『壹』 計算機網路7層分別是那7層
物理層,數據鏈路層,網路層,傳輸層,會話層,表示層,應用層
『貳』 帶你弄懂計算機網路的數據鏈路層(經典)
差錯是不可避免的。而且不同的傳輸介質的差錯程度也是不同的。鏈路層的任務就是分析差錯產生的原因,檢查差錯,然後糾正差錯。 下面的圖展示了差錯的來源
當數據信號從發送端發送到物理線路時,由於物理線路存在雜訊,因此數據信號經過物理線路的雜訊,到達接收端時,已經是數據+雜訊的疊加。這就是差錯的來源。
滑動窗口機制?
『叄』 計算機網路技術:TCP/IP體系結構將網路分為哪幾層TCP/IP體系結構與OSI模型的對應關系是
計算機網路技術:TCP/IP體系結構將網路分為應用層,表示層,會話層,傳輸層,網路層,數據鏈路層,物理層。
TCP/IP體系結構與OSI模型的對應關系是:osi的上三層對應tcp的應用層,傳輸層與網路層是一一對應的。
應用層、表示層、會話層三個層次提供的服務相差不是很大,所以在TCP/IP協議中,它們被合並為應用層一個層次。由於運輸層和網路層在網路協議中的地位十分重要,所以在TCP/IP協議中它們被作為獨立的兩個層次。
(3)計算機網路數據鏈路層圖解擴展閱讀:
對不同種類的應用程序它們會根據自己的需要來使用應用層的不同協議,郵件傳輸應用使用了SMTP協議、萬維網應用使用了HTTP協議、遠程登錄服務應用使用了有TELNET協議。
在TCP/IP協議中,網路介面層位於第四層。由於網路介面層兼並了物理層和數據鏈路層所以,網路介面層既是傳輸數據的物理媒介,也可以為網路層提供一條准確無誤的線路。
『肆』 詳解圖解計算機網路177 個名詞
大家好,我是偉哥。上篇《60 張圖詳解 98 個常見的網路概念》有一段時間了,現在重新匯總整理,把最近提到的網路名詞也加上。同時為了方便閱讀,增加了大量的配圖,讓網路小白也能輕松理解。考慮到 177 個網路名詞加上 123 張圖,文章的篇幅就很長了,有必要分類整理下,於是按照網路分層結構,加上分層的擴展內容,把所有名詞分成了 15 個小類,方便查閱。
1、 電路交換 :在通信開始前,通信雙方要在網路上建立專屬信道來發送數據,信道至少會持續到通信結束才會斷開。
2、 包交換 :又叫做分組交換,是將數據分為多個消息塊(即數據包),再通過網路對每個數據塊進行單獨傳輸選路。
3、 網路協議 :為在網路中傳輸數據而對數據定義的一系列標准或規則。
4、 協議棧 :網路協議的具體定義或具體實現。
5、 萬維網 ( WWW ):可以通過 URL 地址進行定義、通過 HTTP/HTTPS 協議建立連接、通過互聯網進行訪問的網頁資源空間。
6、 區域網 ( LAN ):在一個有限區域內實現終端設備互聯的網路。
7、 城域網 ( MAN ):規模大於區域網,覆蓋區域小到一個方圓數千米的大型園區,大到一個城市圈的網路。
8、 廣域網 ( WAN ):跨越大范圍地理區域建立連接的網路。
9、 互聯網 ( Internet ):通過各種互聯網協議為全世界成千上萬的設備建立互聯的全球計算機網路系統。
10、 物聯網 ( IoT ):通過內置電子晶元的方式,將各種物理設備連接到網路中,實現多元設備間信息交互的網路。
11、 雲計算 ( Cloud Computing ):通過互聯網為計算機和其它設備提供處理資源共享的網路。
12、 大數據 ( Big Data ):通過匯總的計算資源對龐大的數據量進行分析,得出更加准確的預測結論,並用來指導實踐。
13、 SDN :指控制平面和數據平面分離,並通過提升網路編程能能力,使網路管理方式更優。
14、 數據平面/轉發平面 :指網路設備中與判斷如何轉發數據和執行數據轉發相關的部分。
15、 控制平面 :指網路設備中與控制設備完成轉發工作的相關部分。
1、 操作系統 :一種安裝在智能設備上,為操作智能設備消除硬體差異,並為程序提供可移植性的軟體平台。
2、 圖形用戶界面 ( GUI ):指用戶在大部分情況下可以通過點擊圖標等可視化圖形來完成設備操作的軟體界面。
3、 命令行界面 ( CLI ):指用戶需要通過輸入文本命令來完成設備操作的軟體界面。
