它由一系列神經元組成,單元之間彼此連接。從信息處理角度看,神經元可以看作是一個多輸入單輸出的信息處理單元,根據神經元的特性和功能,可以把神經元抽象成一個簡單的數學模型。

神經網路有三個要素: 拓撲結構、連接方式、學習規則

神經網路的拓撲結構 :神經網路的單元通常按照層次排列,根據網路的層次數,可以將神經網路分為單層神經網路、兩層神經網路、三層神經網路等。結構簡單的神經網路,在學習時收斂的速度快,但准確度低。

神經網路的層數和每層的單元數由問題的復雜程度而定。問題越復雜,神經網路的層數就越多。例如,兩層神經網路常用來解決線性問題,而多層網路就可以解決多元非線性問題

神經網路的連接 :包括層次之間的連接和每一層內部的連接,連接的強度用權來表示。

根據層次之間的連接方式,分為:

1)前饋式網路:連接是單向的,上層單元的輸出是下層單元的輸入,如反向傳播網路,Kohonen網路

2)反饋式網路:除了單項的連接外,還把最後一層單元的輸出作為第一層單元的輸入,如Hopfield網路

根據連接的范圍,分為:

1)全連接神經網路:每個單元和相鄰層上的所有單元相連

2)局部連接網路:每個單元只和相鄰層上的部分單元相連

神經網路的學習

根據學習方法分:

感知器:有監督的學習方法,訓練樣本的類別是已知的,並在學習的過程中指導模型的訓練

認知器:無監督的學習方法,訓練樣本類別未知,各單元通過競爭學習。

根據學習時間分:

離線網路:學習過程和使用過程是獨立的

在線網路:學習過程和使用過程是同時進行的

根據學習規則分:

相關學習網路:根據連接間的激活水平改變權系數

糾錯學習網路:根據輸出單元的外部反饋改變權系數

自組織學習網路:對輸入進行自適應地學習

摘自《數學之美》對人工神經網路的通俗理解:

神經網路種類很多,常用的有如下四種:

1)Hopfield網路,典型的反饋網路,結構單層,有相同的單元組成

2)反向傳播網路,前饋網路,結構多層,採用最小均方差的糾錯學習規則,常用於語言識別和分類等問題

3)Kohonen網路:典型的自組織網路,由輸入層和輸出層構成,全連接

4)ART網路:自組織網路

深度神經網路:

Convolutional Neural Networks(CNN)卷積神經網路

Recurrent neural Network(RNN)循環神經網路

Deep Belief Networks(DBN)深度信念網路

深度學習是指多層神經網路上運用各種機器學習演算法解決圖像,文本等各種問題的演算法集合。深度學習從大類上可以歸入神經網路,不過在具體實現上有許多變化。

深度學習的核心是特徵學習,旨在通過分層網路獲取分層次的特徵信息,從而解決以往需要人工設計特徵的重要難題。

Machine Learning vs. Deep Learning 

神經網路(主要是感知器)經常用於 分類

神經網路的分類知識體現在網路連接上,被隱式地存儲在連接的權值中。

神經網路的學習就是通過迭代演算法,對權值逐步修改的優化過程,學習的目標就是通過改變權值使訓練集的樣本都能被正確分類。

神經網路特別適用於下列情況的分類問題:

1) 數據量比較小,缺少足夠的樣本建立模型

2) 數據的結構難以用傳統的統計方法來描述

3) 分類模型難以表示為傳統的統計模型

缺點:

1) 需要很長的訓練時間,因而對於有足夠長訓練時間的應用更合適。

2) 需要大量的參數,這些通常主要靠經驗確定,如網路拓撲或「結構」。

3)  可解釋性差 。該特點使得神經網路在數據挖掘的初期並不看好。

優點:

1) 分類的准確度高

2)並行分布處理能力強

3)分布存儲及學習能力高

4)對噪音數據有很強的魯棒性和容錯能力

最流行的基於神經網路的分類演算法是80年代提出的 後向傳播演算法 。後向傳播演算法在多路前饋神經網路上學習。 

定義網路拓撲

在開始訓練之前,用戶必須說明輸入層的單元數、隱藏層數(如果多於一層)、每一隱藏層的單元數和輸出層的單元數,以確定網路拓撲。

對訓練樣本中每個屬性的值進行規格化將有助於加快學習過程。通常,對輸入值規格化,使得它們落入0.0和1.0之間。

離散值屬性可以重新編碼,使得每個域值一個輸入單元。例如,如果屬性A的定義域為(a0,a1,a2),則可以分配三個輸入單元表示A。即,我們可以用I0 ,I1 ,I2作為輸入單元。每個單元初始化為0。如果A = a0,則I0置為1;如果A = a1,I1置1;如此下去。

