當前位置:首頁 » 安全設置 » 強化網路安全態勢感知平台運用

強化網路安全態勢感知平台運用

發布時間: 2024-05-09 22:50:54

A. 知識普及-安全態勢

隨著網路規模和復雜性不斷增大,網路的攻擊技術不斷革新,新型攻擊工具大量涌現,傳統的網路安全技術顯得力不從心,網路入侵不可避免,網路安全問題越發嚴峻。

單憑一種或幾種安全技術很難應對復雜的安全問題,網路安全人員的關注點也從單個安全問題的解決,發展到研究整個網路的安全狀態及其變化趨勢。

網路安全態勢感知對影響網路安全的諸多要素進行獲取、理解、評估以及預測未來的發展趨勢,是對網路安全性定量分析的一種手段,是對網路安全性的精細度量,態勢感知成已經為網路安全2.0時代安全技術的焦點,對保障網路安全起著非常重要的作用。

一、態勢感知基本概念

1.1 態勢感知通用定義

隨著網路安全態勢感知研究領域的不同,人們對於態勢感知的定義和理解也有很大的不同,其中認同度較高的是Endsley博士所給出的動態環境中態勢感知的通用定義:

態勢感知是感知大量的時間和空間中的環境要素,理解它們的意義,並預測它們在不久將來的狀態。

在這個定義中,我們可以提煉出態勢感知的三個要素:感知、理解和預測,也就是說態勢感知可以分成感知、理解和預測三個層次的信息處理,即:

感知:感知和獲取環境中的重要線索或元素;

理解:整合感知到的數據和信息,分析其相關性;

預測:基於對環境信息的感知和理解,預測相關知識的未來的發展趨勢。

1.2 網路安全態勢感知概念

目前,對網路安全態勢感知並未有一個統一而全面的定義,我們可以結合態勢感知通用定義來對對網路安全態勢感知給出一個基本描述,即:

網路安全態勢感知是綜合分析網路安全要素,評估網路安全狀況,預測其發展趨勢,並以可視化的方式展現給用戶,並給出相應的報表和應對措施。

根據上述概念模型,網路安全態勢感知過程可以分為一下四個過程:

1)數據採集:通過各種檢測工具,對各種影響系統安全性的要素進行檢測採集獲取,這一步是態勢感知的前提;

2)態勢理解:對各種網路安全要素數據進行分類、歸並、關聯分析等手段進行處理融合,對融合的信息進行綜合分析,得出影響網路的整體安全狀況,這一步是態勢感知基礎;

3)態勢評估:定性、定量分析網路當前的安全狀態和薄弱環節,並給出相應的應對措施,這一步是態勢感知的核心;

4)態勢預測:通過對態勢評估輸出的數據,預測網路安全狀況的發展趨勢,這一步是態勢感知的目標。

網路安全態勢感知要做到深度和廣度兼備,從多層次、多角度、多粒度分析系統的安全性並提供應對措施,以圖、表和安全報表的形式展現給用戶。

二、態勢感知常用分析模型

在網路安全態勢感知的分析過程中,會應用到很多成熟的分析模型,這些模型的分析方法雖各不相同,但多數都包含了感知、理解和預測的三個要素。

2.1 始於感知:Endsley模型

Endsley模型中,態勢感知始於感知。

感知包含對網路環境中重要組成要素的狀態、屬性及動態等信息,以及將其歸類整理的過程。

理解則是對這些重要組成要素的信息的融合與解讀,不僅是對單個分析對象的判斷分析,還包括對多個關聯對象的整合梳理。同時,理解是隨著態勢的變化而不斷更新演變的,不斷將新的信息融合進來形成新的理解。

在了解態勢要素的狀態和變化的基礎上,對態勢中各要素即將呈現的狀態和變化進行預測。

2.2 循環對抗:OODA模型

OODA是指觀察(Oberve)、調整(Orient)、決策(Decide)以及行動(Act),它是信息戰領域的一個概念。OODA是一個不斷收集信息、評估決策和採取行動的過程。

將OODA循環應用在網路安全態勢感知中,攻擊者與分析者都面臨這樣的循環過程:在觀察中感知攻擊與被攻擊,在理解中調整並決策攻擊與防禦方法,預測對手下一個動作並發起行動,同時進入下一輪的觀察。

如果分析者的OODA循環比攻擊者快,那麼分析者有可能「進入」對方的循環中,從而占據優勢。例如通過關注對方正在進行或者可能進行的事情,即分析對手的OODA環,來判斷對手下一步將採取的動作,而先於對方採取行動。