4、 RAM :隨機存取存儲器的簡稱,也叫做內存。安裝在數通設備上與安裝在計算機中的作用相同,即用於存儲臨時文件,斷電內容消失。
5、 Flash :安裝在數通設備上,與計算機硬碟的功能類似,用來存放包括操作系統在內的大量文件。
6、 NVRAM :非易失隨機存取存儲器的簡稱。用來保存數通設備的啟動配置文件,斷電不會消失。
7、 Console 介面 :即控制台介面,通過 Console 線纜連接自己的終端和數通設備的 Console 介面,使用終端模擬軟體對數通設備進行本地管理訪問。
1、 OSI 模型 :為規范和定義通信網路,將通信功能按照邏輯分為不同功能層級的概念模型,分為 7 層。
2、 TCP/IP 模型 :也叫做互聯網協議棧,是目前互聯網所使用的通信模型,由 TCP 協議和 IP 協議的規范發展而來,分為 4 層。
3、 應用層 :指 OSI 模型的第 7 層,也是 TCP/IP 模型的第 4 層,是離用戶最近的一層,用戶通過應用軟體和這一層進行交互。理論上,在 TCP/IP 模型中,應用層也包含了 OSI 模型中的表示層和會話層的功能。但表示層和會話層的實用性不強,應用層在兩種模型中區別不大。
4、 傳輸層 :指 OSI 模型的第 4 層,也是 TCP/IP 模型的第 3 層,在兩個模型中區別不大,負責規范數據傳輸的功能和流程。
5、 網路層 :指 OSI 模型的第 3 層,這一層是規范如何將數據從源設備轉發到目的設備。
6、 數據包 :經過網路層協議封裝後的數據。
7、 數據鏈路層 :OSI 模型的第 2 層,規范在直連節點或同一個區域網中的節點之間,如何實現數據傳輸。另外,這一層也負責檢測和糾正物理層在傳輸數據過程中造成的錯誤。
8、 數據幀 :經過數據鏈路層協議封裝後的數據。
9、 物理層 :OSI 模型的第 1 層,這一層的服務是規范物理傳輸的相關標准,實現信號在兩個設備之間進行傳輸。
10、 互聯網層 :TCP/IP 協議中的第 2 層,功能與 OSI 模型中的網路層類似。
11、 網路接入層 :TCP/IP 協議中的第 1 層,作用是定義數據如何在兩個直連節點或同一個區域網的節點之間傳輸,TCP/IP 模型中的這一層結合了 OSI 模型中數據鏈路層和物理層的功能。
12、 封裝 :發送方設備按照協議標準定義的格式及相關參數添加到轉發數據上,來保障通信各方執行協議標準的操作。
13、 解封裝 :接收方設備拆除發送方設備封裝的數據,還原轉發數據的操作。
14、 頭部 :按照協議定義的格式封裝在數據上的協議功能數據和參數。
1、 雙絞線 :將兩根互相絕緣的導線按一定規格纏繞在一起,以便它們互相沖抵干擾,從而形成的通信介質。
2、 光纖 :為實現數據通信,利用全反射原理傳輸光線的玻璃纖維載體。
3、 IEEE 802.3 :IEEE 組織定義的乙太網技術標准,即有線網路標准。
4、 IEEE 802.11 :IEEE 組織定義的無線區域網標准。
5、 奇偶校驗 :接收方對比接收的數據與原始數據時,檢測數據的二進制數位中 「 1 」 的奇偶個數是否相同,從而判斷數據與發送時是否一致的校驗方式。
6、 校驗和 :接收方對比接收的數據與原始數據的校驗和是否相同,判斷數據與發送時是否一致的校驗方式。
7、 循環冗餘校驗 :接收方通過多項式除法判斷數據與發送時是否一致的校驗方式。
8、 共享型乙太網 :所有連網設備處在一個沖突域中,需要競爭發送資源的乙太網環境。
9、 二進制 :逢 2 進位、只有 0 和 1 表示數字的計數系統。
10、 十六進制 :逢 16 進位、用 0 ~ F 表示數字的計數系統。
11、 沖突域 :通過共享媒介連接在一起的設備,共同構成的網路區域。在這個區域內,同時只能一台設備發送數據包。
12、 交換型乙太網 :連網設備互相之間不需要競爭發送資源,而是分別與中心設備兩兩組成點到點連接的乙太網環境。
13、 MAC 地址 :長度 48 位,固化在設備硬體上,用十六進製表示的數據鏈路層地址。
14、 廣播域 :在這個區域中,各個節點都可以收到其它節點發送的廣播數據包。
『伍』 計算機網路體系分為哪四層
1.、應用層
應用層對應於OSI參考模型的高層,為用戶提供所需要的各種服務,例如:FTP、Telnet、DNS、SMTP等.
