當前位置:首頁 » 網路連接 » 計算機網路的核心協議
擴展閱讀
HP7740顯示網路異常 2024-11-05 22:16:45
手機同網路無法投屏 2024-11-05 22:08:33

計算機網路的核心協議

發布時間: 2022-12-06 16:37:51

❶ 我們經常使用的計算機網路協議主要有哪些

常用的網路協議有:

IP/IPv4:網際協議
TCP:傳輸控制協議
IGMP:Internet 組管理協議
ICMP/ICMPv6:Internet控制信息協議
SNMP:簡單網路管理協議
DNS:域名系統(服務)協議

具體介紹:

IP/IPv4:網際協議

網際協議(IP)是一個網路層協議,它包含定址信息和控制信息 ,可使數據包在網路中路由。IP 協議是 TCP/IP 協議族中的主要網路層協議,與 TCP 協議結合組成整個網際網路協議的核心協議。IP 協議同樣都適用於 LAN 和 WAN 通信。

IP 協議有兩個基本任務:提供無連接的和最有效的數據包傳送;提供數據包的分割及重組以支持不同最大傳輸單元大小的數據連接。對於互聯網路中 IP 數據報的路由選擇處理,有一套完善的 IP 定址方式。每一個 IP 地址都有其特定的組成但同時遵循基本格式。IP 地址可以進行細分並可用於建立子網地址。TCP/IP 網路中的每台計算機都被分配了一個唯一的 32 位邏輯地址,這個地址分為兩個主要部分:網路號和主機號。網路號用以確認網路,如果該網路是網際網路的一部分,其網路號必須由 InterNIC 統一分配。一個網路伺服器供應商(ISP)可以從 InterNIC 那裡獲得一塊網路地址,按照需要自己分配地址空間。主機號確認網路中的主機,它由本地網路管理員分配。

當你發送或接受數據時(例如,一封電子信函或網頁),消息分成若干個塊,也就是我們所說的「包」。每個包既包含發送者的網路地址又包含接受者的地址。由於消息被劃分為大量的包,若需要,每個包都可以通過不同的網路路徑發送出去。包到達時的順序不一定和發送順序相同, IP 協議只用於發送包,而 TCP 協議負責將其按正確順序排列。

除了 ARP 和 RARP,其它所有 TCP/IP 族中的協議都是使用 IP 傳送主機與主機間的通信。當前 IP 協議有兩種版本:IPv4 和 IPv6。本文主要闡述 IPv4 。IPv6 的相關細節將在其它文件中再作介紹。

TCP:傳輸控制協議
傳輸控制協議 TCP 是 TCP/IP 協議棧中的傳輸層協議,它通過序列確認以及包重發機制,提供可靠的數據流發送和到應用程序的虛擬連接服務。與 IP 協議相結合, TCP 組成了網際網路協議的核心。

由於大多數網路應用程序都在同一台機器上運行,計算機上必須能夠確保目的地機器上的軟體程序能從源地址機器處獲得數據包,以及源計算機能收到正確的回復。這是通過使用 TCP 的「埠號」完成的。網路 IP 地址和埠號結合成為唯一的標識 , 我們稱之為「套接字」或「端點」。 TCP 在端點間建立連接或虛擬電路進行可靠通信。

TCP 服務提供了數據流傳輸、可靠性、有效流控制、全雙工操作和多路復用技術等。

關於流數據傳輸 ,TCP 交付一個由序列號定義的無結構的位元組流。 這個服務對應用程序有利,因為在送出到 TCP 之前應用程序不需要將數據劃分成塊, TCP 可以將位元組整合成欄位,然後傳給 IP 進行發送。

TCP 通過面向連接的、端到端的可靠數據報發送來保證可靠性。 TCP 在位元組上加上一個遞進的確認序列號來告訴接收者發送者期望收到的下一個位元組。如果在規定時間內,沒有收到關於這個包的確認響應,重新發送此包。 TCP 的可靠機制允許設備處理丟失、延時、重復及讀錯的包。超時機制允許設備監測丟失包並請求重發。

TCP 提供了有效流控制。當向發送者返回確認響應時,接收 TCP 進程就會說明它能接收並保證緩存不會發生溢出的最高序列號。

全雙工操作: TCP 進程能夠同時發送和接收包。

TCP 中的多路技術:大量同時發生的上層會話能在單個連接上時進行多路復用。

IGMP:Internet 組管理協議
Internet 組管理協議(IGMP)是網際網路協議家族中的一個組播協議,用於 IP 主機向任一個直接相鄰的路由器報告他們的組成員情況。IGMP 信息封裝在 IP 報文中,其 IP 的協議號為 2。IGMP 具有三種版本,即 IGMP v1、v2 和 v3。

IGMPv1: 主機可以加入組播組。沒有離開信息(leave messages)。路由器使用基於超時的機制去發現其成員不關注的組。
IGMPv2: 該協議包含了離開信息,允許迅速向路由協議報告組成員終止情況,這對高帶寬組播組或易變型組播組成員而言是非常重要的。
IGMPv3: 與以上兩種協議相比,該協議的主要改動為:允許主機指定它要接收通信流量的主機對象。來自網路中其它主機的流量是被隔離的。IGMPv3 也支持主機阻止那些來自於非要求的主機發送的網路數據包。
IGMP 協議變種有:

距離矢量組播路由選擇協議(DVMRP: Distance Vector Multicast Routing Protocol)
IGMP 用戶認證協議 (IGAP: IGMP for user Authentication Protocol)
路由器埠組管理協議(RGMP: Router-port Group Management Protocol)

ICMP/ICMPv6:Internet控制信息協議
Internet 控制信息協議(ICMP)是 IP 組的一個整合部分。通過 IP 包傳送的 ICMP 信息主要用於涉及網路操作或錯誤操作的不可達信息。ICMP 包發送是不可靠的,所以主機不能依靠接收 ICMP 包解決任何網路問題。ICMP 的主要功能如下:

通告網路錯誤。比如,某台主機或整個網路由於某些故障不可達。如果有指向某個埠號的 TCP 或 UDP 包沒有指明接受端,這也由 ICMP 報告。

通告網路擁塞。當路由器緩存太多包,由於傳輸速度無法達到它們的接收速度,將會生成「 ICMP 源結束」信息。對於發送者,這些信息將會導致傳輸速度降低。當然,更多的 ICMP 源結束信息的生成也將引起更多的網路擁塞,所以使用起來較為保守。

協助解決故障。ICMP 支持 Echo 功能,即在兩個主機間一個往返路徑上發送一個包。 Ping 是一種基於這種特性的通用網路管理工具,它將傳輸一系列的包,測量平均往返次數並計算丟失百分比。

通告超時。如果一個 IP 包的 TTL 降低到零,路由器就會丟棄此包,這時會生成一個 ICMP 包通告這一事實。TraceRoute 是一個工具,它通過發送小 TTL 值的包及監視 ICMP 超時通告可以顯示網路路由。

ICMP 在 IPv6 定義中重新修訂。此外, IPv4 組成員協議(IGMP)的多點傳送控制功能也嵌入到 ICMPv6 中。

SNMP:簡單網路管理協議
SNMP 是專門設計用於在 IP 網路管理網路節點(伺服器、工作站、路由器、交換機及 HUBS 等)的一種標准協議,它是一種應用層協議。 SNMP 使網路管理員能夠管理網路效能,發現並解決網路問題以及規劃網路增長。通過 SNMP 接收隨機消息(及事件報告)網路管理系統獲知網路出現問題。

SNMP 管理的網路有三個主要組成部分:管理的設備、代理和網路管理系統。管理設備是一個網路節點,包含 ANMP 代理並處在管理網路之中。被管理的設備用於收集並儲存管理信息。通過 SNMP , NMS 能得到這些信息。被管理設備,有時稱為網路單元,可能指路由器、訪問伺服器,交換機和網橋、 HUBS 、主機或列印機。 SNMP 代理是被管理設備上的一個網路管理軟體模塊。 SNMP 代理擁有本地的相關管理信息,並將它們轉換成與 SNMP 兼容的格式。 NMS 運行應用程序以實現監控被管理設備。此外, NMS 還為網路管理提供了大量的處理程序及必須的儲存資源。任何受管理的網路至少需要一個或多個 NMS 。

目前, SNMP 有 3 種: SNMPV1 、 SNMPV2 、 SNMPV3。第 1 版和第 2 版沒有太大差距,但 SNMPV2 是增強版本,包含了其它協議操作。與前兩種相比, SNMPV3 則包含更多安全和遠程配置。為了解決不同 SNMP 版本間的不兼容問題, RFC3584 種定義了三者共存策略。

