當前位置:首頁 » 網路連接 » 計算機網路架構

計算機網路架構

發布時間: 2022-01-20 04:14:29

計算機網路的 基本結構

ISO/OSI開放系統互連參考模型(見圖)

計算機網路的拓撲結構有:

匯流排型結構(BUS)

星型結構(Star)

樹型結構(Tree)

環型結構(Ring)

網型結構(Mesh)

全互聯型

什麼是計算機網路體系結構

計算機網路是一個復雜的具有綜合性技術的系統,為了允許不同系統實體互連和互操作,不同系統的實體在通信時都必須遵從相互均能接受的規則,這些規則的集合稱為協議(Protocol)。

1、系統指計算機、終端和各種設備。

2、實體指各種應用程序,文件傳輸軟體,資料庫管理系統,電子郵件系統等。

3、互連指不同計算機能夠通過通信子網互相連接起來進行數據通信。

4、互操作指不同的用戶能夠在通過通信子網連接的計算機上,使用相同的命令或操作,使用其它計算機中的資源與信息,就如同使用本地資源與信息一樣。

計算機網路體系結構可以從網路體系結構、網路組織、網路配置三個方面來描述,網路組織是從網路的物理結構和網路的實現兩方面來描述計算機網路,網路配置是從網路應用方面來描述計算機網路的布局,硬體、軟體和通信線路來描述計算機網路,網路體系結構是從功能上來描述計算機網路結構。

(2)計算機網路架構擴展閱讀:

計算機網路由多個互連的結點組成,結點之間要不斷地交換數據和控制信息,要做到有條不紊地交換數據,每個結點就必須遵守一整套合理而嚴謹的結構化管理體系·計算機網路就是按照高度結構化設計方法採用功能分層原理來實現的,即計算機網路體系結構的內容。

通常所說的計算機網路體系結構,即在世界范圍內統一協議,制定軟體標准和硬體標准,並將計算機網路及其部件所應完成的功能精確定義,從而使不同的計算機能夠在相同功能中進行信息對接。

一、計算機系統和終端

計算機系統和終端提供網路服務界面。地域集中的多個獨立終端可通過一個終端控制器連入網路。

二、通信處理機

通信處理機也叫通信控制器或前端處理機,是計算機網路中完成通信控制的專用計算機,通常由小型機、微機或帶有CPU的專用設備充當。在廣域網中,採用專門的計算機充當通信處理機:在區域網中,由於通信控制功能比較簡單,所以沒有專門的通信處理機,而是在計算機中插入一個網路適配器(網卡)來控制通信。

三、通信線路和通信設備

通信線路是連接各計算機系統終端的物理通路。通信設備的採用與線路類型有很大關系:如果是模擬線路,在線中兩端使用Modem(數據機);如果是有線介質,在計算機和介質之間就必須使用相應的介質連接部件。

四、操作系統

計算機連入網路後,還需要安裝操作系統軟體才能實現資源共享和管理網路資源。如:Windows 98、Windows 2000、Windows xp等。

五、網路協議

網路協議是規定在網路中進行相互通信時需遵守的規則,只有遵守這些規則才能實現網路通信。常見的協議有:TCP/IP協議、IPX/SPX協議、NetBEUI協議等。

㈢ 計算機網路結構如下圖:

先用搜索打開cmd,然後輸入ipconfig,查看本機(B)的網路狀態,然後用ping逐一測試與網關的連接,與A機等的連接情況。可能產生此類情況的原因,有可能是網路ip地址沖突,也有可能是硬體方面的原因,也有可能是網路設置的原因。如果是ip沖突就更換B機ip,如果是用錯網線或的原因就更換網線,設置問題就更改設置。