一個輸出單元可以用來表示兩個類(值1代表一個類,而值0代表另一個)。如果多於兩個類,則每個類使用一個輸出單元。

隱藏層單元數設多少個「最好」 ,沒有明確的規則。

網路設計是一個實驗過程,並可能影響准確性。權的初值也可能影響准確性。如果某個經過訓練的網路的准確率太低,則通常需要採用不同的網路拓撲或使用不同的初始權值,重復進行訓練。

後向傳播演算法學習過程:

迭代地處理一組訓練樣本,將每個樣本的網路預測與實際的類標號比較。

每次迭代後,修改權值,使得網路預測和實際類之間的均方差最小。

這種修改「後向」進行。即,由輸出層,經由每個隱藏層,到第一個隱藏層(因此稱作後向傳播)。盡管不能保證,一般地,權將最終收斂,學習過程停止。

演算法終止條件:訓練集中被正確分類的樣本達到一定的比例,或者權系數趨近穩定。

後向傳播演算法分為如下幾步:

1) 初始化權

網路的權通常被初始化為很小的隨機數(例如,范圍從-1.0到1.0,或從-0.5到0.5)。

每個單元都設有一個偏置(bias),偏置也被初始化為小隨機數。

2) 向前傳播輸入

對於每一個樣本X,重復下面兩步:

向前傳播輸入,向後傳播誤差

計算各層每個單元的輸入和輸出。輸入層:輸出=輸入=樣本X的屬性;即,對於單元j,Oj = Ij = Xj。隱藏層和輸出層:輸入=前一層的輸出的線性組合,即,對於單元j, Ij =wij Oi + θj,輸出=

3) 向後傳播誤差

計算各層每個單元的誤差。

輸出層單元j,誤差:

Oj是單元j的實際輸出,而Tj是j的真正輸出。

隱藏層單元j,誤差:

wjk是由j到下一層中單元k的連接的權,Errk是單元k的誤差

更新 權 和 偏差 ,以反映傳播的誤差。

權由下式更新:

 其中,△wij是權wij的改變。l是學習率,通常取0和1之間的值。

 偏置由下式更新:

  其中,△θj是偏置θj的改變。

Example

人類視覺原理:

深度學習的許多研究成果,離不開對大腦認知原理的研究,尤其是視覺原理的研究。1981 年的諾貝爾醫學獎,頒發給了 David Hubel(出生於加拿大的美國神經生物學家) 和Torsten Wiesel,以及Roger Sperry。前兩位的主要貢獻,是「發現了視覺系統的信息處理」, 可視皮層是分級的 。

人類的視覺原理如下:從原始信號攝入開始(瞳孔攝入像素Pixels),接著做初步處理(大腦皮層某些細胞發現邊緣和方向),然後抽象(大腦判定,眼前的物體的形狀,是圓形的),然後進一步抽象(大腦進一步判定該物體是只氣球)。

對於不同的物體,人類視覺也是通過這樣逐層分級,來進行認知的:

在最底層特徵基本上是類似的,就是各種邊緣,越往上,越能提取出此類物體的一些特徵(輪子、眼睛、軀乾等),到最上層,不同的高級特徵最終組合成相應的圖像,從而能夠讓人類准確的區分不同的物體。

可以很自然的想到:可以不可以模仿人類大腦的這個特點,構造多層的神經網路,較低層的識別初級的圖像特徵,若干底層特徵組成更上一層特徵,最終通過多個層級的組合,最終在頂層做出分類呢?答案是肯定的,這也是許多深度學習演算法(包括CNN)的靈感來源。

卷積神經網路是一種多層神經網路,擅長處理圖像特別是大圖像的相關機器學習問題。卷積網路通過一系列方法,成功將數據量龐大的圖像識別問題不斷降維,最終使其能夠被訓練。

CNN最早由Yann LeCun提出並應用在手寫字體識別上。LeCun提出的網路稱為LeNet,其網路結構如下:

這是一個最典型的卷積網路,由 卷積層、池化層、全連接層 組成。其中卷積層與池化層配合,組成多個卷積組,逐層提取特徵,最終通過若干個全連接層完成分類。

CNN通過卷積來模擬特徵區分,並且通過卷積的權值共享及池化,來降低網路參數的數量級,最後通過傳統神經網路完成分類等任務。

降低參數量級:如果使用傳統神經網路方式,對一張圖片進行分類,那麼,把圖片的每個像素都連接到隱藏層節點上,對於一張1000x1000像素的圖片,如果有1M隱藏層單元,一共有10^12個參數,這顯然是不能接受的。

但是在CNN里,可以大大減少參數個數,基於以下兩個假設:

1)最底層特徵都是局部性的,也就是說,用10x10這樣大小的過濾器就能表示邊緣等底層特徵

2)圖像上不同小片段,以及不同圖像上的小片段的特徵是類似的,也就是說,能用同樣的一組分類器來描述各種各樣不同的圖像

基於以上兩個假設,就能把第一層網路結構簡化

用100個10x10的小過濾器,就能夠描述整幅圖片上的底層特徵。

卷積運算的定義如下圖所示:

如上圖所示,一個5x5的圖像,用一個3x3的 卷積核 :

   101

   010

   101

來對圖像進行卷積操作(可以理解為有一個滑動窗口,把卷積核與對應的圖像像素做乘積然後求和),得到了3x3的卷積結果。

這個過程可以理解為使用一個過濾器(卷積核)來過濾圖像的各個小區域,從而得到這些小區域的特徵值。在實際訓練過程中, 卷積核的值是在學習過程中學到的。

在具體應用中,往往有多個卷積核,可以認為, 每個卷積核代表了一種圖像模式 ,如果某個圖像塊與此卷積核卷積出的值大,則認為此圖像塊十分接近於此卷積核。如果設計了6個卷積核,可以理解為這個圖像上有6種底層紋理模式,也就是用6種基礎模式就能描繪出一副圖像。以下就是24種不同的卷積核的示例:

池化 的過程如下圖所示:

可以看到,原始圖片是20x20的,對其進行采樣,采樣窗口為10x10,最終將其采樣成為一個2x2大小的特徵圖。

之所以這么做,是因為即使做完了卷積,圖像仍然很大(因為卷積核比較小),所以為了降低數據維度,就進行采樣。

即使減少了許多數據,特徵的統計屬性仍能夠描述圖像,而且由於降低了數據維度,有效地避免了過擬合。

在實際應用中,分為最大值采樣(Max-Pooling)與平均值采樣(Mean-Pooling)。

LeNet網路結構:

注意,上圖中S2與C3的連接方式並不是全連接,而是部分連接。最後,通過全連接層C5、F6得到10個輸出,對應10個數字的概率。

卷積神經網路的訓練過程與傳統神經網路類似,也是參照了反向傳播演算法

第一階段,向前傳播階段:

a)從樣本集中取一個樣本(X,Yp),將X輸入網路;

b)計算相應的實際輸出Op

第二階段,向後傳播階段

a)計算實際輸出Op與相應的理想輸出Yp的差;

b)按極小化誤差的方法反向傳播調整權矩陣。

『捌』 關於MATLAB神經網路中的 時間延遲和時間不長的疑問

是步長吧?
時間延遲:所謂時間延遲,是指信號由發射到接收的時間差或指目標信號傳播到接收陣列中各個不同感測器的時間差。利用感測器接收信號的時間差也就是時間差遲來計算聲源的位置或者一些其他的量。

如果是步長的話:那麼簡單說就是每一次計時量長度。把1分鍾分60份步長是1秒,分30份步長是2秒。

『玖』 循環神經網路

花書中關於RNN的內容記錄於 https://www.jianshu.com/p/206090600f13 。

在前饋神經網路中,信息的傳遞是單向的,這種限制雖然使得網路變得更容易學習,但在一定程度上也減弱了神經網路模型的能力。在生物神經網路中,神經元之間的連接關系要復雜的多。 前饋神經網路可以看作是一個復雜的函數,每次輸入都是獨立的,即網路的輸出只依賴於當前的輸入。但是在很多現實任務中,網路的輸入不僅和當前時刻的輸入相關,也和其過去一段時間的輸出相關 。因此,前饋網路難以處理時序數據,比如視頻、語音、文本等。時序數據的長度一般是不固定的,而前饋神經網路要求輸入和輸出的維數都是固定的,不能任意改變。因此,當處理這一類和時序相關的問題時,就需要一種能力更強的模型。

循環神經網路(Recurrent Neural Network,RNN)是一類具有短期記憶能力的神經網路。在循環神經網路中,神經元不但可以接受其它神經元的信息,也可以接受自身的信息,形成具有環路的網路結構。 和前饋神經網路相比,循環神經網路更加符合生物神經網路的結構。循環神經網路已經被廣泛應用在語音識別、語言模型以及自然語言生成等任務上。循環神經網路的參數學習可以通過 隨時間反向傳播演算法 來學習。

為了處理這些時序數據並利用其歷史信息,我們需要讓網路具有短期記憶能力。而前饋網路是一個靜態網路,不具備這種記憶能力。

一種簡單的利用歷史信息的方法是建立一個額外的延時單元,用來存儲網路的歷史信息(可以包括輸入、輸出、隱狀態等)。比較有代表性的模型是延時神經網路。

延時神經網路是在前饋網路中的非輸出層都添加一個延時器,記錄最近幾次神經元的輸出。在第 個時刻,第 層神經元和第 層神經元的最近 次輸出相關,即:

延時神經網路在時間維度上共享權值,以降低參數數量。因此對於序列輸入來講,延時神經網路就相當於卷積神經網路

自回歸模型(Autoregressive Model,AR) 是統計學上常用的一類時間序列模型,用一個變數 的歷史信息來預測自己:

其中 為超參數, 為參數, 為第 個時刻的雜訊,方差 和時間無關。

有外部輸入的非線性自回歸模型(Nonlinear Autoregressive with ExogenousInputs Model,NARX) 是自回歸模型的擴展,在每個時刻 都有一個外部輸入 ,產生一個輸出 。NARX通過一個延時器記錄最近幾次的外部輸入和輸出,第 個時刻的輸出 為:

其中 表示非線性函數,可以是一個前饋網路, 和 為超參數。

循環神經網路通過使用帶自反饋的神經元,能夠處理任意長度的時序數據。

給定一個輸入序列 ,循環神經網路通過下面
公式更新帶反饋邊的隱藏層的活性值 :

其中 , 為一個非線性函數,也可以是一個前饋網路。

從數學上講,上式可以看成一個動力系統。動力系統(Dynamical System)是一個數學上的概念,指 系統狀態按照一定的規律隨時間變化的系統 。具體地講,動力系統是使用一個函數來描述一個給定空間(如某個物理系統的狀態空間)中所有點隨時間的變化情況。因此, 隱藏層的活性值 在很多文獻上也稱為狀態(State)或隱狀態(Hidden States) 。理論上,循環神經網路可以近似任意的非線性動力系統。

簡單循環網路(Simple Recurrent Network,SRN)是一個非常簡單的循環神經網路,只有一個隱藏層的神經網路。

在一個兩層的前饋神經網路中,連接存在相鄰的層與層之間,隱藏層的節點之間是無連接的。而 簡單循環網路增加了從隱藏層到隱藏層的反饋連接

假設在時刻 時,網路的輸入為 ,隱藏層狀態(即隱藏層神經元活性值) 不僅和當前時刻的輸入 相關,也和上一個時刻的隱藏層狀態 相關:

其中 為隱藏層的凈輸入, 是非線性激活函數,通常為Logistic函數或Tanh函數, 為狀態-狀態權重矩陣, 為狀態-輸入權重矩陣, 為偏置。上面兩式也經常直接寫為:

如果我們把每個時刻的狀態都看作是前饋神經網路的一層的話,循環神經網路可以看作是在時間維度上權值共享的神經網路 。下圖給出了按時間展開的循環神經網路。

由於循環神經網路具有短期記憶能力,相當於存儲裝置,因此其計算能力十分強大。 前饋神經網路可以模擬任何連續函數,而循環神經網路可以模擬任何程序。

定義一個完全連接的循環神經網路,其輸入為 ,輸出為 :

其中 為隱狀態, 為非線性激活函數, 和 為網路參數。

這樣一個完全連接的循環神經網路可以近似解決所有的可計算問題

循環神經網路可以應用到很多不同類型的機器學習任務。根據這些任務的特點可以分為以下幾種模式: 序列到類別模式、同步的序列到序列模式、非同步的序列到序列模式

序列到類別模式主要用於序列數據的分類問題:輸入為序列,輸出為類別。比如在文本分類中,輸入數據為單詞的序列,輸出為該文本的類別。

假設一個樣本 為一個長度為 的序列,輸出為一個類別 。我們可以將樣本 按不同時刻輸入到循環神經網路中,並得到不同時刻的隱藏狀態 。我們可以將 看作整個序列的最終表示(或特徵),並輸入給分類器 進行分類:

其中 可以是簡單的線性分類器(比如Logistic 回歸)或復雜的分類器(比如多層前饋神經網路)

除了將最後時刻的狀態作為序列表示之外,我們還可以對整個序列的所有狀態進行平均,並用這個平均狀態來作為整個序列的表示:

同步的序列到序列模式 主要用於序列標注(Sequence Labeling)任務,即每一時刻都有輸入和輸出,輸入序列和輸出序列的長度相同 。比如詞性標注(Partof-Speech Tagging)中,每一個單詞都需要標注其對應的詞性標簽。

輸入為序列 ,輸出為序列 。樣本 按不同時刻輸入到循環神經網路中,並得到不同時刻的隱狀態 。每個時刻的隱狀態 代表當前和歷史的信息,並輸入給分類器 得到當前時刻的標簽 。

非同步的序列到序列模式也稱為 編碼器-解碼器(Encoder-Decoder)模型,即輸入序列和輸出序列不需要有嚴格的對應關系,也不需要保持相同的長度。 比如在機器翻譯中,輸入為源語言的單詞序列,輸出為目標語言的單詞序列。

在非同步的序列到序列模式中,輸入為長度為 的序列 ,輸出為長度為 的序列 。經常通過 先編碼後解碼 的方式來實現。先將樣本 按不同時刻輸入到一個循環神經網路(編碼器)中,並得到其編碼 。然後再使用另一個循環神經網路(解碼器)中,得到輸出序列 。為了建立輸出序列之間的依賴關系,在解碼器中通常使用非線性的自回歸模型。