SNMP 還包括一組由 RMON 、 RMON2 、 MTB 、 MTB2 、 OCDS 及 OCDS 定義的擴展協議。

DNS:域名系統(服務)協議
域名系統(服務)協議(DNS)是一種分布式網路目錄服務,主要用於域名與 IP 地址的相互轉換,以及控制網際網路的電子郵件的發送。大多數網際網路服務依賴於 DNS 而工作,一旦 DNS 出錯,就無法連接 Web 站點,電子郵件的發送也會中止。

DNS 有兩個獨立的方面 :

定義了命名語法和規范,以利於通過名稱委派域名許可權。基本語法是: local.group.site;
定義了如何實現一個分布式計算機系統,以便有效地將域名轉換成 IP 地址。
在 DNS 命名方式中,採用了分散和分層的機制來實現域名空間的委派授權以及域名與地址相轉換的授權。通過使用 DNS 的命名方式來為遍布全球的網路設備分配域名,而這則是由分散在世界各地的伺服器實現的。

理論上, DNS 協議中的域名標准闡述了一種可用任意標簽值的分布式的抽象域名空間。任何組織都可以建立域名系統,為其所有分布結構選擇標簽,但大多數 DNS 協議用戶遵循官方網際網路域名系統使用的分級標簽。常見的頂級域是: COM 、 EDU 、 GOV 、 NET 、 ORG 、 BIZ ,另外還有一些帶國家代碼的頂級域。

DNS 的分布式機制支持有效且可靠的名字到 IP 地址的映射。多數名字可以在本地映射,不同站點的伺服器相互合作能夠解決大網路的名字與 IP 地址的映射問題。單個伺服器的故障不會影響 DNS 的正確操作。 DNS 是一種通用協議,它並不僅限於網路設備名稱。

❷ 計算機網路協議有哪些,具體作用什麼

目前網路協議有許多種,但是最基本的協議是TCP/IP協議,許多協議都是它的子協議。下面我們就對TCP/IP協議作一下簡單介紹。

1 TCP/IP協議基礎

TCP/IP協議包括兩個子協議:一個是TCP協議(Transmission Control Protocol,傳輸控制協議),另一個是IP協議(Internet Protocol,互聯網協議),它起源於20世紀60年代末。

在TCP/IP協議中,TCP協議和IP協議各有分工。TCP協議是IP協議的高層協議,TCP在IP之上提供了一個可靠的,連接方式的協議。TCP協議能保證數據包的傳輸以及正確的傳輸順序,並且它可以確認包頭和包內數據的准確性。如果在傳輸期間出現丟包或錯包的情況,TCP負責重新傳輸出錯的包,這樣的可靠性使得TCP/IP協議在會話式傳輸中得到充分應用。IP協議為TCP/IP協議集中的其它所有協議提供「包傳輸」功能,IP協議為計算機上的數據提供一個最有效的無連接傳輸系統,也就是說IP包不能保證到達目的地,接收方也不能保證按順序收到IP包,它僅能確認IP包頭的完整性。最終確認包是否到達目的地,還要依靠TCP協議,因為TCP協議是有連接服務。

在計算機服務中如果按連接方式來分的話,可分為「有連接服務」和「無連接服務」兩種。「有連接服務」必須先建立連接才能提供相應服務,而「無連接服務」則不需先建立連接。TCP協議是一種典型的有連接協議,而UDP協議則是典型的無連接服務。

TCP/IP協議所包括的協議和工具

TCP/IP協議是一組網路協議的集合,它主要包括以下幾方面的協議和工具。

·TCP/IP協議核心協議

這些核心協議除了自身外,還包括用戶數據報協議(UDP協議)、地址代理協議(ARP協議)以及網間控制協議(ICMP協議)。這組協議提供了一系列計算機互連和網路互連的標准協議。

·應用介面協議

這類協議主要包括Windows套接字(Socket,用於開發網路應用程序)、遠程調用、NetBIOS協議(用於建立邏輯名和網路上的會話)和網路動態數據交換(Network,用於通過網路共享嵌入在文本中的信息)。

·基本的TCP/IP協議互連應用協議

主要包括finger、ftp、rep、rsh、telnet、tftp等協議。這些工具協議使得Windows系統用戶使用非Microsoft系統計算機上(如UNIX系統計算機)的資源成為可能。

·TCP/IP協議診斷工具

這些工具包括arp、hostname、ipconfig、nbstat、netstat、ping和route,它們可用來檢測並恢復TCP/IP協議網路故障。

·有關服務和管理工具

這些服務和管理工具包括FTP伺服器服務(用於在兩個遠程計算機之間傳輸文件,這是遠程式控制制通信中的關鍵功能)、網際命名服務WINS(用於在一個網際上動態記錄和詢問計算機的名字)、動態計算機配置協議DHCP(用於在Windows NT計算機上自動配置TCP/IP協議)以及TCP/IP協議列印(主要用於遠程列印和網路列印)。

·簡單網路管理協議代理(SNMP)

這個工具允許通過使用管理工具(如「Sun Net Manages」 或「HP Open View」),從遠程管理Windows NT計算機。

(2)TCP/IP的主要協議簡述

為了使讀者能全面了解一些基本的網路通信協議和服務,本節就對TCP/IP協議所包括的幾種主要協議進行簡要說明。

·遠程登錄協議(Telnet)

Telnet協議是用來登錄到遠程計算機上,並進行信息訪問,通過它可以訪問所有的資料庫、聯機游戲、對話服務以及電子公告牌,如同與被訪問的計算機在同一房間中工作一樣,但只能進行些字元類操作和會話。

·文件傳輸協議(Ftp)

這是文件傳輸的基本協議,有了FTP協議就可以把的文件進行上傳,也可從網上得到許多應用程序和信息(下載),有許多軟體站點就是通過FTP協議來為用戶提供下載任務的,俗稱「FTP伺服器」。最初的FTP程序是工作在UNIX系統下的,而目前的許多FTP程序是工作在Windows系統下的。FTP程序除了完成文件的傳送之外,還允許用戶建立與遠程計算機的連接,登錄到遠程計算機上,並可在遠程計算機上的目錄間移動。

·電子郵件服務(Email)

電子郵件服務是目前最常見、應用最廣泛的一種到聯網服務。通過電子郵件,可以與Internet上的任何人交換信息。電子郵件的快速、高效、方便以及價廉,越來越得到了廣泛的應用,目前只要是上過網的網民就肯定用過電子郵件這種服務。目前,全球平均每天約有幾千萬份電子郵件在網上傳輸。

·WWW服務

WWW服務(3W服務)也是目前應用最廣的一種基本互聯網應用,我們每天上網都要用到這種服務。通過WWW服務,只要用滑鼠進行本地操作,就可以到達世界上的任何地方。由於WWW服務使用的是超文本鏈接(HTML),所以可以很方便的從一個信息頁轉換到另一個信息頁。它不僅能查看文字,還可以欣賞圖片、音樂、動畫。最流行的WWW服務的程序就是微軟的IE瀏覽器。

·簡單郵件傳輸協議(SMTP)

SMTP是TCP/IP協議族的一個成員,這種協議認為你的計算機是永久連接在Internet上的,而且認為你在網路上的計算機在任何時候是可以被訪問的。它適用於永久連接在Internet的計算機,但無法使用通過SLIP/PPP協議連接的用戶接收電子郵件。解決這個問題的辦法是在郵件計算機上同時運行SMTP和POP協議的程序,SMTP負責郵件的發送和在郵件計算機上的分揀和存儲,POP協議負責將郵件通過SLIP/PPP協議連接傳送到用戶計算機上。

·信息服務(Gopher)

Gopher最早出現在1991年,它是第一個操作簡便、使用廣泛的從Internet伺服器上獲取信息的客戶應用程序。除了操作簡便外,它的另一個特點是速度快。Gopher運行時,將顯示一個互動式的供用戶選擇的菜單,菜單中的選項由簡單的短句組成,每個短句通常指向另一個菜單,並最終指向有用的文件。Gopher是幫助用戶在Internet信息海洋中搜索有用信息的導航器。用戶只要關心瀏覽的內容,而不必關心具體的伺服器。

·文件檢索服務(Archie)

它是一個從整個Internet上匿名FTP伺服器獲取文件的服務。其完全依賴於匿名FTP系統的管理員,他們將站點在全世界的Archie伺服器進行了注冊,Archie僅通過文件名進行檢索。
2 IP協議

目前正在使用的IP協議是第4版的,稱之為「IPv4」,新版本的IP協議正在完善過程中,它就是經常可以在各大IT媒體中見到的IPv6。IPv6所要解決的主要是IPv4協議中IP地址遠遠不夠的現象。IPv4所採用的是32位,而IPv6則是128位,是原來的4倍。IPv6所提供的IP地址數已可算是天文數字了,據專家們分析,這個數字的IP地址可以使全球的每一個人都可擁有10以上的IP地址,這么多的IP地址相信再也不會出現IPv4那樣除了美國外,各國都出現IP地址短缺現象,為將來實現移動上網打下了堅實的基礎。但這屬於較新技術,在此就不作詳細介紹,本文仍以目前主流的IPv4協議為基礎進行介紹。

