當前位置:首頁 » 安全設置 » 網路安全坐標圖
擴展閱讀
扎實教育與網路安全 2024-09-17 03:12:09
計算機網路與硬體設備 2024-09-17 02:52:10

網路安全坐標圖

發布時間: 2024-09-07 23:32:36

① 雲計算和網路安全就業好不好呢

網路安全和雲計算都是比較重要的領域,在工業互聯網時代,網路安全和雲計算也各自都有比較廣闊的發展空間,所以選擇其中任何一個都是不錯的選擇。

網路安全一直是IT(互聯網)行業比較重視的領域之一,網路安全領域的很多崗位也有比較高的崗位附加值。要想進入網路安全領域發展,首先需要有一個豐富的知識結構,而且要具有較強的學習能力和一定的研發能力。
網路安全涵蓋的領域非常大,所以從事網路安全也應該有一個自己的主攻方向,不同的主攻方向需要組織不同的知識結構。比如未來物聯網領域就會釋放出大量的網路安全崗位,而物聯網的網路安全涉及到設備層、網路層、物聯網平台層、數據層和應用層,所以要想在物聯網領域從事網路安全崗位,就需要對整個物聯網體系有比較全面的了解。

雲計算領域在近些年釋放出了大量的就業崗位,由於雲計算對於大數據、物聯網和人工智慧等技術的發展和應用,都有非常直接的影響,所以未來雲計算領域的工作機會還是非常多的。雲計算領域對於人才需求是比較多元化的,不同知識背景的人都能夠找到自己的發展著力點,從這個角度來看,如果基礎比較薄弱,可以重點關注一下雲計算領域。
從技術體系結構來看,雲計算領域的工作機會往往集中在雲計算平台開發、雲計算部署和雲計算運維三大方面,其中雲計算平台開發對於從業者的要求相對比較高,而雲計算部署和運維類崗位,對於從業者的要求會相對低一些。