㈣ 簡述什麼是計算機網路拓撲結構

計算機網路的拓撲結構,即是指網上計算機或設備與傳輸媒介形成的結點與線的物理構成模式。網路的結點有兩類:一類是轉換和交換信息的轉接結點,包括結點交換機、集線器和終端控制器等;另一類是訪問結點,包括計算機主機和終端等。線則代表各種傳輸媒介,包括有形的和無形的。
計算機網路的拓撲結構主要有:匯流排型結構、星型結構、環型結構、樹型結構和混合型結構。
匯流排型結構
匯流排型結構由一條高速公用主幹電纜即匯流排連接若干個結點構成網路。網路中所有的結點通過匯流排進行信息的傳輸。這種結構的特點是結構簡單靈活,建網容易,使用方便,性能好。其缺點是主幹匯流排對網路起決定性作用,匯流排故障將影響整個網路。
匯流排型結構是使用最普遍的一種網路。
星型結構
星型結構由中央結點集線器與各個結點連接組成。這種網路各結點必須通過中央結點才能實現通信。星型結構的特點是結構簡單、建網容易,便於控制和管理。其缺點是中央結點負擔較重,容易形成系統的「瓶頸」,線路的利用率也不高。
環型結構
環型結構由各結點首尾相連形成一個閉合環型線路。環型網路中的信息傳送是單向的,即沿一個方向從一個結點傳到另一個結點;每個結點需安裝中繼器,以接收、放大、發送信號。這種結構的特點是結構簡單,建網容易,便於管理。其缺點是當結點過多時,將影響傳輸效率,不利於擴充。
樹型結構
樹型結構是一種分級結構。在樹型結構的網路中,任意兩個結點之間不產生迴路,每條通路都支持雙向傳輸。這種結構的特點是擴充方便、靈活,成本低,易推廣,適合於分主次或分等級的層次型管理系統。
混合型結構
混合型結構可以是不規則型的網路,也可以是點-點相連結構的網路。
區域網中常見的結構為匯流排型或星型。

㈤ 計算機網路的組成

報文交換特點:1,在源與目的結點之間無須建立專用通道,對網路的故障適應能力較強;2,沒有建立和拆除電路的時間延遲;3,線路利用率較高,可以進行速率上的調整;4,可靠性較高;5,每個節點對報文進行全面的處理,如果傳輸出錯,要重發整個報文。

分組交換(packet switching):傳輸的信息是報文分組,將一個長的報文分割成若干個分組來傳輸。

高速交換:ATM(非同步傳輸模式):把線路交換跟分組交換相結合。以固定長度(53位元組:信元頭5位元組,正文48位元組)。FR(幀中繼):採用永久虛電路,只要接收完幀的目的地址(不是指向本結點就立即轉發幀)若傳輸出錯,則給下游結點發送錯誤指示,要它終止接收,並要求上游重發該幀。

9.以數據報為例敘述交換技術的工作過程

10.CSMA/CD匯流排型網路的拓樸結構,幀結構及其基本工作過程

CSMA/CD(Carrier sense Multiple Access with Collision Detection)帶有沖突檢測的載波偵聽多路訪問。

拓樸結構:?

11.令牌環網的拓樸結構,幀結構及其基本工作過程

12.計算機網路流量控制的目的和流量控制的級別

目的:1,防止網路因過載而引起吞吐量下降和延時的增加;2,減少擁塞,避免死鎖;3,在互相競爭的用戶之間公平合理地分配資源。

四種級別:1,相鄰結點間的流量控制,2,源結點和目的結點間的流量控制;3,主機與源結點間的流量控制;4,源主機與目的主機間的流量控制。

13.關於源路由網橋的概念和工作原理(P102)

源路由網橋(IEEE802。5工作組選用的網橋,面向令牌環網):是指源站點要提供偵傳送的路由信息,該路由信息(Routing Information)設置在該幀的頭部,用於標識幀的傳輸路徑(面向連接的網橋)。

工作原理:源站要向目的站通信前,必須尋找通向目的站的路徑(實際上是建立連接的過程:源站首先向全網廣播一個「探測幀」,該幀每經過一個網橋,網橋把自己相關路由信息寫入該探測幀,為該到達目的站時,該數據包就記錄下一張它所經過的路徑圖(路由表)。目的站會使這個探測幀返回(實際由目的站發出一個應答幀)當源站接收到應答幀時,則可以說連接已建立)。

14.關於透明網橋的概念和工作原理(P99)

所謂透明網橋是指網橋的操作過程對其埠上連接的網段上的工作站是「透明的」,換句話說,工作站用戶並不知道網橋的存在。

15.路由器的基本工作過程及其作用

基本工作過程:

A, 路由器工作在網路層,它的傳輸單位是分組(packet),又稱數據包

B, 當路由器接收到一個包時,首先進行拆包,把數據鏈路層的信息去掉,讀取網路層的信息

C, 根據包的目的地址(指向)進行:本地提交(本網是目的結點所在網路);分組轉發(選擇轉發路由)

D,數據安全性檢查(轉發檢驗)

E, 通過安全檢查後,則進行打包,(封裝)加入數據鏈路層的信息,轉發該包。

基本功能:

1, 協議轉換

2, 路由選擇

3, 支持多協議的路由選擇

4, 流量控制

5, 分組的分段與組裝

6, 網路管理功能

(未完成)16.路由選擇演算法的分類和理想路由選擇演算法應具有的特點

路由演算法有:距離矢量演算法和鏈路狀態演算法。

距離矢量演算法:以某一參考點到達目的結點的距離作為度量的演算法。這里的距離指該路徑上所經歷的最少網關(也指路由器)數。

鏈路狀態演算法:實際上是一種「最短路徑優先」的演算法。

特點:?

17.距離向量演算法和RIP的工作過程(p110)

距離向量演算法的基本思想:以某一參考點到目的結點的距離作為演算法的度量。

RIP(routing Information Protocol)路由信息協議工作過程:1,初始化(啟動RIP協議);2,路由表交換路由信息;3,路由表更新(最知線路優先)。(P113)

18.路由器的主機名和埠配置使用方法

配置主機名(路由器):每台路由器主機的預設名Router。假設把它配置為路由器R2則輸入命令:

router (config) #host name Router (R2)

顯示:Router R2 (config) #

埠配置(埠地址配置):

① Router R2 (config) # interface eithernet 0

② Router R2 (config-if) # ip address 200.111.50.1 255.255.255.0

配置埠的IP地址:200.111.50.1

相應的子網掩碼:255.255.255.0

③ Router R2 (config ) # interface serial 0 (0是串列口)

④ Router R2 (config-if)# ip address 128.120.1.1 255.255.255.0

19.奈奎斯特和香農定律原理

(離散信號的信道容量)奈奎斯特定律:C = 2 F log2 L (bps) 每秒的信道容量,信道的最大傳輸速率

C:信道容量。 F:帶寬。 L:符號的離散取值。

(連續信號的信道容量)香農定律:C = F log2 (1+S/N)

S:通過的信號平均功率。 N:雜訊(干擾信號)的功率。所謂雜訊是指干擾信號(雜訊)在所有頻率上的強度都一樣。 S/N:採用信噪比來代替。 SNR 其單位是分貝。DB

分貝值 = 10 log10 (S/N) 分貝值是可測量的。則可利用分貝值得到S/N。

20.計算機網路中常用的編碼技術

(1) 單極性不歸零編碼(NRZ)

(2) 曼徹斯特編碼(Manchester Encoding)

(3) 差分曼徹斯特編碼

21.畫圖說明頻移鍵控法的工作原理

22.PCM技術的基本工作步驟

1, 取樣:按照一定的時間間隔采樣測量模擬信號幅值

2, 量化:將取樣點測量的信號幅值分級取整

3, 編碼:將量化的結果(整數據)用二進制數表示出來

23.非同步傳輸的編碼結構

也叫「起/停方式」:每傳送1個字元(5bit/8bit)都在字元前面加入一位開始位(「0」表示使用停電平表示傳送開始),而在代碼校驗(奇/偶)後面跟隨停止位(1位,3/2位或2位,用「1」高電平表示,代表字元傳輸結束)

以ASCII碼的A字元為例(11位非同步碼結構)

A字元:41H = 1000001 編碼後:01000001111

24.HDLC的幀結構和基於比特流的傳輸控制流程規程的主要特性

HDLC(High Data Link Control)高級數據鏈路控制:基於比特傳輸的控制規程。主要特徵如下:

① 通信方式:全雙工

② 差錯控制:循環冗餘碼(CRC)

③ 同步方式:同步

④ 電碼:隨機碼(任意二進制編碼)

⑤ 信息長度:可變區

⑥ 速率:2400bps以上

⑦ 發關方式:連續發送,即發送方送出一個信息幀後,不等接收方的應答,則繼續發關隨後的幀,接收方的應答信號是利用全雙工的另一信道在它發送給發送方的信息幀的控制欄位中夾帶回「已收到某編號的信息幀」(期待接收某個編號的幀)這表明此號幀以前的信息幀已正確接收。如果發現傳輸出錯,則請求重傳該號幀及其隨後的幀。