IP協議的功能是把數據報在互聯的網路上傳送,通過將數據報在一個個IP協議模塊間傳送,直到目的模塊。網路中每個計算機和網關上都有IP協議模塊。數據報在一個個模塊間通過路由處理網路地址傳送到目的地址,因此搜尋網路地址對於IP協議十分重要的功能。另外,因為各個網路上的數據報大小可能不同,所以數據報的分段也是IP協議的不可或缺的功能,不然對於一些網路帶寬較窄的網路,大的數據報就無法正確傳輸了。下面主要介紹我們初級學者所關心的現行方面問題。

(1)IP地址

在計算機定址中經常會遇到「名字」、「地址」和「路由」這三個術語,它們之間是有較大區別的。名字是要找的,就像的人名一樣;而地址是用來指出這個名字在什麼地方,就像人的住址一樣;路由是解決如何到達目的地址的問題,就像已經知道了某個人住在什麼地方,現在要考慮走什麼路線、採用什麼交通工具到達目的地方最為簡便。

這里所介紹的IP協議主要是解決地址的問題。名字和地址進行解析的工作是由其上層協議--TCP協議完成。IP協議模塊將地址和本地網路地址加以映射(就像寫信一樣,IP協議只負責把收、發信人的地址寫上,把信投進郵箱就可不管了),而將本地網路地址和路由進行映射則是低層協議(如路由協議)的任務,所以說IP協議是一個無連接的服務。

IP協議要尋找的「地址」是32位長(4個分段的16進制組成),由網路號(網路ID)和主機號(主機ID)兩部分構成,按照IP協議規定網際網路上的地址共有A、B、C、D、E五類.

按照IP協議規定網際網路上的地址共有A、B、C、D、E五類·A類IP地址:用前面8位來標識網路號,其中規定最前面一位為「0」,24位標識主機地址,即A類地址的第一段取值(也即網路號)可以是「00000001 ̄01111111」之間任一數字,轉換為十進制後即為1~128之間。主機號沒有做硬性規定,所以它的IP地址范圍為「1.0.0.0-128.255.255.255」。A類地址是為大型政府網路而提供,因為A地址中有10.0.0.0-10.255.255.254和127.0.0.0-127.255.255.254這兩段地址有專門用途,所以全世界總共只有126個可能的A類網路。每個A類網路最多可以連接16777214台計算機,這類地址數是最少的,但這類網路所允許連接的計算機是最多的。

·B類IP地址:用前面16位來標識網路號,其中最前面兩位規定為「10」,16位標識主機號,也就是說B類地址的第一段「10000000 ̄10111111」,轉換成十進制後即為128~191之間,第一段和第二段合在一起表示網路地址,它的地址范圍為「128.0.0.0-191.255.255.255」。B類地址適用於中等規模的網路,全世界大約有16000個B類網路,每個B類網路最多可以連接65534台計算機。這類IP地址通常為中等規模的網路提供。其中172.16.0.0-172.31.255.254地址段有專門用途。

·C類IP地址:用前面24位來標識網路號,其中最前面三位規定為「110」,8位標識主機號。這樣C類地址的第一段取值為「11000000 ̄11011111」之間,轉換成十進制後即為192~223。第一段、第二段、第三段合在一起表示網路號,最後一段標識網路上的主機號,它的地址范圍為「192.0.0.0-223.255.255.255」。C類地址適用於校園網等小型網路,每個C類網路最多可以有254台計算機。這類地址是所有的地址類型中地址數最多的,但這類網路所允許連接的計算機是最少的。這類IP地址可分配給任何有需要的人。其中192.168.0.0-192.168.255.255為企業區域網專用地址段。

·D類地址:它用於多重廣播組,一個多重廣播組可能包括1台或更多主機,或根本沒有。D類地址的最高位為1110,第一段八位體為「11100000 ̄11101111」,轉換成十進制即為224 ̄239,剩餘的位設計客戶機參加的特定組,它的地址范圍為「224.0.1.1-239.255.255.255」。在多重廣播操作中沒有網路或主機位,數據包將傳送到網路中選定的主機子集中,只有注冊了多重廣播地址的主機才能接收到數據包。Microsoft支持D類地址,用於應用程序將多重廣播數據發送到網路間的主機上,包括WINS和Microsoft NetShow。

·E類地址:這是一個通常不用的實驗性地址,保留作為以後使用。E類地址的最高位為11110,第一段八位體為「11110000 ̄11110111」,轉換成十進制即為240 ̄247。

IPv4協議中對首段位為248 ̄254 的地址段暫無規定。

其實還有一類IP地址,就是以「127」開頭的IP地址,這類IP地址也是屬於保留使用的,這類地址屬於環路測試類IP地址。這類IP地址不能作為計算機的IP地址用,也就不能在網路上使用這樣的IP地址來標識計算機的位置,更不能通過在瀏覽器或者其他搜索位置輸入這樣的IP地址,來搜索想要查找的計算機,因為它只能在本地計算機上用於測試使用。

其實還有一類IP地址,就是以「127」開頭的IP地址,這類IP地址也是屬於保留使用的,這類地址屬於環路測試類IP地址。這類IP地址不能作為計算機的IP地址用,也就不能在網路上使用這樣的IP地址來標識計算機的位置,更不能通過在瀏覽器或者其他搜索位置輸入這樣的IP地址,來搜索想要查找的計算機,因為它只能在本地計算機上用於測試使用。

其實還有一類IP地址,就是以「127」開頭的IP地址,這類IP地址也是屬於保留使用的,這類地址屬於環路測試類IP地址。這類IP地址不能作為計算機的IP地址用,也就不能在網路上使用這樣的IP地址來標識計算機的位置,更不能通過在瀏覽器或者其他搜索位置輸入這樣的IP地址,來搜索想要查找的計算機,因為它只能在本地計算機上用於測試使用。

(2) 子網掩碼和域名

以上介紹的是網路IP地址,但隨著網路的發展,IPv4標准中的IP地址遠不夠用,為了解決這一矛盾,於是又在IP地址加上子網掩碼來進一步識別。在TCP/IP協議中規定,A類網路的子網掩碼格式為「255.0.0.0」形式,後面的「0」可以為「0 ̄254」之間任一數字。B類網路的子網掩碼格式為「255.255.0.0」,C類網路的子網掩碼為格式為「255.255.255.0」,同樣其中的「0」可以是「0 ̄254」之間任一數字。如果沒有子網,可以為「0」,也可以不配置,如果有子網則一定要配置。

前面介紹的IP地址都是以數字形式表示計算機的地址,這種IP地址人們記憶起來是非常困難的。對非計算機和網路的專業人士來說,記住這種地址是很不現實的。因此,Internet還採用域名地址來表示每台計算機。通過為每台計算機建立IP地址與域名地址之間的映射關系,用戶可以在網上避開難以記憶的IP地址,而用域名地址來唯一標記網上的計算機。域名地址與IP地址的關系類似於一個人的姓名與身份證號碼之間的關系。

要把計算機連入Internet,必須獲得網上唯一的IP地址與對應的域名地址。域名地址由域名系統(DNS)管理。每個連到Internet的網路中都有至少一個DNS伺服器,其中存有該網路中所有計算機的域名和對應的IP地址,通過與其他網路的DNS伺服器相連就可以找到其他站點。這也是在TCP/IP協議屬性中要進行DNS配置的原因。

域名地址也是分段表示的,每段分別授權給不同的機構管理,各段之間用圓點(.)分隔。與IP地址相反,各段自左至右級別是越來越高。

❸ 常見的網路協議有哪些

第一章 概述

電信網、計算機網和有線電視網 三網合一

TCP/IP是當前的網際網路協議簇的總稱,TCP和 IP是其中的兩個最重要的協議。

RFC標准軌跡由3個成熟級構成:提案標准、草案標准和標准。

第二章 計算機網路與網際網路體系結構

根據拓撲結構:計算機網路可以分為匯流排型網、環型網、星型網和格狀網。

根據覆蓋范圍:計算機網路可以分為廣域網、城域網、區域網和個域網。

網路可以劃分成:資源子網和通信子網兩個部分。

網路協議是通信雙方共同遵守的規則和約定的集合。網路協議包括三個要素,即語法、語義和同步規則。

通信雙方對等層中完成相同協議功能的實體稱為對等實體 ,對等實體按協議進行通信。

有線接入技術分為銅線接入、光纖接入和混合光纖同軸接入技術。

無線接入技術主要有衛星接入技術、無線本地環路接入和本地多點分配業務。

網關實現不同網路協議之間的轉換。

網際網路採用了網路級互聯技術,網路級的協議轉換不僅增加了系統的靈活性,而且簡化了網路互聯設備。

網際網路對用戶隱藏了底層網路技術和結構,在用戶看來,網際網路是一個統一的網路。

網際網路將任何一個能傳輸數據分組的通信系統都視為網路,這些網路受到網路協議的平等對待。

TCP/IP 協議分為 4 個協議層 :網路介面層、網路層、傳輸層和應用層。

IP 協議既是網路層的核心協議 ,也是 TCP/IP 協議簇中的核心協議。

第四章 地址解析

建立邏輯地址與物理地址之間 映射的方法 通常有靜態映射和動態映射。動態映射是在需要獲得地址映射關系時利用網路通信協議直接從其他主機上獲得映射信息。 網際網路採用了動態映射的方法進行地址映射。