2.、傳輸層
傳輸層對應於OSI參考模型的傳輸層,為應用層實體提供端到端的通信功能,保證了數據包的順序傳送及數據的完整性。該層定義了兩個主要的協議:傳輸控制協議(TCP)和用戶數據報協議(UDP).
TCP協議提供的是一種可靠的、通過「三次握手」來連接的數據傳輸服務;而UDP協議提供的則是不保證可靠的(並不是不可靠)、無連接的數據傳輸服務.
3.、網際互聯層
網際互聯層對應於OSI參考模型的網路層,主要解決主機到主機的通信問題。它所包含的協議設計數據包在整個網路上的邏輯傳輸。注重重新賦予主機一個IP地址來完成對主機的定址,它還負責數據包在多種網路中的路由。
該層有三個主要協議:網際協議(IP)、互聯網組管理協議(IGMP)和互聯網控制報文協議(ICMP)。
IP協議是網際互聯層最重要的協議,它提供的是一個可靠、無連接的數據報傳遞服務。
4.、網路接入層(即主機-網路層)
網路接入層與OSI參考模型中的物理層和數據鏈路層相對應。它負責監視數據在主機和網路之間的交換。事實上,TCP/IP本身並未定義該層的協議,而由參與互連的各網路使用自己的物理層和數據鏈路層協議,然後與TCP/IP的網路接入層進行連接。地址解析協議(ARP)工作在此層,即OSI參考模型的數據鏈路層。
(5)計算機網路數據鏈路層圖解擴展閱讀:
OSI將計算機網路體系結構(architecture)劃分為以下七層:
物理層: 將數據轉換為可通過物理介質傳送的電子信號相當於郵局中的搬運工人。
數據鏈路層: 決定訪問網路介質的方式。
在此層將數據分幀,並處理流控制。本層指定拓撲結構並提供硬體定址,相當於郵局中的裝拆箱工人。
網路層: 使用權數據路由經過大型網路 相當於郵局中的排序工人。
傳輸層: 提供終端到終端的可靠連接 相當於公司中跑郵局的送信職員。
會話層: 允許用戶使用簡單易記的名稱建立連接 相當於公司中收寄信、寫信封與拆信封的秘書。
表示層: 協商數據交換格式 相當公司中簡報老闆、替老闆寫信的助理。
應用層: 用戶的應用程序和網路之間的介面老闆。
『陸』 網路五層結構
計算機網路五層結構是指應用層、傳輸層、網路層、數據鏈路層、物理層。
1、應用層
專門針對某些應用提供服務。
2、傳輸層
網路層只把數據送到主機,但不會送到進程。傳輸層負責負責進程與主機間的傳輸,主機到主機的傳輸交由網路層負責。傳輸層也稱為端到端送。
3、網路層
把包裡面的目的地址拿出來,進行路由選擇,決定要往哪個方向傳輸。
負責從源通過路由選擇到目的地的過程,達到從源主機傳輸數據到目標主機的目的。
4、數據鏈路層
通過物理網路傳送包,這里的包是通過網路層交過來的數據報。
只完成一個節點到另一個節點的傳送(單跳)。
5、物理層
通過線路(可以是有形的線也可以是無線鏈路)傳送原始的比特流。
只完成一個節點到另一個節點的傳送(單跳)。
(6)計算機網路數據鏈路層圖解擴展閱讀:
計算機網路是指將地理位置不同的具有獨立功能的多台計算機及其外部設備,通過通信線路連接起來,在網路操作系統,網路管理軟體及網路通信協議的管理和協調下,實現資源共享和信息傳遞的計算機系統。
計算機網路也稱計算機通信網。關於計算機網路的最簡單定義是:一些相互連接的、以共享資源為目的的、自治的計算機的集合。若按此定義,則早期的面向終端的網路都不能算是計算機網路,而只能稱為聯機系統(因為那時的許多終端不能算是自治的計算機)。但隨著硬體價格的下降,許多終端都具有一定的智能,因而「終端」和「自治的計算機」逐漸失去了嚴格的界限。若用微型計算機作為終端使用,按上述定義,則早期的那種面向終端的網路也可稱為計算機網路。