HDLC的幀結構:

F
A
C
I
FCS
F

同步標志(01111110) 地址 控制欄位 正文 循環冗餘碼 標志

25.計算機網路中使用的循環冗餘碼校驗的工作原理

26.多路復用的基本思想和種類

多路復用原理:就是讓一條線路復用成多個子信道來使用

種類有:

1, 頻分多路復用(FDM):分割線路的帶寬,形成多個子信道(頻度)

2, 同步時分多路復用(TDM):分割線路的傳輸時間形成多個子信道(一個時間片)時隙

3, 統計時分多路復用(STDM):分割線路的傳輸時間。但動不是固定給用戶分配時間片,而是需要傳送時,才給它分配時間片。

4, 波分多路復用(WOM):光纖上使用分割的是信號光的波長

27.頻分多路復用的工作原理

28.時分多路復用的種類和各自的工作特性

29.會話層的同步方法

為了控制信息流同時能夠從軟體或操作失誤中恢復過來,會話層允許在數據中插入同步點,當出現故障時,找到故障處的前一個同步點並從該同步點進行恢復,這個過程稱為再同步。對話過程中可以插入次同步點,如果傳輸中出了故障,控制流可以退回到對話中的一個或多個次同步上進行恢復。主同步點必須被確認,次同步點不需要確認。

30.表示層的局部語法和傳送語法

局部語法:某一具體計算機所使用的語法稱為局部語法。局部語法的差異使得同一數據對象在不同的計算機中被表示成不同的比特序列。

傳送語法:符全傳送過程要求的語法。數據以傳送語法的形式在網路中傳送,發送方將符合自己局部語法的比特序列轉換成符合傳送語法的比特序列。

31.交換機的交換結構和各自的特點

交換結構有:軟體執行交換結構、矩陣交換結構、匯流排交換結構、共享存儲器交換結構。

軟體執行交換結構:藉助CPU和RAM的硬體環境,用特定的軟體來實現埠之間的幀交換。所有功能均由軟體來實現,操作靈活,但隨著端品數和增加,CPU的負擔加重。

矩陣交換:採用硬體方法進行交換。優點是利用硬體交換,結構緊湊,交換速度快,延遲時間短,缺點是隨著埠的增加,監控和管理變得困難。

匯流排交換:對匯流排的帶寬要求較高,造價高,但性能也好。

存儲交換:結構簡單、容易實現,但通過RAM操作會產生延時。

32.交換機的組成和各部分的主要作用

大多數交換器都有一塊背板,把各種板卡插在其上面,實現相應連接,交換器的主要部件包括控制、邏輯、陣列、及埠四個。

1, 控制部件:其作用是控制、管理交換器,識別連接到各埠的區域網的類型,並自動地進行交換器的測試

2, 邏輯部件:其作用是讀取輸入數據幀的目的地址,並以此目的地址與埠地址表中的內容進行比較,找出該目的地址對應的埠號,批示陣列部件按通對應的(輸出埠)矩陣開頭(來接到輸出埠)

3, 陣列部件:一旦接收到邏輯部件的指令時,啟動源埠(輸入)與目的埠(輸出)之間的交叉連接,並保持該連接直到該幀全部傳送完

4, 埠部件:可以看成一組物理介面

33.交換機的轉發率和過濾率

交換器的過濾率是在某段時間內(通常為1秒)所解釋多少幀的目的地址,這種能力稱為過濾率。

轉發率是指在某段時間內(1秒)所轉發幀的數目,稱為轉發率。

34.如何使用交換機、集線器、路由器、防火牆和常用傳輸介質組建企業網路

35.關於VLAN的定義和其主要功能(P87)

VLAN(virtual LAN)虛擬區域網:建立在物理交換機之上的,它利用軟體進行邏輯工作組的劃分和管理。

36.X.25的協議體系結構

X.25協議是CCITT關於公用數據網上以分組方式工作的DTE與DCE之間的介面標准,其功能是為公用數據網在分組交換方式下提供終端操作,它不涉及通信子網的內部結構。