獲得邏輯地址與物理地址之間的映射關系稱為地址解析 。

地址解析協議 ARP 是將邏輯地址( IP 地址)映射到物理地址的動態映射協議。

ARP 高速緩存中含有最近使用過的 IP 地址與物理地址的映射列表。

在 ARP 高速緩存中創建的靜態表項是永不超時的地址映射表項。

反向地址解析協議 RARP 是將給定的物理地址映射到邏輯地址( IP地址)的動態映射。RARP需要有RARP 伺服器幫助完成解析。

ARP請求和 RARP請求,都是採用本地物理網路廣播實現的。

在代理ARP中,當主機請求對隱藏在路由器後面的子網中的某一主機 IP 地址進行解析時,代理 ARP路由器將用自己的物理地址作為解析結果進行響應。

第五章 IP協議

IP是不可靠的無連接數據報協議,提供盡力而為的傳輸服務。

TCP/IP 協議的網路層稱為IP層.

IP數據報在經過路由器進行轉發時一般要進行三個方面的處理:首部校驗、路由選擇、數據分片

IP層通過IP地址實現了物理地址的統一,通過IP數據報實現了物理數據幀的統一。 IP 層通過這兩個方面的統一屏蔽了底層的差異,向上層提供了統一的服務。

IP 數據報由首部和數據兩部分構成 。首部分為定長部分和變長部分。選項是數據報首部的變長部分。定長部分 20 位元組,選項不超過40位元組。

IP 數據報中首部長度以 32 位字為單位 ,數據報總長度以位元組為單位,片偏移以 8 位元組( 64 比特)為單位。數據報中的數據長度 =數據報總長度-首部長度× 4。

IP 協議支持動態分片 ,控制分片和重組的欄位是標識、標志和片偏移, 影響分片的因素是網路的最大傳輸單元 MTU ,MTU 是物理網路幀可以封裝的最大數據位元組數。通常不同協議的物理網路具有不同的MTU 。分片的重組只能在信宿機進行。

生存時間TTL是 IP 數據報在網路上傳輸時可以生存的最大時間,每經過一個路由器,數據報的TTL值減 1。

IP數據報只對首部進行校驗 ,不對數據進行校驗。

IP選項用於網路控制和測試 ,重要包括嚴格源路由、寬松源路由、記錄路由和時間戳。

IP協議的主要功能 包括封裝 IP 數據報,對數據報進行分片和重組,處理數據環回、IP選項、校驗碼和TTL值,進行路由選擇等。

在IP 數據報中與分片相關的欄位是標識欄位、標志欄位和片偏移欄位。

數據報標識是分片所屬數據報的關鍵信息,是分片重組的依據

分片必須滿足兩個條件: 分片盡可能大,但必須能為幀所封裝 ;片中數據的大小必須為 8 位元組的整數倍 ,否則 IP 無法表達其偏移量。

分片可以在信源機或傳輸路徑上的任何一台路由器上進行,而分片的重組只能在信宿機上進行片重組的控制主要根據 數據報首部中的標識、標志和片偏移欄位

IP選項是IP數據報首部中的變長部分,用於網路控制和測試目的 (如源路由、記錄路由、時間戳等 ),IP選項的最大長度 不能超過40位元組。

1、IP 層不對數據進行校驗。

原因:上層傳輸層是端到端的協議,進行端到端的校驗比進行點到點的校驗開銷小得多,在通信線路較好的情況下尤其如此。另外,上層協議可以根據對於數據可靠性的要求, 選擇進行校驗或不進行校驗,甚至可以考慮採用不同的校驗方法,這給系統帶來很大的靈活性。

2、IP協議對IP數據報首部進行校驗。

原因: IP 首部屬於 IP 層協議的內容,不可能由上層協議處理。

IP 首部中的部分欄位在點到點的傳遞過程中是不斷變化的,只能在每個中間點重新形成校驗數據,在相鄰點之間完成校驗。

3、分片必須滿足兩個條件:

分片盡可能大,但必須能為幀所封裝 ;

片中數據的大小必須為8位元組的整數倍,否則IP無法表達其偏移量。

第六章 差錯與控制報文協議(ICMP)

ICMP 協議是 IP 協議的補充,用於IP層的差錯報告、擁塞控制、路徑控制以及路由器或主機信息的獲取。

ICMP既不向信宿報告差錯,也不向中間的路由器報告差錯,而是 向信源報告差錯 。

ICMP與 IP協議位於同一個層次,但 ICMP報文被封裝在IP數據報的數據部分進行傳輸。

ICMP 報文可以分為三大類:差錯報告、控制報文和請求 /應答報文。

ICMP 差錯報告分為三種 :信宿不可達報告、數據報超時報告和數據報參數錯報告。數據報超時報告包括 TTL 超時和分片重組超時。

數據報參數錯包括數據報首部中的某個欄位的值有錯和數據報首部中缺少某一選項所必須具有的部分參數。

ICMP控制報文包括源抑制報文和重定向報文。

擁塞是無連接傳輸時缺乏流量控制機制而帶來的問題。ICMP 利用源抑制的方法進行擁塞控制 ,通過源抑制減緩信源發出數據報的速率。

源抑制包括三個階段 :發現擁塞階段、解決擁塞階段和恢復階段。

ICMP 重定向報文由位於同一網路的路由器發送給主機,完成對主機的路由表的刷新。

ICMP 回應請求與應答不僅可以被用來測試主機或路由器的可達性,還可以被用來測試 IP 協議的工作情況。

ICMP時間戳請求與應答報文用於設備間進行時鍾同步 。

主機利用 ICMP 路由器請求和通告報文不僅可以獲得默認路由器的 IP 地址,還可以知道路由器是否處於活動狀態。

第七章 IP 路由

數據傳遞分為直接傳遞和間接傳遞 ,直接傳遞是指直接傳到最終信宿的傳輸過程。間接傳遞是指在信

源和信宿位於不同物理網路時,所經過的一些中間傳遞過程。

TCP/IP 採用 表驅動的方式 進行路由選擇。在每台主機和路由器中都有一個反映網路拓撲結構的路由表,主機和路由器能夠根據 路由表 所反映的拓撲信息找到去往信宿機的正確路徑。

通常路由表中的 信宿地址採用網路地址 。路徑信息採用去往信宿的路徑中的下一跳路由器的地址表示。

路由表中的兩個特殊表目是特定主機路由和默認路由表目。

路由表的建立和刷新可以採用兩種不同 的方式:靜態路由和動態路由。

自治系統 是由獨立管理機構所管理的一組網路和路由器組成的系統。

路由器自動獲取路徑信息的兩種基本方法是向量—距離演算法和鏈路 —狀態演算法。

1、向量 — 距離 (Vector-Distance,簡稱 V—D)演算法的基本思想 :路由器周期性地向與它相鄰的路由器廣播路徑刷新報文,報文的主要內容是一組從本路由器出發去往信宿網路的最短距離,在報文中一般用(V,D)序偶表示,這里的 V 代表向量,標識從該路由器可以到達的信宿 (網路或主機 ),D 代表距離,指出從該路由器去往信宿 V 的距離, 距離 D 按照去往信宿的跳數計。 各個路由器根據收到的 (V ,D)報文,按照最短路徑優先原則對各自的路由表進行刷新。

向量 —距離演算法的優點是簡單,易於實現。

缺點是收斂速度慢和信息交換量較大。

2、鏈路 — 狀態 (Link-Status,簡稱 L-S)演算法的基本思想 :系統中的每個路由器通過從其他路由器獲得的信息,構造出當前網路的拓撲結構,根據這一拓撲結構,並利用 Dijkstra 演算法形成一棵以本路由器為根的最短路徑優先樹, 由於這棵樹反映了從本節點出發去往各路由節點的最短路徑, 所以本節點就可以根據這棵最短路徑優先樹形成路由表。

動態路由所使用的路由協議包括用於自治系統內部的 內部網關協 議和用於自治系統之間的外部網關協議。

RIP協議在基本的向量 —距離演算法的基礎上 ,增加了對路由環路、相同距離路徑、失效路徑以及慢收斂問題的處理。 RIP 協議以路徑上的跳數作為該路徑的距離。 RIP 規定,一條有效路徑的距離不能超過