『柒』 計算機網路中五層協議它們分別的主要功能是什麼它們具體分別是在哪裡(從硬體層面上談)實現的
1,物理層;其主要功能是:主要負責在物理線路上傳輸原始的二進制數據。
2、數據鏈路層;其主要功能是:主要負責在通信的實體間建立數據鏈路連接。
3、網路層;其主要功能是:要負責創建邏輯鏈路,以及實現數據包的分片和重組,實現擁塞控制、網路互連等功能。
4、傳輸層;其主要功能是:負責向用戶提供端到端的通信服務,實現流量控制以及差錯控制。
5、應用層;其主要功能是:為應用程序提供了網路服務。
物理層和數據鏈路層是由計算機硬體(如網卡)實現的,網路層和傳輸層由操作系統軟體實現,而應用層由應用程序或用戶創建實現。
(7)計算機網路數據鏈路層圖解擴展閱讀:
應用層是體系結構中的最高層。應用層確定進程之間通信的性質以滿足用戶的需要。這里的進程就是指正在運行的程序。
應用層不僅要提供應用進程所需要的信息交換
和遠地操作,而且還要作為互相作用的應用進程的用戶代理,來完成一些為進行語義上有意義的信息交換所必須的功能。應用層直接為用戶的應用進程提供服務。
傳輸層的任務就是負責主機中兩個進程之間的通信。網際網路的傳輸層可使用兩種不同協議:即面向連接的傳輸控制協議TCP,和無連接的用戶數據報協議UDP。
面向連接的服務能夠提供可靠的交付,但無連接服務則不保證提供可靠的交付,它只是「盡最大努力交付」。這兩種服務方式都很有用,備有其優缺點。在分組交換網內的各個交換結點機都沒有傳輸層。
網路層負責為分組交換網上的不同主機提供通信。在發送數據時,網路層將運輸層產生的報文段或用戶數據報封裝成分組或包進行傳送。
在TCP/IP體系中,分組也叫作IP數據報,或簡稱為數據報。網路層的另一個任務就是要選擇合適的路由,使源主
機運輸層所傳下來的分組能夠交付到目的主機。
『捌』 計算機網路第三章(數據鏈路層)
3.1、數據鏈路層概述
概述
鏈路 是從一個結點到相鄰結點的一段物理線路, 數據鏈路 則是在鏈路的基礎上增加了一些必要的硬體(如網路適配器)和軟體(如協議的實現)
網路中的主機、路由器等都必須實現數據鏈路層
區域網中的主機、交換機等都必須實現數據鏈路層
從層次上來看數據的流動
僅從數據鏈路層觀察幀的流動
主機H1 到主機H2 所經過的網路可以是多種不同類型的
注意:不同的鏈路層可能採用不同的數據鏈路層協議
數據鏈路層使用的信道
數據鏈路層屬於計算機網路的低層。 數據鏈路層使用的信道主要有以下兩種類型:
點對點信道
廣播信道
區域網屬於數據鏈路層
區域網雖然是個網路。但我們並不把區域網放在網路層中討論。這是因為在網路層要討論的是多個網路互連的問題,是討論分組怎麼從一個網路,通過路由器,轉發到另一個網路。
而在同一個區域網中,分組怎麼從一台主機傳送到另一台主機,但並不經過路由器轉發。從整個互聯網來看, 區域網仍屬於數據鏈路層 的范圍
三個重要問題
數據鏈路層傳送的協議數據單元是 幀
封裝成幀
封裝成幀 (framing) 就是在一段數據的前後分別添加首部和尾部,然後就構成了一個幀。
首部和尾部的一個重要作用就是進行 幀定界 。
差錯控制
在傳輸過程中可能會產生 比特差錯 :1 可能會變成 0, 而 0 也可能變成 1。
可靠傳輸
接收方主機收到有誤碼的幀後,是不會接受該幀的,會將它丟棄
如果數據鏈路層向其上層提供的是不可靠服務,那麼丟棄就丟棄了,不會再有更多措施