層次結構:自下至上分別稱為物理級、幀級、分組級。

37.幀中繼的基本工作原理

38.ATM的協議參考模型(P141)

39.ATM交換技術的特點

特點:

(1) 採用面向連接的工作方式。

(2) 採用非同步時分多路方式

(3) 網路沒有逐段鏈路的差錯控制和流量控制。

(4) 信頭功能簡單

(5) 小的信元長度

40.ATM交換虛連接的工作過程(P132)

41.什麼是ISDN,定義了哪些設備和介面

ISDN是用來解決一些小的辦公室或撥號用戶需要比傳統電話撥號服務能提供更寬傳輸帶寬的應用,同時ISDN也可用來提供線路備份。

42.IP地址結構和子網劃分的作用

結構:每個IP地址共有32位,分為4段,以X。X。X。X表示,每個X為8位,取值為0~255。分為網路地址和主機地址兩部分,其中網路地址表示一個網路,主機地址用來表示這個網路中的一台主機。

子網劃分作用:

㈥ 常見的計算機網路拓撲結構有

1、匯流排型

這種網路拓撲結構中所有設備都直接與匯流排相連,它所採用的介質一般也是同軸電纜(包括粗纜和細纜),不過現在也有採用光纜作為匯流排型傳輸介質的,如ATM網、Cable Modem所採用的網路等都屬於匯流排型網路結構。

匯流排結構是指各工作站和伺服器均掛在一條匯流排上,各工作站地位平等,無中心節點控制,公用匯流排上的信息多以基帶形式串列傳遞,其傳遞方向總是從發送信息的節點開始向兩端擴散,如同廣播電台發射的信息一樣,因此又稱廣播式計算機網路。各節點在接受信息時都進行地址檢查,看是否與自己的工作站地址相符,相符則接收網上的信息。

2、環形結構

環型結構由網路中若干節點通過點到點的鏈路首尾相連形成一個閉合的環,這種結構使公共傳輸電纜組成環型連接,數據在環路中沿著一個方向在各個節點間傳輸,信息從一個節點傳到另一個節點。

這種結構的網路形式主要應用於令牌網中,在這種網路結構中各設備是直接通過電纜來串接的,最後形成一個閉環,整個網路發送的信息就是在這個環中傳遞,通常把這類網路稱之為"令牌環網"。

3、星型結構

星型拓撲結構是用一個節點作為中心節點,其他節點直接與中心節點相連構成的網路。中心節點可以是文件伺服器,也可以是連接設備。常見的中心節點為集線器。

星型拓撲結構的網路屬於集中控制型網路,整個網路由中心節點執行集中式通行控制管理,各節點間的通信都要通過中心節點。每一個要發送數據的節點都將要發送的數據發送中心節點,再由中心節點負責將數據送到目地節點。因此,中心節點相當復雜,而各個節點的通信處理負擔都很小,只需要滿足鏈路的簡單通信要求。

4、樹型結構

樹型結構是分級的集中控制式網路,與星型相比,它的通信線路總長度短,成本較低,節點易於擴充,尋找路徑比較方便,但除了葉節點及其相連的線路外,任一節點或其相連的線路故障都會使系統受到影響。

5、分布式結構/網狀結構

網狀形網路如下圖所示,其為分組交換網示意圖。圖種虛線以內部分為通信子網,每個結點上的計算機稱為結點交換機。圖中虛線以外的計算機(Host)和終端設備統稱為數據處理子網或資源子網。

㈦ 計算機網路分為哪幾種結構

按地理范圍、拓撲結構、傳輸速率和傳輸介質等分類,按地理范圍分類 ①區域網 ②城域網 ③廣域網
按傳輸速率分類 ,傳輸速率快的稱高速網 ,傳輸速率慢的稱低速網。
按傳輸介質分類 ①有線網 ②無線網
按拓撲結構分類 ①匯流排拓撲結構 ②星型拓撲結構 ③環型拓撲結構 ④樹型拓撲結構

㈧ 計算機網路的組成和體系結構

一、計算機網路的基本組成

計算機網路是一個很復雜的系統,它由許多計算機軟體、硬體和通信設備組合而成。下面對一個計算機網路所需的主要部分,即伺服器、工作站、外圍設備、網路軟體作簡要介紹。

1.伺服器(Server)