RIP不適合大型網路。

RIP報文被封裝在 UDP 數據報中傳輸。RIP使用 UDP 的 520 埠號。

3、RIP 協議的三個要點

僅和相鄰路由器交換信息。

交換的信息是當前本路由器所知道的全部信息,即自己的路由表。

按固定的時間間隔交換路由信息,例如,每隔30秒。

4、RIP 協議的優缺點

RIP 存在的一個問題是當網路出現故障時,要經過比較長的時間才能將此信息傳送到所有的路由器。

RIP 協議最大的優點就是實現簡單,開銷較小。

RIP 限制了網路的規模,它能使用的最大距離為15(16表示不可達)。

路由器之間交換的路由信息是路由器中的完整路由表,因而隨著網路規模的擴大,開銷也就增加。

5、為了防止計數到無窮問題,可以採用以下三種技術。

1)水平 分割 法(Split Horizon) 水平分割法的基本思想:路由器從某個介面接收到的更新信息不允許再從這個介面發回去。在圖 7-9 所示的例子中, R2 向 R1 發送 V-D 報文時,不能包含經過 R1 去往 NET1的路徑。因為這一信息本身就是 R1 所產生的。

2) 保持法 (Hold Down) 保持法要求路由器在得知某網路不可到達後的一段時間內,保持此信息不變,這段時間稱為保持時間,路由器在保持時間內不接受關於此網路的任何可達性信息。

3) 毒性逆轉法 (Poison Reverse)毒性逆轉法是水平分割法的一種變化。當從某一介面發出信息時,凡是從這一介面進來的信息改變了路由表表項的, V-D 報文中對應這些表目的距離值都設為無窮 (16)。

OSPF 將自治系統進一步劃分為區域,每個區域由位於同一自治系統中的一組網路、主機和路由器構成。區域的劃分不僅使得廣播得到了更好的管理,而且使 OSPF能夠支持大規模的網路。

OSPF是一個鏈路 —狀態協議。當網路處於收斂狀態時, 每個 OSPF路由器利用 Dijkstra 演算法為每個網路和路由器計算最短路徑,形成一棵以本路由器為根的最短路徑優先 (SPF)樹,並根據最短路徑優先樹構造路由表。

OSPF直接使用 IP。在IP首部的協議欄位, OSPF協議的值為 89。

BGP 是採用路徑 —向量演算法的外部網關協議 , BGP 支持基於策略的路由,路由選擇策略與政治、經濟或安全等因素有關。

BGP 報文分為打開、更新、保持活動和通告 4 類。BGP 報文被封裝在 TCP 段中傳輸,使用TCP的179 號埠 。

第八章 傳輸層協議

傳輸層承上啟下,屏蔽通信子網的細節,向上提供通用的進程通信服務。傳輸層是對網路層的加強與彌補。 TCP 和 UDP 是傳輸層 的兩大協議。

埠分配有兩種基本的方式:全局埠分配和本地埠分配。

在網際網路中採用一個 三元組 (協議,主機地址,埠號)來全局惟一地標識一個進程。用一個五元組(協議 ,本地主機地址 ,本地埠號 ,遠地主機地址 ,遠地埠號)來描述兩個進程的關聯。

TCP 和 UDP 都是提供進程通信能力的傳輸層協議。它們各有一套埠號,兩套埠號相互獨立,都是從0到 65535。

TCP 和 UDP 在計算校驗和時引入偽首部的目的是為了能夠驗證數據是否傳送到了正確的信宿端。

為了實現數據的可靠傳輸, TCP 在應用進程間 建立傳輸連接 。TCP 在建立連接時採用 三次握手方法解決重復連接的問題。在拆除連接時採用 四次握手 方法解決數據丟失問題。

建立連接前,伺服器端首先被動打開其熟知的埠,對埠進行監聽。當客戶端要和伺服器建立連接時,發出一個主動打開埠的請求,客戶端一般使用臨時埠。

TCP 採用的最基本的可靠性技術 包括流量控制、擁塞控制和差錯控制。

TCP 採用 滑動窗口協議 實現流量控制,滑動窗口協議通過發送方窗口和接收方窗口的配合來完成傳輸控制。

TCP 的 擁塞控制 利用發送方的窗口來控制注入網路的數據流的速度。發送窗口的大小取通告窗口和擁塞窗口中小的一個。

TCP通過差錯控制解決 數據的毀壞、重復、失序和丟失等問題。

UDP 在 IP 協議上增加了進程通信能力。此外 UDP 通過可選的校驗和提供簡單的差錯控制。但UDP不提供流量控制和數據報確認 。

1、傳輸層( Transport Layer)的任務 是向用戶提供可靠的、透明的端到端的數據傳輸,以及差錯控制和流量控制機制。

2 「傳輸層提供應用進程間的邏輯通信 」。「邏輯通信 」的意思是:傳輸層之間的通信好像是沿水平方向傳送數據。但事實上這兩個傳輸層之間並沒有一條水平方向的物理連接。

TCP 提供的可靠傳輸服務有如下五個特徵 :

面向數據流 ; 虛電路連接 ; 有緩沖的傳輸 ; 無結構的數據流 ; 全雙工連接 .

3、TCP 採用一種名為 「帶重傳功能的肯定確認 ( positive acknowledge with retransmission ) 」的技術作為提供可靠數據傳輸服務的基礎。

第九章 域名系統

字元型的名字系統為用戶提供了非常直觀、便於理解和記憶的方法,非常符合用戶的命名習慣。

網際網路採用層次型命名機制 ,層次型命名機制將名字空間分成若乾子空間,每個機構負責一個子空間的管理。 授權管理機構可以將其管理的子名字空間進一步劃分, 授權給下一級機構管理。名字空間呈一種樹形結構。

域名由圓點 「.」分開的標號序列構成 。若域名包含從樹葉到樹根的完整標號串並以圓點結束,則稱該域名為完全合格域名FQDN。

常用的三塊頂級域名 為通用頂級域名、國家代碼頂級域名和反向域的頂級域名。

TCP/IP 的域名系統是一個有效的、可靠的、通用的、分布式的名字 —地址映射系統。區域是 DNS 伺服器的管理單元,通常是指一個 DNS 伺服器所管理的名字空間 。區域和域是不同的概念,域是一個完整的子樹,而區域可以是子樹中的任何一部分。

名字伺服器的三種主要類型是 主名字伺服器、次名字伺服器和惟高速緩存名字伺服器。主名字伺服器擁有一個區域文件的原始版本,次名字伺服器從主名字伺服器那裡獲得區域文件的拷貝,次名字伺服器通過區域傳輸同主名字伺服器保持同步。

DNS 伺服器和客戶端屬於 TCP/IP 模型的應用層, DNS 既可以使用 UDP,也可以使用 TCP 來進行通信。 DNS 伺服器使用 UDP 和 TCP 的 53 號熟知埠。

DNS 伺服器能夠使用兩種類型的解析: 遞歸解析和反復解析 。

DNS 響應報文中的回答部分、授權部分和附加信息部分由資源記錄構成,資源記錄存放在名字伺服器的資料庫中。

頂級域 cn 次級域 e.cn 子域 njust.e.cn 主機 sery.njust.e.cn

TFTP :普通文件傳送協議( Trivial File Transfer Protocol )

RIP: 路由信息協議 (Routing Information Protocol)

OSPF 開放最短路徑優先 (Open Shortest Path First)協議。

EGP 外部網關協議 (Exterior Gateway Protocol)

BGP 邊界網關協議 (Border Gateway Protocol)

DHCP 動態主機配置協議( Dynamic Host Configuration Protocol)