如果數據鏈路層向其上層提供的是可靠服務,那就還需要其他措施,來確保接收方主機還可以重新收到被丟棄的這個幀的正確副本
以上三個問題都是使用 點對點信道的數據鏈路層 來舉例的
如果使用廣播信道的數據鏈路層除了包含上面三個問題外,還有一些問題要解決
如圖所示,主機A,B,C,D,E通過一根匯流排進行互連,主機A要給主機C發送數據,代表幀的信號會通過匯流排傳輸到匯流排上的其他各主機,那麼主機B,D,E如何知道所收到的幀不是發送給她們的,主機C如何知道發送的幀是發送給自己的
可以用編址(地址)的來解決
將幀的目的地址添加在幀中一起傳輸
還有數據碰撞問題
隨著技術的發展,交換技術的成熟,
在 有線(區域網)領域 使用 點對點鏈路 和 鏈路層交換機 的 交換式區域網 取代了 共享式區域網
在無線區域網中仍然使用的是共享信道技術
3.2、封裝成幀
介紹
封裝成幀是指數據鏈路層給上層交付的協議數據單元添加幀頭和幀尾使之成為幀
幀頭和幀尾中包含有重要的控制信息
發送方的數據鏈路層將上層交付下來的協議數據單元封裝成幀後,還要通過物理層,將構成幀的各比特,轉換成電信號交給傳輸媒體,那麼接收方的數據鏈路層如何從物理層交付的比特流中提取出一個個的幀?
答:需要幀頭和幀尾來做 幀定界
但比不是每一種數據鏈路層協議的幀都包含有幀定界標志,例如下面例子
前導碼
前同步碼:作用是使接收方的時鍾同步
幀開始定界符:表明其後面緊跟著的就是MAC幀
另外乙太網還規定了幀間間隔為96比特時間,因此,MAC幀不需要幀結束定界符
透明傳輸
透明
指某一個實際存在的事物看起來卻好像不存在一樣。
透明傳輸是指 數據鏈路層對上層交付的傳輸數據沒有任何限制 ,好像數據鏈路層不存在一樣
幀界定標志也就是個特定數據值,如果在上層交付的協議數據單元中, 恰好也包含這個特定數值,接收方就不能正確接收
所以數據鏈路層應該對上層交付的數據有限制,其內容不能包含幀定界符的值
解決透明傳輸問題
解決方法 :面向位元組的物理鏈路使用 位元組填充 (byte stuffing) 或 字元填充 (character stuffing),面向比特的物理鏈路使用比特填充的方法實現透明傳輸
發送端的數據鏈路層在數據中出現控制字元「SOH」或「EOT」的前面 插入一個轉義字元「ESC」 (其十六進制編碼是1B)。
接收端的數據鏈路層在將數據送往網路層之前刪除插入的轉義字元。
如果轉義字元也出現在數據當中,那麼應在轉義字元前面插入一個轉義字元 ESC。當接收端收到連續的兩個轉義字元時,就刪除其中前面的一個。
幀的數據部分長度
總結
3.3、差錯檢測
介紹
奇偶校驗
循環冗餘校驗CRC(Cyclic Rendancy Check)
例題
總結
循環冗餘校驗 CRC 是一種檢錯方法,而幀校驗序列 FCS 是添加在數據後面的冗餘碼
3.4、可靠傳輸
基本概念
下面是比特差錯
其他傳輸差錯
分組丟失
路由器輸入隊列快滿了,主動丟棄收到的分組
分組失序
數據並未按照發送順序依次到達接收端
分組重復
由於某些原因,有些分組在網路中滯留了,沒有及時到達接收端,這可能會造成發送端對該分組的重發,重發的分組到達接收端,但一段時間後,滯留在網路的分組也到達了接收端,這就造成 分組重復 的傳輸差錯
三種可靠協議
停止-等待協議SW
回退N幀協議GBN
選擇重傳協議SR
這三種可靠傳輸實現機制的基本原理並不僅限於數據鏈路層,可以應用到計算機網路體系結構的各層協議中
停止-等待協議
停止-等待協議可能遇到的四個問題
確認與否認
超時重傳
確認丟失
既然數據分組需要編號,確認分組是否需要編號?