其中 分別為用作編碼器和解碼器的循環神經網路, 為分類器, 為預測輸出 的向量表示。

循環神經網路的參數可以通過梯度下降方法來進行學習。給定一個訓練樣本 ,其中 為長度是 的輸入序列, 是長度為 的標簽序列。即在每個時刻 ,都有一個監督信息 ,我們定義時刻 的損失函數為:

其中 為第 時刻的輸出, 為可微分的損失函數,比如交叉熵。那麼整個序列上損失函數為:

整個序列的損失函數 關於參數 的梯度為:

即每個時刻損失 對參數 的偏導數之和。

循環神經網路中存在一個遞歸調用的函數 ,因此其計算參數梯度的方式和前饋神經網路不太相同。在循環神經網路中主要有兩種計算梯度的方式: 隨時間反向傳播(BPTT)和實時循環學習(RTRL)演算法。

隨時間反向傳播(Backpropagation Through Time,BPTT) 演算法的主要思想是通過類似前饋神經網路的錯誤反向傳播演算法來進行計算梯度。

BPTT演算法將循環神經網路看作是一個展開的多層前饋網路,其中「每一層」對應循環網路中的「每個時刻」。在「展開」的前饋網路中,所有層的參數是共享的,因此參數的真實梯度是將所有「展開層」的參數梯度之和

因為參數 和隱藏層在每個時刻 的凈輸入 有關,因此第 時刻的損失函數 關於參數 的梯度為:

其中 表示「直接」偏導數,即公式 中保持 不變,對 求偏導數,得到:

其中 為第 時刻隱狀態的第 維; 除了第 個值為 外,其餘都為 的行向量。

定義誤差項 為第 時刻的損失對第 時刻隱藏神經層的凈輸入 的導數,則:

從而:

寫成矩陣形式為:

由此得到整個序列的損失函數 關於參數 的梯度:

同理可得, 關於權重 和偏置 的梯度為:

在BPTT演算法中,參數的梯度需要在一個完整的「前向」計算和「反向」計算後才能得到並進行參數更新。如下圖所示。

與反向傳播的BPTT演算法不同的是,實時循環學習(Real-Time Recurrent Learning)是通過前向傳播的方式來計算梯度。

假設循環神經網路中第 時刻的狀態 為:

其關於參數 的偏導數為:

RTRL演算法從第1 個時刻開始,除了計算循環神經網路的隱狀態之外,還依次前向計算偏導數 。

兩種學習演算法比較:

RTRL演算法和BPTT演算法都是基於梯度下降的演算法,分別通過前向模式和反向模式應用鏈式法則來計算梯度。 在循環神經網路中,一般網路輸出維度遠低於輸入維度,因此BPTT演算法的計算量會更小,但BPTT演算法需要保存所有時刻的中間梯度,空間復雜度較高。RTRL演算法不需要梯度回傳,因此非常適合於需要在線學習或無限序列的任務中

循環神經網路在學習過程中的主要問題是由於 梯度消失或爆炸問題 ,很難建模長時間間隔(Long Range)的狀態之間的依賴關系。

在BPTT演算法中,我們有:

如果定義 ,則:

若 ,當 時, ,會造成系統不穩定,稱為梯度爆炸問題;相反,若 ,當 時, ,會出現和深度前饋神經網路類似的梯度消失問題。

雖然簡單循環網路理論上可以建立長時間間隔的狀態之間的依賴關系,但是由於梯度爆炸或消失問題,實際上只能學習到短期的依賴關系。這樣,如果t時刻的輸出 依賴於 時刻的輸入 ,當間隔 比較大時,簡單神經網路很難建模這種長距離的依賴關系,稱為 長程依賴問題(Long-Term dependencies Problem)

一般而言,循環網路的梯度爆炸問題比較容易解決,一般 通過權重衰減或梯度截斷來避免。 權重衰減是通過給參數增加 或 范數的正則化項來限制參數的取值范圍,從而使得 。梯度截斷是另一種有效的啟發式方法,當梯度的模大於一定閾值時,就將它截斷成為一個較小的數。

梯度消失是循環網路的主要問題。除了使用一些優化技巧外,更有效的方式就是改變模型,比如讓 ,同時使用 ,即:

其中 是一個非線性函數, 為參數。

上式中, 和 之間為線性依賴關系,且權重系數為1,這樣就不存在梯度爆炸或消失問題。但是,這種改變也丟失了神經元在反饋邊上的非線性激活的性質,因此也降低了模型的表示能力。

為了避免這個缺點,我們可以採用一種更加有效的改進策略:

這樣 和 之間為既有線性關系,也有非線性關系,並且可以緩解梯度消失問題。但這種改進依然存在兩個問題:

為了解決這兩個問題,可以通過引入 門控機制 來進一步改進模型。

為了改善循環神經網路的長程依賴問題,一種非常好的解決方案是引入門控機制來控制信息的累積速度,包括 有選擇地加入新的信息,並有選擇地遺忘之前累積的信息 。這一類網路可以稱為基於門控的循環神經網路(Gated RNN)。本節中,主要介紹兩種基於門控的循環神經網路: 長短期記憶網路和門控循環單元網路。