Telnet工作原理 : 遠程主機連接服務

FTP 文件傳輸工作原理 File Transfer Protocol

SMTP 郵件傳輸模型 Simple Message Transfer Protocol

HTTP 工作原理

❹ 我們經常使用的計算機網路協議主要有哪些

常用的網路協議有:x0dx0ax0dx0aIP/IPv4:網際協議x0dx0aTCP:傳輸控制協議x0dx0aIGMP:Internet 組管理協議x0dx0aICMP/ICMPv6:Internet控制信息協議x0dx0aSNMP:簡單網路管理協議x0dx0aDNS:域名系統(服務)協議x0dx0ax0dx0a具體介紹:x0dx0ax0dx0aIP/IPv4:網際協議x0dx0ax0dx0a 網際協議(IP)是一個網路層協議,它包含定址信息和控制信息 ,可使數據包在網路中路由。IP 協議是 TCP/IP 協議族中的主要網路層協議,與 TCP 協議結合組成整個網際網路協議的核心協議。IP 協議同樣都適用於 LAN 和 WAN 通信。x0dx0ax0dx0a IP 協議有兩個基本任務:提供無連接的和最有效的數據包傳送;提供數據包的分割及重組以支持不同最大傳輸單元大小的數據連接。對於互聯網路中 IP 數據報的路由選擇處理,有一套完善的 IP 定址方式。每一個 IP 地址都有其特定的組成但同時遵循基本格式。IP 地址可以進行細分並可用於建立子網地址。TCP/IP 網路中的每台計算機都被分配了一個唯一的 32 位邏輯地址,這個地址分為兩個主要部分:網路號和主機號。網路號用以確認網路,如果該網路是網際網路的一部分,其網路號必須由 InterNIC 統一分配。一個網路伺服器供應商(ISP)可以從 InterNIC 那裡獲得一塊網路地址,按照需要自己分配地址空間。主機號確認網路中的主機,它由本地網路管理員分配。x0dx0ax0dx0a 當你發送或接受數據時(例如,一封電子信函或網頁),消息分成若干個塊,也就是我們所說的「包」。每個包既包含發送者的網路地址又包含接受者的地址。由於消息被劃分為大量的包,若需要,每個包都可以通過不同的網路路徑發送出去。包到達時的順序不一定和發送順序相同, IP 協議只用於發送包,而 TCP 協議負責將其按正確順序排列。x0dx0ax0dx0a 除了 ARP 和 RARP,其它所有 TCP/IP 族中的協議都是使用 IP 傳送主機與主機間的通信。當前 IP 協議有兩種版本:IPv4 和 IPv6。本文主要闡述 IPv4 。IPv6 的相關細節將在其它文件中再作介紹。 x0dx0ax0dx0aTCP:傳輸控制協議x0dx0a 傳輸控制協議 TCP 是 TCP/IP 協議棧中的傳輸層協議,它通過序列確認以及包重發機制,提供可靠的數據流發送和到應用程序的虛擬連接服務。與 IP 協議相結合, TCP 組成了網際網路協議的核心。 x0dx0ax0dx0a 由於大多數網路應用程序都在同一台機器上運行,計算機上必須能夠確保目的地機器上的軟體程序能從源地址機器處獲得數據包,以及源計算機能收到正確的回復。這是通過使用 TCP 的「埠號」完成的。網路 IP 地址和埠號結合成為唯一的標識 , 我們稱之為「套接字」或「端點」。 TCP 在端點間建立連接或虛擬電路進行可靠通信。x0dx0ax0dx0a TCP 服務提供了數據流傳輸、可靠性、有效流控制、全雙工操作和多路復用技術等。x0dx0ax0dx0a 關於流數據傳輸 ,TCP 交付一個由序列號定義的無結構的位元組流。 這個服務對應用程序有利,因為在送出到 TCP 之前應用程序不需要將數據劃分成塊, TCP 可以將位元組整合成欄位,然後傳給 IP 進行發送。x0dx0ax0dx0a TCP 通過面向連接的、端到端的可靠數據報發送來保證可靠性。 TCP 在位元組上加上一個遞進的確認序列號來告訴接收者發送者期望收到的下一個位元組。如果在規定時間內,沒有收到關於這個包的確認響應,重新發送此包。 TCP 的可靠機制允許設備處理丟失、延時、重復及讀錯的包。超時機制允許設備監測丟失包並請求重發。x0dx0ax0dx0a TCP 提供了有效流控制。當向發送者返回確認響應時,接收 TCP 進程就會說明它能接收並保證緩存不會發生溢出的最高序列號。x0dx0ax0dx0a 全雙工操作: TCP 進程能夠同時發送和接收包。x0dx0ax0dx0a TCP 中的多路技術:大量同時發生的上層會話能在單個連接上時進行多路復用。x0dx0ax0dx0aIGMP:Internet 組管理協議x0dx0a Internet 組管理協議(IGMP)是網際網路協議家族中的一個組播協議,用於 IP 主機向任一個直接相鄰的路由器報告他們的組成員情況。IGMP 信息封裝在 IP 報文中,其 IP 的協議號為 2。IGMP 具有三種版本,即 IGMP v1、v2 和 v3。x0dx0ax0dx0aIGMPv1: 主機可以加入組播組。沒有離開信息(leave messages)。路由器使用基於超時的機制去發現其成員不關注的組。 x0dx0aIGMPv2: 該協議包含了離開信息,允許迅速向路由協議報告組成員終止情況,這對高帶寬組播組或易變型組播組成員而言是非常重要的。 x0dx0aIGMPv3: 與以上兩種協議相比,該協議的主要改動為:允許主機指定它要接收通信流量的主機對象。來自網路中其它主機的流量是被隔離的。IGMPv3 也支持主機阻止那些來自於非要求的主機發送的網路數據包。 x0dx0a IGMP 協議變種有: x0dx0ax0dx0a距離矢量組播路由選擇協議(DVMRP: Distance Vector Multicast Routing Protocol) x0dx0aIGMP 用戶認證協議 (IGAP: IGMP for user Authentication Protocol) x0dx0a路由器埠組管理協議(RGMP: Router-port Group Management Protocol) x0dx0ax0dx0aICMP/ICMPv6:Internet控制信息協議x0dx0a Internet 控制信息協議(ICMP)是 IP 組的一個整合部分。通過 IP 包傳送的 ICMP 信息主要用於涉及網路操作或錯誤操作的不可達信息。ICMP 包發送是不可靠的,所以主機不能依靠接收 ICMP 包解決任何網路問題。ICMP 的主要功能如下:x0dx0ax0dx0a 通告網路錯誤。比如,某台主機或整個網路由於某些故障不可達。如果有指向某個埠號的 TCP 或 UDP 包沒有指明接受端,這也由 ICMP 報告。x0dx0ax0dx0a 通告網路擁塞。當路由器緩存太多包,由於傳輸速度無法達到它們的接收速度,將會生成「 ICMP 源結束」信息。對於發送者,這些信息將會導致傳輸速度降低。當然,更多的 ICMP 源結束信息的生成也將引起更多的網路擁塞,所以使用起來較為保守。x0dx0ax0dx0a 協助解決故障。ICMP 支持 Echo 功能,即在兩個主機間一個往返路徑上發送一個包。 Ping 是一種基於這種特性的通用網路管理工具,它將傳輸一系列的包,測量平均往返次數並計算丟失百分比。x0dx0ax0dx0a 通告超時。如果一個 IP 包的 TTL 降低到零,路由器就會丟棄此包,這時會生成一個 ICMP 包通告這一事實。TraceRoute 是一個工具,它通過發送小 TTL 值的包及監視 ICMP 超時通告可以顯示網路路由。x0dx0ax0dx0a ICMP 在 IPv6 定義中重新修訂。此外, IPv4 組成員協議(IGMP)的多點傳送控制功能也嵌入到 ICMPv6 中。 x0dx0ax0dx0aSNMP:簡單網路管理協議x0dx0a SNMP 是專門設計用於在 IP 網路管理網路節點(伺服器、工作站、路由器、交換機及 HUBS 等)的一種標准協議,它是一種應用層協議。 SNMP 使網路管理員能夠管理網路效能,發現並解決網路問題以及規劃網路增長。通過 SNMP 接收隨機消息(及事件報告)網路管理系統獲知網路出現問題。x0dx0ax0dx0a SNMP 管理的網路有三個主要組成部分:管理的設備、代理和網路管理系統。管理設備是一個網路節點,包含 ANMP 代理並處在管理網路之中。被管理的設備用於收集並儲存管理信息。通過 SNMP , NMS 能得到這些信息。被管理設備,有時稱為網路單元,可能指路由器、訪問伺服器,交換機和網橋、 HUBS 、主機或列印機。 SNMP 代理是被管理設備上的一個網路管理軟體模塊。 SNMP 代理擁有本地的相關管理信息,並將它們轉換成與 SNMP 兼容的格式。 NMS 運行應用程序以實現監控被管理設備。此外, NMS 還為網路管理提供了大量的處理程序及必須的儲存資源。任何受管理的網路至少需要一個或多個 NMS 。x0dx0ax0dx0a 目前, SNMP 有 3 種: SNMPV1 、 SNMPV2 、 SNMPV3。第 1 版和第 2 版沒有太大差距,但 SNMPV2 是增強版本,包含了其它協議操作。與前兩種相比, SNMPV3 則包含更多安全和遠程配置。為了解決不同 SNMP 版本間的不兼容問題, RFC3584 種定義了三者共存策略。x0dx0ax0dx0a SNMP 還包括一組由 RMON 、 RMON2 、 MTB 、 MTB2 、 OCDS 及 OCDS 定義的擴展協議。 x0dx0ax0dx0aDNS:域名系統(服務)協議x0dx0a 域名系統(服務)協議(DNS)是一種分布式網路目錄服務,主要用於域名與 IP 地址的相互轉換,以及控制網際網路的電子郵件的發送。大多數網際網路服務依賴於 DNS 而工作,一旦 DNS 出錯,就無法連接 Web 站點,電子郵件的發送也會中止。x0dx0ax0dx0a DNS 有兩個獨立的方面 : x0dx0ax0dx0a定義了命名語法和規范,以利於通過名稱委派域名許可權。基本語法是: local.group.site; x0dx0a定義了如何實現一個分布式計算機系統,以便有效地將域名轉換成 IP 地址。 x0dx0a 在 DNS 命名方式中,採用了分散和分層的機制來實現域名空間的委派授權以及域名與地址相轉換的授權。通過使用 DNS 的命名方式來為遍布全球的網路設備分配域名,而這則是由分散在世界各地的伺服器實現的。x0dx0ax0dx0a 理論上, DNS 協議中的域名標准闡述了一種可用任意標簽值的分布式的抽象域名空間。任何組織都可以建立域名系統,為其所有分布結構選擇標簽,但大多數 DNS 協議用戶遵循官方網際網路域名系統使用的分級標簽。常見的頂級域是: COM 、 EDU 、 GOV 、 NET 、 ORG 、 BIZ ,另外還有一些帶國家代碼的頂級域。x0dx0ax0dx0a DNS 的分布式機制支持有效且可靠的名字到 IP 地址的映射。多數名字可以在本地映射,不同站點的伺服器相互合作能夠解決大網路的名字與 IP 地址的映射問題。單個伺服器的故障不會影響 DNS 的正確操作。 DNS 是一種通用協議,它並不僅限於網路設備名稱。