要。如下圖所示
確認遲到
注意,圖中最下面那個數據分組與之前序號為0的那個數據分組不是同一個數據分組
注意事項
停止-等待協議的信道利用率
假設收發雙方之間是一條直通的信道
TD :是發送方發送數據分組所耗費的發送時延
RTT :是收發雙方之間的往返時間
TA :是接收方發送確認分組所耗費的發送時延
TA一般都遠小於TD,可以忽略,當RTT遠大於TD時,信道利用率會非常低
像停止-等待協議這樣通過確認和重傳機制實現的可靠傳輸協議,常稱為自動請求重傳協議ARQ( A utomatic R epeat re Q uest),意思是重傳的請求是自動進行,因為不需要接收方顯式地請求,發送方重傳某個發送的分組
回退N幀協議GBN
為什麼用回退N幀協議
在相同的時間內,使用停止-等待協議的發送方只能發送一個數據分組,而採用流水線傳輸的發送方,可以發送多個數據分組
回退N幀協議在流水線傳輸的基礎上,利用發送窗口來限制發送方可連續發送數據分組的個數
無差錯情況流程
發送方將序號落在發送窗口內的0~4號數據分組,依次連續發送出去
他們經過互聯網傳輸正確到達接收方,就是沒有亂序和誤碼,接收方按序接收它們,每接收一個,接收窗口就向前滑動一個位置,並給發送方發送針對所接收分組的確認分組,在通過互聯網的傳輸正確到達了發送方
發送方每接收一個、發送窗口就向前滑動一個位置,這樣就有新的序號落入發送窗口,發送方可以將收到確認的數據分組從緩存中刪除了,而接收方可以擇機將已接收的數據分組交付上層處理
累計確認
累計確認
優點:
即使確認分組丟失,發送方也可能不必重傳
減小接收方的開銷
減小對網路資源的佔用
缺點:
不能向發送方及時反映出接收方已經正確接收的數據分組信息
有差錯情況
例如
在傳輸數據分組時,5號數據分組出現誤碼,接收方通過數據分組中的檢錯碼發現了錯誤
於是丟棄該分組,而後續到達的這剩下四個分組與接收窗口的序號不匹配
接收同樣也不能接收它們,講它們丟棄,並對之前按序接收的最後一個數據分組進行確認,發送ACK4, 每丟棄一個數據分組,就發送一個ACK4
當收到重復的ACK4時,就知道之前所發送的數據分組出現了差錯,於是可以不等超時計時器超時就立刻開始重傳,具體收到幾個重復確認就立刻重傳,根據具體實現決定
如果收到這4個重復的確認並不會觸發發送立刻重傳,一段時間後。超時計時器超時,也會將發送窗口內以發送過的這些數據分組全部重傳
若WT超過取值范圍,例如WT=8,會出現什麼情況?
習題
總結
回退N幀協議在流水線傳輸的基礎上利用發送窗口來限制發送方連續發送數據分組的數量,是一種連續ARQ協議
在協議的工作過程中發送窗口和接收窗口不斷向前滑動,因此這類協議又稱為滑動窗口協議
由於回退N幀協議的特性,當通信線路質量不好時,其信道利用率並不比停止-等待協議高
選擇重傳協議SR
具體流程請看視頻
習題
總結
3.5、點對點協議PPP
點對點協議PPP(Point-to-Point Protocol)是目前使用最廣泛的點對點數據鏈路層協議
PPP協議是網際網路工程任務組IEIF在1992年制定的。經過1993年和1994年的修訂,現在的PPP協議已成為網際網路的正式標准[RFC1661,RFC1662]
數據鏈路層使用的一種協議,它的特點是:簡單;只檢測差錯,而不是糾正差錯;不使用序號,也不進行流量控制;可同時支持多種網路層協議
PPPoE 是為寬頻上網的主機使用的鏈路層協議
幀格式
必須規定特殊的字元作為幀定界符
透明傳輸
必須保證數據傳輸的透明性
實現透明傳輸的方法
面向位元組的非同步鏈路:位元組填充法(插入「轉義字元」)
面向比特的同步鏈路:比特填充法(插入「比特0」)
差錯檢測
能夠對接收端收到的幀進行檢測,並立即丟棄有差錯的幀。
工作狀態
當用戶撥號接入 ISP 時,路由器的數據機對撥號做出確認,並建立一條物理連接。
PC 機向路由器發送一系列的 LCP 分組(封裝成多個 PPP 幀)。