在計算機網路中,伺服器是整個網路系統的核心,一般是指分散在不同地點擔負一定數據處理任務和提供資源的計算機,它為網路用戶提供服務並管理整個網路,它影響著網路的整體性能。一般在大型網路中採用大型機、中型機和小型機作為網路伺服器,可保證網路的可靠性。對於網點不多,網路通信量不大,數據安全性要求不太高的網路,可以選用高檔微機作網路伺服器。根據伺服器在網路中擔負的網路功能的不同,又可分為文件伺服器、通信伺服器和列印伺服器等。在小型區域網中,最常用的是文件伺服器。一般來說網路越大、用戶越多、伺服器負荷越大,對伺服器性能要求越高。

2.工作站(Workstation)

工作站有時也稱為「節點」或「客戶機(Client)」,是指通過網路適配器和線纜連接到網路上的計算機,是網路用戶進行信息處理的個人計算機。它和伺服器不同,伺服器是為整個網路提供服務並管理整個網路,而工作站只是一個接入網路的設備,它保持原有計算機的功能,作為獨立的計算機為用戶服務,同時又可按一定的許可權訪問伺服器,享用網路資源。

工作站通常都是普通的個人計算機,有時為了節約經費,不配軟、硬碟,稱為「無盤工作站」。

3.網路外圍設備

是指連接伺服器和工作站的一些連線或連接設備,如同軸電纜、雙絞線、光纖等傳輸介質,網卡(NIC)、中繼器(Repeater)、集線器(Hub)、交換機(Switch)、網橋(Bridge)等,又如用於廣域網的設備:數據機(Modem)、路由器(Router)、網關(Gateway)等,介面設備:T型頭、BNC連接器、終端匹配器、RJ45頭、ST頭、SC頭、FC頭等。

4.網路軟體

前面介紹的都是網路硬體設備。要想網路能很好地運行,還必須有網路軟體。

通常網路軟體包括網路操作系統(NOS)、網路協議軟體和網路通信軟體等。其中,網路操作系統是為了使計算機具備正常運行和連接上網的能力,常見的網路操作系統有UNIX、Linux、Novell Netware、Windows NT、Windows 2000 Server、Windows XP等;網路協議軟體是為了各台計算能使用統一的協議,可以看成是計算機之間相互會話使用的語言;而運用協議進行實際的通信則是由通信軟體完成的。

網路軟體功能的強弱直接影響到網路的性能,因為網路中的資源共享、相互通信、訪問控制和文件管理等都是通過網路軟體實現的。

二、計算機網路的拓撲結構

所謂計算機網路的拓撲結構是指網路中各結點(包括連接到網路中的設備、計算機)的地理分布和互連關系的幾何構形,即網路中結點的互連模式。

網路的拓撲結構影響著整個網路的設計、功能、可靠性和通信費用等指標,常見的網路拓撲結構有匯流排型、星型、環型等,通過使用路由器和交換機等互連設備,可在此基礎上構建一個更大網路。

1.匯流排型

在匯流排型結構中,將所有的入網計算機接入到一條通信傳輸線上,為防止信號反射,一般在匯流排兩端連有終端匹配器如圖6-1(a)。匯流排型結構的優點是信道利用率高,可擴充性好,結構簡單,價格便宜。當數據在匯流排上傳遞時,會不斷地「廣播」,第一節點均可收到此信息,各節點會對比數據送達的地址與自己的地址是否相同,若相同,則接收該數據,否則不必理會該數據。缺點是同一時刻只能有兩個網路結點在相互通信,網路延伸距離有限,網路容納的節點數有限。在匯流排上只要有一個結點連接出現問題,會影響整個網路運行,且不易找到故障點。

圖6-1 網路拓撲結構

2.星型

在星型結構中,以中央結點為中心,其他結點都與中央結點相連。每台計算機通過單獨的通信線路連接到中央結點,由該中央結點向目的結點傳送信息,如圖6-1(b),因此,中央結點必須有較強的功能和較高的可靠性。

在已實現的網路拓撲結構中,這是最流行的一種。跟匯流排型拓撲結構相比,它的主要的優勢是一旦某一個電纜線段被損壞了,只有連接到那個電纜段的主機才會受到影響,結構簡單,建網容易,便於管理。缺點是該拓撲是以點對點方式布線的,故所需線材較多,成本相對較高,此外中央結點易成為系統的「瓶頸」,且一旦發生故障,將導致全網癱瘓。