長短期記憶(Long Short-Term Memory,LSTM)網路 是循環神經網路的一個變體,可以有效地解決簡單循環神經網路的梯度爆炸或消失問題。

在 基礎上,LSTM網路主要改進在以下兩個方面:

其中 和 三個門(gate)來控制信息傳遞的路徑; 為向量元素乘積; 為上一時刻的記憶單元; 是通過非線性函數得到的候選狀態:

在每個時刻 ,LSTM網路的內部狀態 記錄了到當前時刻為止的歷史信息。

在數字電路中,門(Gate)為一個二值變數{0, 1},0代表關閉狀態,不許任何信息通過;1代表開放狀態,允許所有信息通過。LSTM網路中的「門」是一種「軟」門,取值在(0, 1) 之間,表示 以一定的比例運行信息通過 。LSTM網路中三個門的作用為:

(1)遺忘門 控制上一個時刻的內部狀態 需要遺忘多少信息。
(2)輸入門 控制當前時刻的候選狀態 有多少信息需要保存。
(3)輸出門

『拾』 神經網路模型-27種神經網路模型們的簡介

​ 

【1】Perceptron(P) 感知機

【1】感知機 

感知機是我們知道的最簡單和最古老的神經元模型,它接收一些輸入,然後把它們加總,通過激活函數並傳遞到輸出層。

【2】Feed Forward(FF)前饋神經網路

 【2】前饋神經網路

前饋神經網路(FF),這也是一個很古老的方法——這種方法起源於50年代。它的工作原理通常遵循以下規則:

1.所有節點都完全連接

2.激活從輸入層流向輸出,無回環

3.輸入和輸出之間有一層(隱含層)

在大多數情況下,這種類型的網路使用反向傳播方法進行訓練。

【3】Radial Basis Network(RBF) RBF神經網路

 【3】RBF神經網路

RBF 神經網路實際上是 激活函數是徑向基函數 而非邏輯函數的FF前饋神經網路(FF)。兩者之間有什麼區別呢?

邏輯函數--- 將某個任意值映射到[0 ,... 1]范圍內來,回答「是或否」問題。適用於分類決策系統,但不適用於連續變數。

相反, 徑向基函數--- 能顯示「我們距離目標有多遠」。 這完美適用於函數逼近和機器控制(例如作為PID控制器的替代)。

簡而言之,RBF神經網路其實就是, 具有不同激活函數和應用方向的前饋網路 。

【4】Deep Feed Forword(DFF)深度前饋神經網路

【4】DFF深度前饋神經網路 

DFF深度前饋神經網路在90年代初期開啟了深度學習的潘多拉盒子。 這些依然是前饋神經網路,但有不止一個隱含層 。那麼,它到底有什麼特殊性?

在訓練傳統的前饋神經網路時,我們只向上一層傳遞了少量的誤差信息。由於堆疊更多的層次導致訓練時間的指數增長,使得深度前饋神經網路非常不實用。 直到00年代初,我們開發了一系列有效的訓練深度前饋神經網路的方法; 現在它們構成了現代機器學習系統的核心 ,能實現前饋神經網路的功能,但效果遠高於此。

【5】Recurrent Neural Network(RNN) 遞歸神經網路

【5】RNN遞歸神經網路 

RNN遞歸神經網路引入不同類型的神經元——遞歸神經元。這種類型的第一個網路被稱為約旦網路(Jordan Network),在網路中每個隱含神經元會收到它自己的在固定延遲(一次或多次迭代)後的輸出。除此之外,它與普通的模糊神經網路非常相似。

當然,它有許多變化 — 如傳遞狀態到輸入節點,可變延遲等,但主要思想保持不變。這種類型的神經網路主要被使用在上下文很重要的時候——即過去的迭代結果和樣本產生的決策會對當前產生影響。最常見的上下文的例子是文本——一個單詞只能在前面的單詞或句子的上下文中進行分析。

【6】Long/Short Term Memory (LSTM) 長短時記憶網路

【6】LSTM長短時記憶網路 

LSTM長短時記憶網路引入了一個存儲單元,一個特殊的單元,當數據有時間間隔(或滯後)時可以處理數據。遞歸神經網路可以通過「記住」前十個詞來處理文本,LSTM長短時記憶網路可以通過「記住」許多幀之前發生的事情處理視頻幀。 LSTM網路也廣泛用於寫作和語音識別。

存儲單元實際上由一些元素組成,稱為門,它們是遞歸性的,並控制信息如何被記住和遺忘。

【7】Gated Recurrent Unit (GRU)