❺ 計算機網路之五層協議

一:概述

計算機網路 (網路)把許多 計算機 連接在一起,而 互聯網 則把許多網路連接在一起,是 網路的網路 。網際網路是世界上最大的互聯網。

以小寫字母i開始的internet( 互聯網或互連網 )是 通用 名詞,它泛指由多個計算機網路互連而成的網路。在這些網路之間的通信協議(通信規則)可以是 任意 的。

以大寫字母I開始的Interent( 網際網路 )是 專有 名詞,它指當前全球最大的、開放的、由眾多網路相互連接而成的特定計算機網路,它採用的是 TCP/IP 協議族 作為通信規則,且其前身是美國的 ARPANET 。

網際網路現在採用 存儲轉發 的 分組交換 技術,以及三層網際網路服務提供者(ISP)結構。

網際網路按 工作方式 可以劃分為 邊緣 部分和 核心 部分,主機在網路的邊緣部分,作用是進行信息處理。 路由器 是在網路的核心部分,作用是:按存儲轉發方式進行 分組交換 。

計算機通信是計算機的 進程 (運行著的程序)之間的通信,計算機網路採用 通信方式 :客戶–伺服器方式和對等連接方式(P2P方式)

按作用 范圍 不同,計算機網路分為:廣域網WAN,城域網MAN,區域網LAN和個人區域網PAN。

五層協議 的體系結構由:應用層,運輸層,網路層,數據鏈路層和物理層。

<1>:應用層 : 是體系結構中的最高層,應用層的任務是 通過應用進程間的交互來完成特定網路應用 。應用層協議定義的是 應用進程間通信和交互的規則 。

<2>:運輸層 :任務是負責向 兩個主機中的進程之間的通信提供可靠的端到端服務 ,應用層利用該服務傳送應用層報文。

TCP :提供面向連接的,可靠的數據傳輸服務,其數據傳輸的單位是報文段。

UDP :提供無連接的,盡最大努力的數據傳輸服務,不保證數據傳輸的可靠性。

<3>網路層: 網路層的任務就是要選擇合適的路由,在發送數據時, 網路層把運輸層產生的報文段或者用戶數據報 封裝 成分組或包進行交付給目的站的運輸層。

<4>數據鏈路層: 數據鏈路層的任務是在兩個相鄰結點間的線路上無差錯地傳送以幀(frame)為單位的數據。每一幀包括數據和必要的控制信息。

<5>:物理層: 物理層的任務就是 透明 地傳送比特流,物理層還要確定連接電纜插頭的 定義 及 連接法 。

運輸層最重要的協議是:傳輸控制協議 TCP 和用戶數據報協議 UDP ,而網路層最重要的協議是網路協議 IP 。

分組交換的優點:高效、靈活、迅速、可靠。

網路協議主要由三個要素組成:   (1)語法:即數據和控制信息的結構或者格式; (2)語義:即需要發出何種控制信息,完成何種動作以及做出何種響應。 (3)同步:即事件實現順序的詳細說明。

二:物理層

物理層的主要任務:描述為確定與 傳輸媒體 的 介面 有關的一些特性。

機械特性 :介面所用接線器的形狀和尺寸,引腳數目和排列,固定和鎖定裝置等,平時常見的各種規格的插件都有嚴格的 標准化的規定 。

電氣特性 :介面電纜上的各條線上出現的電壓 范圍 。

功能特性 :某條線上出現的某一電平的點電壓表示何種 意義 ;

過程特性 :指明對不同功能的各種可能事件的出現 順序 。

通信的目的 是: 傳送消息 , 數據 是運送消息的 實體 。 信號 是數據的電氣或電磁的表現。

根據信號中代表 參數 的取值方式不同。 信號分為 : 模擬信號 (連續無限)+ 數字信號 (離散有限)。代表數字信號不同的離散數值的基本波形稱為 碼元 。

通信 的雙方信息交互的方式來看,有三中 基本方式 :

單向 通信(廣播)

雙向交替 通信(**半雙工**_對講機)

雙向同時 通信( 全雙工 _電話)

調制 :來自信源的信號常稱為基帶信號。其包含較多低頻成分,較多信道不能傳輸低頻分量或直流分量,需要對其進行調制。

調制分為 兩大類 : 基帶調制 (僅對波形轉換,又稱 編碼 ,D2D)+ 帶通調制 (基帶信號頻率范圍搬移到較高頻段, 載波 調制,D2M)。

編碼方式 :

不歸零制 (正電平1/負0)

歸零制度 (正脈沖1/負0)

曼徹斯特編碼 (位周期中心的向上跳變為0/下1)

差分曼徹斯特編碼 (每一位中心處有跳變,開始辯解有跳變為0,無跳變1)

帶通調制方法 : 調 幅 ( AM ):(0, f1) 。調 頻 ( FM ):(f1, f2) 。調 相 ( PM ):(0 , 180度) 。

正交振幅調制(QAM)物理層 下面 的 傳輸媒體 (介質): 不屬於任何一層 。包括有: 引導性傳輸媒體 :雙絞、同軸電纜、光纜 、 非引導性傳輸媒體 :短波、微波、紅外線。

信道復用技術 : 頻分復用 :(一樣的時間佔有不不同資源) ; 時分復用 :(不同時間使用同樣資源) ;統計時分復用、波分復用(WDM)、碼分復用(CDM)。

寬頻接入技術 : 非對稱數字用戶線 ADSL (Asymmetric Digital Subcriber Line)(用數字技術對現有的模擬電話用戶線進行改造)

三:數據鏈路層

數據鏈路層使用的 信道 有 兩種類型: * 點對點(PPP) 信道+ 廣播*信道

點對點信道的數據鏈路層的協議數據單元- -幀

數據鏈路層協議有許多, 三個基本問題 是共同的

封裝成楨

透明傳輸

差錯檢測

區域網的數據鏈路層拆成兩個子層,即 邏輯鏈路層(LLC) 子層+ 媒體接入控制(MAC) 子層;

適配器的作用:

計算機與外界區域網的連接是通過通信適配器,適配器本來是主機箱內插入的一塊網路介面板,又稱網路介面卡,簡稱( 網卡 )。

乙太網採用 無連接 的工作方式,對發送的數據幀 不進行編號 ,也不要求對方發回確認,目的站收到差錯幀就丟掉。

乙太網採用的協議是:具有 沖突檢測 的 載波監聽多點接入 ( CSMA/CD )。協議的要點是: 發送前先監聽,邊發送邊監聽,一旦發現匯流排出現了碰撞,就立即停止發送。

乙太網的硬體地址 , MAC 地址實際上就是適配器地址或者適配器標識符。 48位長 , 乙太網最短幀長:64位元組。爭用期51.2微秒。

乙太網適配器有 過濾 功能:只接收 單播幀,廣播幀,多播幀 。

使用 集線器 可以在 物理層 擴展乙太網(半雙工),使用 網橋 可以在 數據鏈路層 擴展乙太網(半雙工),網橋轉發幀時, 不改變幀 的源地址。網橋 優點 :對幀進行轉發過濾,增大 吞吐量 。擴大網路物理范圍,提高 可靠 性,可 互連 不同物理層,不同MAC子層和不同速率的乙太網。 網橋 缺點 :增加時延,可能產生廣播風暴。

透明網橋 : 自學習 辦法處理接收到的幀。

四:網路層

TCP/IP 體系中的網路層向上只提供簡單靈活的、無連接,盡最大努力交付的數據報服務。網路層不提供服務質量的承諾,不保證分組交付的時限, 進程 之間的通信的 可靠性 由 運輸層 負責。

一個IP地址在整個網際網路范圍內是唯一的,分類的 IP地址 包括A類( 1~126 )、B類( 128~191 )、C類( 192~223 單播地址)、D類( 多播 地址)。