這些分組及其響應選擇一些 PPP 參數,並進行網路層配置,NCP 給新接入的 PC 機
分配一個臨時的 IP 地址,使 PC 機成為網際網路上的一個主機。
通信完畢時,NCP 釋放網路層連接,收回原來分配出去的 IP 地址。接著,LCP 釋放數據鏈路層連接。最後釋放的是物理層的連接。
可見,PPP 協議已不是純粹的數據鏈路層的協議,它還包含了物理層和網路層的內容。
3.6、媒體接入控制(介質訪問控制)——廣播信道
媒體接入控制(介質訪問控制)使用一對多的廣播通信方式
Medium Access Control 翻譯成媒體接入控制,有些翻譯成介質訪問控制
區域網的數據鏈路層
區域網最主要的 特點 是:
網路為一個單位所擁有;
地理范圍和站點數目均有限。
區域網具有如下 主要優點 :
具有廣播功能,從一個站點可很方便地訪問全網。區域網上的主機可共享連接在區域網上的各種硬體和軟體資源。
便於系統的擴展和逐漸地演變,各設備的位置可靈活調整和改變。
提高了系統的可靠性、可用性和殘存性。
數據鏈路層的兩個子層
為了使數據鏈路層能更好地適應多種區域網標准,IEEE 802 委員會就將區域網的數據鏈路層拆成 兩個子層 :
邏輯鏈路控制 LLC (Logical Link Control)子層;
媒體接入控制 MAC (Medium Access Control)子層。
與接入到傳輸媒體有關的內容都放在 MAC子層,而 LLC 子層則與傳輸媒體無關。 不管採用何種協議的區域網,對 LLC 子層來說都是透明的。
基本概念
為什麼要媒體接入控制(介質訪問控制)?
共享信道帶來的問題
若多個設備在共享信道上同時發送數據,則會造成彼此干擾,導致發送失敗。
隨著技術的發展,交換技術的成熟和成本的降低,具有更高性能的使用點對點鏈路和鏈路層交換機的交換式區域網在有線領域已完全取代了共享式區域網,但由於無線信道的廣播天性,無線區域網仍然使用的是共享媒體技術
靜態劃分信道
信道復用
頻分復用FDM (Frequency Division Multiplexing)
將整個帶寬分為多份,用戶在分配到一定的頻帶後,在通信過程中自始至終都佔用這個頻帶。
頻分復用 的所有用戶在同樣的時間 佔用不同的帶寬資源 (請注意,這里的「帶寬」是頻率帶寬而不是數據的發送速率)。
『玖』 數據鏈路層和網路層的協議數據單元(PDU)分別是什麼它們之間的封裝關系是什麼
OSI參考模型中,網路層、數據鏈路層傳輸的協議數據單元(PDU)分別是:分組、幀
協議數據單元,物理層的 PDU是數據位,數據鏈路層的 PDU是數據幀,網路層的PDU是數據包,傳輸層的 PDU是數據段,其他更高層次的PDU是報文。
協議數據單元PDU(Protocol Data Unit)是指對等層次之間傳遞的數據單位。協議數據單元(ProtocolData Unit )物理層的 PDU是數據位(bit),數據鏈路層的 PDU是數據幀(frame)。
網路層的PDU是數據包(packet),傳輸層的PDU是數據段(segment),其他更高層次的PDU是數據(data)。
(9)計算機網路數據鏈路層圖解擴展閱讀
數據鏈路層屬於計算機網路的低層。數據鏈路層使用的通道主要由兩種類型:
點對點信道:這種信道使用一對一的點對點通信方式。
廣播信道:這種信道使用一對多的廣播通信方式,因此過程比較復雜。廣播信道上連接的主機很多,因此必須使用專用的共享信道協議來協調這些主機的數據發送。
從整個互聯網范圍來看的話,互聯網仍然屬於數據鏈路層的范圍。
1.數據鏈路層的點對點信道和廣播信道的特點,以及這兩種信道所使用的協議(PPP,以及CSMA、CD協議)特點。
2.數據鏈路層的三個基本作用:封裝成幀、透明傳輸和差錯檢測。
3.乙太網MAC層的硬體地址。
4.適配器、轉發器、集線器、網橋、乙太網交換機的作用場合。