 【7】GRU是具有不同門的LSTM

GRU是具有不同門的LSTM。

聽起來很簡單,但缺少輸出門可以更容易基於具體輸入重復多次相同的輸出,目前此模型在聲音(音樂)和語音合成中使用得最多。

實際上的組合雖然有點不同:但是所有的LSTM門都被組合成所謂的更新門(Update Gate),並且復位門(Reset Gate)與輸入密切相關。

它們比LSTM消耗資源少,但幾乎有相同的效果。

【8】Auto Encoder (AE) 自動編碼器

 【8】AE自動編碼器

Autoencoders自動編碼器用於分類,聚類和特徵壓縮。

當您訓練前饋(FF)神經網路進行分類時,您主要必須在Y類別中提供X個示例,並且期望Y個輸出單元格中的一個被激活。 這被稱為「監督學習」。

另一方面,自動編碼器可以在沒有監督的情況下進行訓練。它們的結構 - 當隱藏單元數量小於輸入單元數量(並且輸出單元數量等於輸入單元數)時,並且當自動編碼器被訓練時輸出盡可能接近輸入的方式,強制自動編碼器泛化數據並搜索常見模式。

【9】Variational AE (VAE)  變分自編碼器

 【9】VAE變分自編碼器

變分自編碼器,與一般自編碼器相比,它壓縮的是概率,而不是特徵。

盡管如此簡單的改變,但是一般自編碼器只能回答當「我們如何歸納數據?」的問題時,變分自編碼器回答了「兩件事情之間的聯系有多強大?我們應該在兩件事情之間分配誤差還是它們完全獨立的?」的問題。

【10】Denoising AE (DAE) 降噪自動編碼器

 【10】DAE降噪自動編碼器

雖然自動編碼器很酷,但它們有時找不到最魯棒的特徵,而只是適應輸入數據(實際上是過擬合的一個例子)。

降噪自動編碼器(DAE)在輸入單元上增加了一些雜訊 - 通過隨機位來改變數據,隨機切換輸入中的位,等等。通過這樣做,一個強制降噪自動編碼器從一個有點嘈雜的輸入重構輸出,使其更加通用,強制選擇更常見的特徵。

【11】Sparse AE (SAE) 稀疏自編碼器

【11】SAE稀疏自編碼器 

稀疏自編碼器(SAE)是另外一個有時候可以抽離出數據中一些隱藏分組樣試的自動編碼的形式。結構和AE是一樣的,但隱藏單元的數量大於輸入或輸出單元的數量。

【12】Markov Chain (MC) 馬爾科夫鏈

 【12】Markov Chain (MC) 馬爾科夫鏈

馬爾可夫鏈(Markov Chain, MC)是一個比較老的圖表概念了,它的每一個端點都存在一種可能性。過去,我們用它來搭建像「在單詞hello之後有0.0053%的概率會出現dear,有0.03551%的概率出現you」這樣的文本結構。

這些馬爾科夫鏈並不是典型的神經網路,它可以被用作基於概率的分類(像貝葉斯過濾),用於聚類(對某些類別而言),也被用作有限狀態機。

【13】Hopfield Network (HN) 霍普菲爾網路

【13】HN霍普菲爾網路 

霍普菲爾網路(HN)對一套有限的樣本進行訓練,所以它們用相同的樣本對已知樣本作出反應。

在訓練前,每一個樣本都作為輸入樣本,在訓練之中作為隱藏樣本,使用過之後被用作輸出樣本。

在HN試著重構受訓樣本的時候,他們可以用於給輸入值降噪和修復輸入。如果給出一半圖片或數列用來學習,它們可以反饋全部樣本。

【14】Boltzmann Machine (BM) 波爾滋曼機

【14】 BM 波爾滋曼機 

波爾滋曼機(BM)和HN非常相像,有些單元被標記為輸入同時也是隱藏單元。在隱藏單元更新其狀態時,輸入單元就變成了輸出單元。(在訓練時,BM和HN一個一個的更新單元,而非並行)。

這是第一個成功保留模擬退火方法的網路拓撲。

多層疊的波爾滋曼機可以用於所謂的深度信念網路,深度信念網路可以用作特徵檢測和抽取。

【15】Restricted BM (RBM) 限制型波爾滋曼機

【15】 RBM 限制型波爾滋曼機 

在結構上,限制型波爾滋曼機(RBM)和BM很相似,但由於受限RBM被允許像FF一樣用反向傳播來訓練(唯一的不同的是在反向傳播經過數據之前RBM會經過一次輸入層)。

【16】Deep Belief Network (DBN) 深度信念網路

【16】DBN 深度信念網路 

像之前提到的那樣,深度信念網路(DBN)實際上是許多波爾滋曼機(被VAE包圍)。他們能被連在一起(在一個神經網路訓練另一個的時候),並且可以用已經學習過的樣式來生成數據。