3.環型

在環型結構中,如圖6-1(c)所示,各網路結點連成封閉環路,數據只能是單向傳遞,每個收到數據包的結點都向它的下一結點轉發該數據包,環游一圈後由發送結點回收。當數據包經過目標結點時,目標結點根據數據包中的目標地址判斷出是自己接收,並把該數據包拷貝到自己的接收緩沖中。

環型拓撲結構的優點是:結構簡單,網路管理比較簡單,實時性強。缺點是:成本較高,可靠性差,網路擴充復雜,網路中若有任一結點發生故障都會使整個網路癱瘓。

三、計算機網路的體系結構

要弄清網路的體系結構,需先弄清網路協議是什麼。

網路協議是兩台網路上的計算機進行通信時使用的語言,是通信的規則和約定。為了在網路上傳輸數據,網路協議定義了數據應該如何被打成包、並且定義了在接收數據時接收計算機如何解包。在同一網路中的兩台計算機為了相互通信,必須運行同一協議,就如同兩個人交談時,必須採用對方聽得懂的語言和語速。

由於網路結點之間的連接可能是很復雜的,因此,為了減少協議設計的復雜性,在制定協議時,一般把復雜成分分解成一些簡單成分,再將它們復合起來,而大多數網路都按層來組織,並且規定:(1)一般是將用戶應用程序作為最高層,把物理通信線路作為最低層,將其間再分為若干層,規定每層處理的任務,也規定每層的介面標准;(2)每一層向上一層提供服務,而與再上一層不發生關系;(3)每一層可以調用下一層的服務傳輸信息,而與再下一層不發生關系。(4)相鄰兩層有明顯的介面。

除最低層可水平通信外,其他層只能垂直通信。

層和協議的集合被稱為網路的體系結構。為了幫助大家理解,我們從現實生活中的一個例子來理解網路的層次關系。假如一個只懂得法語的法國文學家和一個只懂得中文的中國文學家要進行學術交流,那麼他們可將論文翻譯成英語或某一種中間語言,然後交給各自的秘書選一種通信方式發給對方,如圖6-2所示。

圖6-2 中法文學家學術交流方式

下面介紹兩個重要的網路體系結構:OSI參考模型和TCP/IP參考模型。

1.OSI參考模型

由於世界各大型計算機廠商推出各自的網路體系結構,不同計算機廠商的設備相互通信困難。為建立更大范圍內的計算機網路,必然要解決異構網路的互連,因而國際標准化組織ISO於1977年提出「開放系統互連參考模型」,即著名的OSI(Open system interconnection/Reference Model)。它將計算機網路規定為物理層、數據鏈路層、網路層、傳輸層、會話層、表示層、應用層等七層,受到計算機界和通信界的極大關注。

2.TCP/IP參考模型

TCP/IP(Transmission Control Protocol/Internet protocol)協議是Internet使用的通信協議,由ARPANET研究中心開發。TCP/IP是一組協議集(Internet protocol suite),而TCP、IP是該協議中最重要最普遍使用的兩個協議,所以用TCP/IP來泛指該組協議。

TCP/IP協議的體系結構被分為四層:

(1)網路介面層 是該模型的最低層,其作用是負責接收IP數據報,並通過網路發送出去,或者從網路上接收網路幀,分離IP數據報。

(2)網路層 IP協議被定義駐留在這一層中,它負責將信息從一台主機傳到指定接收的另一台主機。主要功能是:定址、打包和路由選擇。

(3)傳輸層 提供了兩個協議用於數據傳輸,即傳輸控制協議TCP和通用數據協議UDP,負責提供准確可靠和高效的數據傳送服務。

(4)應用層 位於TCP/IP最高層,為用戶提供一組常用的應用程序協議。例如:簡單郵件傳輸協議SMTP、文件傳協議FTP、遠程登錄協議Telnet、超文本傳輸協議HTTP(該協議是後來擴充的)等。隨著Internet的發展,又開發了許多實用的應用層協議。

圖6-3是TCP/IP模型和OSI模型的簡單比較:

圖6-3 TCP/IP模型和OSI模型的對比