2.3 數據融合:JDL模型

JDL(Joint Directors of Laboratories)模型是信息融合系統中的一種信息處理方式,由美國國防部成立的數據融合聯合指揮實驗室提出。

JDL模型將來自不同數據源的數據和信息進行綜合分析,根據它們之間的相互關系,進行目標識別、身份估計、態勢評估和威脅評估,融合過程會通過不斷的精煉評估結果來提高評估的准確性。

在網路安全態勢感知中,面對來自內外部大量的安全數據,通過JDL模型進行數據的融合分析,能夠實現對分析目標的感知、理解與影響評估,為後續的預測提供重要的分析基礎和支撐。

2.4 假設與推理:RPD模型

RPD(Recognition Primed Decision)模型中定義態勢感知分為兩個階段:感知和評估。

感知階段通過特徵匹配的方式,將現有態勢與過去態勢進行對比,選取相似度高的過去態勢,找出當時採取的哪些行動方案是有效的。評估階段分析過去相似態勢有效的行動方案,推測當前態勢可能的演化過程,並調整行動方案。

以上方式若遇到匹配結果不理想的情況,則採取構造故事的方式,即根據經驗探索潛在的假設,再評估每個假設與實際發生情況的相符度。在RPD模型中對感知、理解和預測三要素的主要體現為:基於假設進行相關信息的收集(感知),特徵匹配和故事構造(理解),假設驅動思維模擬與推測(預測)。

三、態勢感知應用關鍵點

當前,單維度的網路安全防禦技術手段,已經難以應對復雜的網路環境和大量存在的安全問題,對網路安全態勢感知具體模型和技術的研究,已經成為2.0時代網路安全技術的焦點,同時很多機構也已經推出了網路安全態勢感知產品和解決方案。

但是,目前市場上的的相關產品和解決方案,都相對偏重於網路安全態勢的某一個或某幾個方面的感知,網路安全態勢感知的數據分析的深度和廣度還需要進一步加強,同時網路安全態勢感知與其它系統平台的聯動不足,無法將態勢感知與安全運營深入融合。

為此,太極信安認為網路安全態勢感知平台的建設,應著重考慮以下幾個方面的內容:

1、在數據採集方面,網路安全數據來源要盡可能的豐富,應該包括網路結構數據、網路服務數據、漏洞數據、脆弱性數據、威脅與入侵數據、用戶異常行為數據等等,只有這樣態勢評估結果才能准確。

2、在態勢評估方面,態勢感評估要對多個層次、多個角度進行評估,能夠評估網路的業務安全、數據安全、基礎設施安全和整體安全狀況,並且應該針對不同的應用背景和不同的網路規模選擇不同的評估方法。

3、在態勢感知流程方面,態勢感知流程要規范,所採用的演算法要簡單,應該選擇規范化的、易操作的評估模型和預測模型,能夠做到實時准確的評估網路安全態勢。

4、在態勢預測方面,態勢感知要能支持對不同的評估結果預測其發展趨勢,預防大規模安全事件的發生。

5、在態勢感知結果顯示方面,態勢感知能支持多種形式的可視化顯示,支持與用戶的交互,能根據不同的應用需求生成態勢評測報表,並提供相應的改進措施。

四、總結

上述幾種模型和應用關鍵點對網路安全態勢感知來講至關重要,將這些基本概念和關鍵點進行深入理解並付諸於實踐,才能真正幫助決策者獲得網路安全態勢感知能力。

太極信安認為,建設網路安全態勢感知平台,應以「業務+數據定義安全」戰略為核心驅動,基於更廣、更深的數據來源分析,以用戶實際需求為出發點,從綜合安全、業務安全、數據安全、信息基礎設施安全等多個維度為用戶提供全面的安全態勢感知,在認知、理解、預測的基礎上,真正幫助用戶實現看見業務、看懂威脅、看透風險、輔助決策。