【17】Deep Convolutional Network (DCN) 深度卷積網路

【17】 DCN 深度卷積網路

當今,深度卷積網路(DCN)是人工神經網路之星。它具有卷積單元(或者池化層)和內核,每一種都用以不同目的。

卷積核事實上用來處理輸入的數據,池化層是用來簡化它們(大多數情況是用非線性方程,比如max),來減少不必要的特徵。

他們通常被用來做圖像識別,它們在圖片的一小部分上運行(大約20x20像素)。輸入窗口一個像素一個像素的沿著圖像滑動。然後數據流向卷積層,卷積層形成一個漏斗(壓縮被識別的特徵)。從圖像識別來講,第一層識別梯度,第二層識別線,第三層識別形狀,以此類推,直到特定的物體那一級。DFF通常被接在卷積層的末端方便未來的數據處理。

【18】Deconvolutional Network (DN) 去卷積網路

 【18】 DN 去卷積網路

去卷積網路(DN)是將DCN顛倒過來。DN能在獲取貓的圖片之後生成像(狗:0,蜥蜴:0,馬:0,貓:1)一樣的向量。DNC能在得到這個向量之後,能畫出一隻貓。

【19】Deep Convolutional Inverse Graphics Network (DCIGN) 深度卷積反轉圖像網路

【19】 DCIGN 深度卷積反轉圖像網路

深度卷積反轉圖像網路(DCIGN),長得像DCN和DN粘在一起,但也不完全是這樣。

事實上,它是一個自動編碼器,DCN和DN並不是作為兩個分開的網路,而是承載網路輸入和輸出的間隔區。大多數這種神經網路可以被用作圖像處理,並且可以處理他們以前沒有被訓練過的圖像。由於其抽象化的水平很高,這些網路可以用於將某個事物從一張圖片中移除,重畫,或者像大名鼎鼎的CycleGAN一樣將一匹馬換成一個斑馬。

【20】Generative Adversarial Network (GAN) 生成對抗網路

 【20】 GAN 生成對抗網路

生成對抗網路(GAN)代表了有生成器和分辨器組成的雙網路大家族。它們一直在相互傷害——生成器試著生成一些數據,而分辨器接收樣本數據後試著分辨出哪些是樣本,哪些是生成的。只要你能夠保持兩種神經網路訓練之間的平衡,在不斷的進化中,這種神經網路可以生成實際圖像。

【21】Liquid State Machine (LSM) 液體狀態機

 【21】 LSM 液體狀態機

液體狀態機(LSM)是一種稀疏的,激活函數被閾值代替了的(並不是全部相連的)神經網路。只有達到閾值的時候,單元格從連續的樣本和釋放出來的輸出中積累價值信息,並再次將內部的副本設為零。

這種想法來自於人腦,這些神經網路被廣泛的應用於計算機視覺,語音識別系統,但目前還沒有重大突破。

【22】Extreme  Learning Machine (ELM) 極端學習機

【22】ELM 極端學習機 

極端學習機(ELM)是通過產生稀疏的隨機連接的隱藏層來減少FF網路背後的復雜性。它們需要用到更少計算機的能量,實際的效率很大程度上取決於任務和數據。

【23】Echo State Network (ESN) 回聲狀態網路

【23】 ESN 回聲狀態網路

回聲狀態網路(ESN)是重復網路的細分種類。數據會經過輸入端,如果被監測到進行了多次迭代(請允許重復網路的特徵亂入一下),只有在隱藏層之間的權重會在此之後更新。

據我所知,除了多個理論基準之外,我不知道這種類型的有什麼實際應用。。。。。。。

【24】Deep Resial Network (DRN) 深度殘差網路

​【24】 DRN 深度殘差網路 

深度殘差網路(DRN)是有些輸入值的部分會傳遞到下一層。這一特點可以讓它可以做到很深的層級(達到300層),但事實上它們是一種沒有明確延時的RNN。

【25】Kohonen Network (KN) Kohonen神經網路

​ 【25】 Kohonen神經網路

Kohonen神經網路(KN)引入了「單元格距離」的特徵。大多數情況下用於分類,這種網路試著調整它們的單元格使其對某種特定的輸入作出最可能的反應。當一些單元格更新了, 離他們最近的單元格也會更新。

像SVM一樣,這些網路總被認為不是「真正」的神經網路。

【26】Support Vector Machine (SVM)

​【26】 SVM 支持向量機 

支持向量機(SVM)用於二元分類工作,無論這個網路處理多少維度或輸入,結果都會是「是」或「否」。

SVM不是所有情況下都被叫做神經網路。

【27】Neural Turing Machine (NTM) 神經圖靈機

​【27】NTM 神經圖靈機 

神經網路像是黑箱——我們可以訓練它們,得到結果,增強它們,但實際的決定路徑大多數我們都是不可見的。

神經圖靈機(NTM)就是在嘗試解決這個問題——它是一個提取出記憶單元之後的FF。一些作者也說它是一個抽象版的LSTM。

記憶是被內容編址的,這個網路可以基於現狀讀取記憶,編寫記憶,也代表了圖靈完備神經網路。