分類的IP地址由 網路號欄位 和 主機號欄位 組成。

物理地址(硬體地址)是數據鏈路層和物理層使用的地址,而 IP 地址是網路層和以上各層使用的地址,是一種 邏輯地址 ,數據鏈路層看不見數據報的IP地址。

IP首部中的 生存時間 段給出了IP數據報在網際網路中經過的 最大路由器數 ,可防止IP數據報在互聯網中無限制的 兜圈 子。

地址解析協議 ARP(Address Resolution Protocol) 把IP地址解析為 硬體地址 ,它解決 同一個區域網的主機或路由器的IP地址和硬體地址的映射問題 ,是一種解決地址問題的協議。以目標IP地址為線索,用來定位一個下一個應該接收數據分包的網路設備對應的MAC地址。如果目標主機不再同一鏈路上時,可以通過ARP查找下一跳路由器的MAC地址,不過ARP只適用於IPV4,不能用於IPV6,IPV6中可以用ICMPV6替代ARP發送鄰居搜索消息。

路由選擇協議有兩大類: 內部網關 協議(RIP和OSPE)和 外部網關 協議(BGP-4)。

網際控制報文協議 ICMP (Internet Control Message Protocol )控制報文協議。是IP層協議,ICMP報文作為IP數據報的數據,加上首部後組成IP數據報發送出去,使用ICMP並不是實現了可靠傳輸。ICMP允許主機或者路由器 報告差錯 情況和 提供有關異常 的情況報告。

ICMP是一個重要應用是分組網間探測 PING

與單播相比,在一對多的通信中,IP多播可大大節約網路資源, IP多播使用D類地址,IP多播需要使用 網際組管理協議IGMP 和多播路由選擇協議。

五: 運輸層

網路層為主機之間提供邏輯通信,運輸層為應用進程之間提供端到端的邏輯通信。

運輸層有兩個協議 TCP和UDP

運輸層用一個 16位 埠號來標志一個埠。

UDP特點 :無連接、盡最大努力交付、面向報文、無擁塞控制、支持一對一,多對一,一對多,多對多的交互通信。首部開銷小。

TCP特點: 面向連接,每一條TCP連接只能是點對點、提供可靠的交付服務,提供全雙工通信、面向位元組流。

TCP用主機的IP地址加上主機上的埠號作為TCP連接的端點,這樣的端點就叫 套接字 。

流量控制 是一個 端到端 的問題,是接收端抑制發送端發送數據的速率,以方便接收端來得及接收。 擁塞控制 是一個全局性過程,涉及到所有的主機,所有的路由器,以及與降低網路傳輸性能有關的所有因素。

TCP擁塞控制採用四種演算法: 慢開始、擁塞避免、快重傳、快恢復 。

傳輸有 三個連接 :連接建立、數據傳送、連接釋放。

TCP連接建立採用三次握手機制,連接釋放採用四次握手機制。

六:應用層

文件傳送協議FTP 使用 TCP 可靠傳輸服務。FTP使用客戶伺服器方式,一個FTP伺服器進程可同時為多個客戶進程提供服務。在進行文件傳輸時,FTP的客戶和伺服器之間要建立兩個並行的TCP連接,控制連接和數據連接,實際用於傳輸文件的是 數據連接 。

萬維網 WWW 是一個大規模,聯機式的信息儲藏所,可以方便從網際網路上一個站點鏈接到另一個站點。

萬維網使用 統一資源定位符URL 來標志萬維網上的各種文檔,並使每一個文檔在整個網際網路的范圍內具有唯一的標識符 URL 。

❻ 計算機網路中,網路層的功能是什麼

計算機網路中,網路層的功能是包括定址和路由選擇、連接的建立、保持和終止等。它提供的服務使傳輸層不需要了解網路中的數據傳輸和交換技術。如果您想用盡量少的詞來記住網路層,那就是"路徑選擇、路由及邏輯定址"。網路層的目的是實現兩個端系統之間的數據透明傳送。

網路層中涉及眾多的協議,其中包括最重要的協議,也是TCP/IP的核心協議——IP協議。IP協議非常簡單,僅僅提供不可靠、無連接的傳送服務。IP協議的主要功能有:無連接數據報傳輸、數據報路由選擇和差錯控制。與IP協議配套使用實現其功能的還有地址解析協議ARP、逆地址解析協議RARP、網際網路報文協議ICMP、網際網路組管理協議IGMP。

(6)計算機網路的核心協議擴展閱讀:

計算機網路體系結構的通信協議劃分為七層,自下而上依次為:物理層(Physics Layer)、數據鏈路層(Data Link Layer)、網路層(Network Layer)、傳輸層(Transport Layer)、會話層(Session Layer)、表示層(Presentation Layer)、應用層(Application Layer)。其中第四層完成數據傳送服務,上面三層面向用戶。

除了標準的OSI七層模型以外,常見的網路層次劃分還有TCP/IP四層協議以及TCP/IP五層協議。

大多數的計算機網路都採用層次式結構,即將一個計算機網路分為若干層次,處在高層次的系統僅是利用較低層次的系統提供的介面和功能,不需了解低層實現該功能所採用的演算法和協議;較低層次也僅是使用從高層系統傳送來的參數,這就是層次間的無關性。因為有了這種無關性,層次間的每個模塊可以用一個新的模塊取代,只要新的模塊與舊的模塊具有相同的功能和介面,即使它們使用的演算法和協議都不一樣。

❼ 計算機網路協議

計算機網路的最大特點是通過不同的通信介質把不同廠家、不同操作系統的計算機和其他相關設備(例如列印機、傳達室感器等)連接在一起,打破時間和空間的界限,共享軟硬體資源和進行信息傳輸。然而,如何實現不同傳輸介質上的不同軟硬體資源之間的通令共享呢?這就需要計算機與相關設備按照相同的協議,也就是通信規則的集合來進行通信。這正如人類進行通信、交談時要使用相同的語言一樣。
網路協議(Network Protcol)是計算機網路中互相通信的對等實體間交換信息時所必須遵守的規則的集合。當前的計算機網路的體系結構是以TCP/IP協議為主的Internet結構。對等實體通常是指在計算機網路體系結構中處於相同層次的通信協議進程。網路協議為傳輸的信息宣言嚴格的格式(語法)和傳輸順序(文法)。而且還定義所傳輸信息的詞彙表和這些詞彙所表示的意義(語義)。
既然談到Internet網路,那我們就來看一下網路協議與Internet網路的關系:
Internet網路體系結構以TCP/IP協議為核心。其中IP協議用來給各種不同的通信子網或區域網提供一個統一的互連平台,TCP協議則用來為應用程序提供端到端的通信和控制功能。
事實上,Internet並不是一個實際的物理網路或獨立的計算機網路,它是世界上各種使用統一TCP/IP協議的網路的互連。TCP/IP協議分為4層(通信子網層、網路層、運輸層和應用層)
1、通信子網層(subnetwork layer)
TCP/IP協議的通信子網層與OSI協議的物理層 、數據鏈路層以及網路層的一部分相對應。該層中所使用的協議為各通信子網本身固有的協議,例如乙太網的802.3協議、令牌環網的802.5協議有及分組交互網的X.25協議等。通信子網層的作用是傳輸經網路層處理過的消息。
2、網路層(internet layer)
網路層所使用的協議是IP協議。它把運輸層送來的消息組裝成IP數據包,並把IP數據包傳遞給通信子網層。IP協議提供統一的IP數據格式,以消除各通信子層的差異,從而為信息發送方和接收方提供透明通道。
網路層的主要功能是:①Internet全網址的識別與管理;②IP數據包路由功能;③發送或接收時例IP數據包的長度與通信子網所允許的數據包長度相匹配,例如,乙太網所傳輸的幀長為1500位元組,而ARPA網所傳輸的數據包長1008位元組。當乙太網上的數據幀通過網路層IP協議轉達發給ARPA網時,就要進行數據幀的分解處理。
3、運輸層(transport layer)
運輸層為應用程序提供端到羰通信功能。運輸層有3個主要協議,即傳輸控制的協議(TCP)、用戶數據報協議(UDP)和互連網控制消息協議(ICMP)。
4、應用層(application layer)
應用層為用戶提供所需要的各種服務。它提供的主要服務有:過程登錄,用戶可以使用異地主機;文件傳輸,用戶可在不同主機之間傳輸文件;電子郵件,用戶可通過主機和終羰互相發送信件;Web伺服器,發布和訪問具有超文本格式HTML的各種信息。|

❽ 計算機網路里的核心是什麼

網路計算機系統的核心技術是(網路所使用的操作系統+Intelnet+TCP/IP)。CPU是計算機運行的核心,並不是網路計算機系統的核心,計算機本身運行的核心是操作系統,而網路計算機的系統核心就是本身網路所使用的操作系統+Intelnet+TCP/IP