② 網路安全法的意義包括哪些

傳統的公路勘測工作辛苦且繁瑣,存在著勘測周期長、工作效率低等諸多問題。從經緯儀的偏角法,全站儀的極坐標法,設置基站並採用電台通訊的常規RTK測量到目前基於CORS的網路RTK實時放樣,最大限度地減輕公路勘測工作量、提高公路勘測效率和勘測精度,一直是公路勘測工作者孜孜以求的目標。CORS應用於電力線路工程測量,主要包括採用網路RTK進行帶狀地形圖的繪制,電力線路中線的測設,電力線路縱、橫斷面圖測量等。在此次試驗中由於時間有限,沒有對電力線路工程的整個測量過程進行試驗,重點介紹了電力線路中線的定線測量和電力線路的縱橫斷面測量的過程、數據的處理並進行了精度分析。
1 工程概況
筆者所在單位對某電力線路進行了定線測量、縱斷面測量、施工控制點測量等測量工作。該工程是某市重點項目之一。測區內地勢平坦,交通方便,但沿途建築物較密集,車流量較大,通視條件不好。採用常規方法測量工作任務重、效率低。
2 測量內容
2.1 繪制大比例尺帶狀地形圖
在電力線路選線時通常是在大比例尺(1∶1 000或1∶2 000)帶狀地形圖上進行。用傳統方法測圖,要先進行控制測量,然後進行碎部測量,繪製成大比例尺地形圖。傳統的地形控制測量採用三角網、導線網得方法來實測,這些方法最大的缺點就是受地形條件影響較大,要求相鄰控制點間必須通視。在技術規范中對圖形、邊長有相應的要求,在野外踏勘、選點、埋設標記過程中花費大量的人力和物力。與此同時在外業施測過程中不能實時知道導線的精度是否滿足技術要求。外業完成後回到室內進行平差處理後,一旦不滿足技術要求須返工重測。用GNSS靜態模式進行控制測量為了保證控制網的精度和可靠性,需要加強控制網的幾何強度,增加閉合條件,延長觀測時間取得大量冗餘觀測。
傳統的碎部測量是根據測區內已有的圖根控制點使用全站儀進行測圖。在測量過程中要求控制點與碎部點要通視,當某待測碎部點與測站點不通視時需要臨時支點或將儀器搬至下個圖根控制點上再測一該碎部點。在地形條件復雜、建築物密集的測區搬站次數較多,工作效率低下。常規RTK測量需要將參考站安置在精度較高的已知坐標點上,當測區內無控制點時使用起來很不方便。
常規RTK測量是利用臨時的單個參考站向流動站發送差分信息的,一旦參考站發生錯誤或者出現故障,流動站的點位精度得不到保障。而且常規RTK測量的流動站點位精度隨著參考站與流動站距離的增加而顯著降低。這種作業模式的服務范圍一般不能超過10 km。
GNSS網路RTK技術打破了常規RTK中流動站和參考站距離較近的限制,增大了流動站與參考站的作業距離。用戶作業范圍可由最多20 km擴大到50~70 km甚至更遠。並且能夠完全保證精度。利用CORS下網路RTK進行測圖,真正意義上的改變了傳統的/先控制後碎部的測圖模式。這種作業模式是利用幾個永久性的參考站同時向流動站發送差分信息,極大地提高了流動站點位精度。理論上整網范圍內的流動站點位精度是相同的,與此同時差分服務范圍擴展到網外60 km。在一些舊線路改造工程中,在精度要求允許的情況下可以將GNSS天線和數據電台天線固定在機動車上,只需機動車沿著原有電力線路連續地行走即可完成測量工作,這樣大大地提高測量速度,減輕外業測量的勞動強度。
2.2 電力線路中線測設
在完成電力線路線形圖上定線後,需將電力線路中線在地面標定出來。傳統的放樣方法是根據電力線路的設計參數計算出中樁的樁號和設計坐標(一般每隔20 m或50 m及其倍數設立一個整樁,在地形變坡地,曲線的主點處,土質變化及地質不良地段,與己有建築物、構築物相交的地方設立加樁)。然後將全站儀安置在控制點上進行放樣。這種放樣方法需要控制點與放樣點之間通視,放樣點的誤差不均勻。採用CORS下網路RTK放樣,只需將中線樁點的坐標輸入GNSS手簿中,系統就會定出放樣的點位。由於每個點的測量都是獨立完成的,不會產生累積誤差,各點放樣精度趨於一致。因此運用網路RTK放樣真正實現了單機作業,測量員只要手持GNSS接受機就可獨立完成電力線路中樁測設。
2.3 電力線路縱橫斷面測量
電力線路中線測量完成以後,還必須進行電力線路縱、橫斷面測量。縱斷面測量是測定各中樁地面高程並繪制電力線路縱斷面圖,用於路線的縱坡設計;橫斷面測量是測定各中樁處垂直於中線的地形起伏狀態並繪制橫斷面圖,用於路基設計、土石方計算和施工時的邊樁放樣。傳統的電力線路縱斷面測量方法是在設計電力線路沿線布設臨時水準點,這些臨時水準點和國家級水準點構成附合水準路線,利用水準儀測出兩水準點之間的高差,在滿足閉合差允許范圍內進行平差計算得出臨時水準點的高程;隨後把這些已知高程的臨時水準點作為起算點,通過水準測量的方法計算出各中樁的高程。這種作業模式施測過程中測站較多,特別是在地勢起伏較大的地區測量,工作量相當繁重。利用全站儀具有三維坐標測量的功能,在中樁放樣過程中就順便測量出中樁的高程,避免了重復測量工作。在測量過程中需要測站點和待測點需要通視,在地形復雜的地區也存在搬站測數較多的問題。
採用CORS下的網路RTK技術改變了傳統的測量模式,電力線路中線確定後,根據採集的中線樁點坐標通過繪圖軟體便可繪出電力線路縱橫斷面圖。加拿大魁北克省交通廳用特製的汽車實施GNSSRTK動態測量繪制高速公路斷面,獲得良好效果。與傳統方法相比,在精度、經濟、實用各方面都有明顯優勢。 3 外業施測
在施測前制定了測量方案。包括依據有關標准指出作業方法和技術要求、保證質量的主要措施和要求等,投入儀器設備:LEICA GX1230 GNSS雙頻接收機1台,NIKON全站儀(2")1台,DS3水準儀1台。完成了以下具體測量任務。
(1)電力線路中線測設:根據電力線路現狀邊線進行內業解算電力線路中線樁號和中樁坐標,每隔20 m解算一個中樁,在單位門口,地形變坡地,有電力線路相交的地方進行加樁。利用網路RTK的放樣功能將上述解算的點放於實地,用全站儀進行坐標回採,差值均在±5 cm內。
(2)縱斷面測量:是在中線測設的基礎上進行的。以測區附近已有四等水準點為高程起算點,按照圖根水準的精度要求(附合線路閉合差≤(mm),L為附合路線長度(km),沿中樁逐樁布設為附合水準路線經過平差計算後得出施測樁位的地面高程。測量完畢將同一個中樁點的水準高程和RTK採集高程作比較,差值均在±4 cm內。差值大的應分析原因,防止粗差出現。
(3)施工控制點測量:利用RTK的數據採集功能,在相交電力線路口施工范圍外選擇了四個施工控制點。施工控制點採用三腳架方式獨立測量兩測回取平均值,每次觀測歷元數不應少於30個,兩次測量平面坐標分量差值不應大於±2 cm,如果超限應重新測量。測量完畢應用全站儀對控制點距離進行檢測,檢測相對誤差不應大於l/4 000。
4 觀測數據分析
觀測完成後,對觀測數據進行了以下三項的對比。
通過表1可以看出:用RJK放樣中樁後用全站儀回採縱坐標差值最大值為0.020 m,橫坐標差值最大值為0.012 m,點位誤差最大值出現在樁號為k0+22處,最大誤差為 ,滿足點位誤差值均在±5 cm內的要求。
通過表1可以看出:在測設完中樁,通過RTK回採中樁高程與經水準點聯測平差計算後出的高程比較,高程差值最大值出現在樁號為k0+380處,最大值為-0.025 m,滿足差值均在±4 cm內的要求。在該次試驗中RTK高程測量的高精度取決於該市似大地水準面模型的建立。
通過表2、表3可以看出:用RTK對施工控制點獨立測量兩測回後,兩次觀測值差值最大值出現在T1處,最大值為 mm,滿足兩次測量平面坐標分量差值均不應大於±2 cm的要求。對控制點坐標取其平均值後,通過坐標反算計算出T1~T2、T3~T4的距離,隨後用全站儀對控制點距離進行檢測,相對誤差最大值出現在邊T3~T4處,最大值為1/30 854。相對誤差均滿足不應大於1/4 000的要求。