                            摘自 CSDN 道法一自然

B. 現在的網路安全問題很多,態勢感知可以保障網路安全嗎

態勢感知可以對保障網路安全起到很好的監測並提早預防的作用,都是僅憑態勢感知還遠遠不夠,還需要很多網路安全技術和管理措施,如密碼加密技術、身份認證、訪問控制等

C. 大數據與大規模網路安全感知技術初探

大數據與大規模網路安全感知技術初探
快速發展的互聯網技術不斷地改變人們的生活方式,然而,多層面的安全威脅和安全風險也不斷出現。對於一個大型網路,在網路安全層面,除了訪問控制、入侵檢測、身份識別等基礎技術手段,需要安全運維和管理人員能夠及時感知網路中的異常事件與整體安全態勢。對於安全運維人員來說,如何從成千上萬的安全事件和日誌中找到最有價值、最需要處理和解決的安全問題,從而保障網路的安全狀態,是他們最關心也是最需要解決的問題。與此同時,對於安全管理者和高層管理者而言,如何描述當前網路安全的整體狀況,如何預測和判斷風險發展的趨勢,如何指導下一步安全建設與規劃,則是一道持久的難題。
隨著大數據技術的成熟、應用與推廣,網路安全態勢感知技術有了新的發展方向,大數據技術特有的海量存儲、並行計算、高效查詢等特點,為大規模網路安全態勢感知的關鍵技術創造了突破的機遇。本文將對大規模網路環境下的安全態勢感知、大數據技術在安全感知方面的促進做一些探討。
對於一個大規模的網路而言,面臨的風險也是巨大的,可分為廣度風險和深度風險。從廣度上講,以中國移動的CMNET網路為例,所轄IP地址超過3000萬個,提供對外服務的網站數千個,規模大、節點類型豐富多樣,伴隨其中的安全問題隨網路節點數量的增加呈指數級上升。從深度上講,下一代移動互聯網安全威脅主要表現在傳統攻擊依然存在且手段多樣、APT(高級持續性威脅)攻擊逐漸增多且造成的損失不斷增大。而攻擊者的工具和手段呈現平台化、集成化和自動化的特點,具有更強的隱蔽性、更長的攻擊與潛伏時間、更加明確和特定的攻擊目標。以上造成了下一代安全威脅具有更強的殺傷能力與逃避能力。結合廣度風險與深度風險來看,大規模網路所引發的安全保障的復雜度激增,主要面臨的問題包括:安全數據量巨大;安全事件被割裂,從而難以感知;安全的整體狀況無法描述。
網路安全感知能力具體可分為資產感知、脆弱性感知、安全事件感知和異常行為感知4個方面。資產感知是指自動化快速發現和收集大規模網路資產的分布情況、更新情況、屬性等信息;脆弱性感知則包括3個層面的脆弱性感知能力:不可見、可見、可利用;安全事件感知是指能夠確定安全事件發生的時間、地點、人物、起因、經過和結果;異常行為感知是指通過異常行為判定風險,以彌補對不可見脆弱性、未知安全事件發現的不足,主要面向的是感知未知的攻擊。
一個相對完整的網路安全感知的能力模型與架構設計如下圖所示:
隨著Hadoop、NoSQL等技術的興起,BigData大數據的應用逐漸增多和成熟,而大數據自身擁有Velocity快速處理、Volume大數據量存儲、Variety支持多類數據格式三大特性。大數據的這些天生特性,恰巧可以用於大規模網路的安全感知。首先,多類數據格式可以使網路安全感知獲取更多類型的日誌數據,包括網路與安全設備的日誌、網路運行情況信息、業務與應用的日誌記錄等;其次,大數據量存儲與快速處理為高速網路流量的深度安全分析提供了技術支持,可以為高智能模型演算法提供計算資源;最後,在異常行為的識別過程中,核心是對正常業務行為與異常攻擊行為之間的未識別行為進行離群度分析,大數據使得在分析過程中採用更小的匹配顆粒與更長的匹配時間成為可能。
中國移動自2010年起在雲計算和大數據方面就開始了積極探索。中國移動的「大雲」系統目前已實現了分布式海量數據倉庫、分布式計算框架、雲存儲系統、彈性計算系統、並行數據挖掘工具等關鍵功能。在「大雲」系統的基礎上,中國移動的網路安全感知也具備了一定的技術積累,進行了大規模網路安全感知和防禦體系的技術研究,在利用雲平台進行脆弱性發現方面的智能型任務調度演算法、主機和網路異常行為發現模式等關鍵技術上均有突破,在安全運維中取得了一些顯著的效果。
大數據的出現,擴展了計算和存儲資源,提供了基礎平台和大數據量處理的技術支撐,為安全態勢的分析、預測創造了無限可能。

D. 態勢感知技術盤點,安全態勢感知與管控平台評測

眾所周知,態勢感知的「前世」是應用在軍事領域的。而時至今日,態勢感知卻已然是網路安全的基本和基礎性工作,是在實現安全態勢「理解」和「預測」之前的重要階段。

現階段,為應對網路安全挑戰,彌補傳統防禦手段的不足,大多企業都在逐步構建一套網路安全分析及管控平台,用以整合企業信息安全的事件響應、技術平台、管理流程,實現總部、分支范圍內安全風險的集中監控、安全事件的集中處置、安全策略的合規檢查以及安全態勢的統一展示,將信息安全管理和技術進行有機結合,完善提升企業的的信息安全保障體系 。

本次我們挑選的產品是來自南京聚銘網路的安全態勢感知與管控平台。據悉,該平台是由聚銘網路自主開發的基於大數據技術的安全態勢感知與管控平台,可以統一採集各類結構化和非結構化的數據,包括各類設備、應用日誌以及網路流量和各種脆弱性,通過實時分析、離線分析、關聯分析、統計分析、機器學習、規則庫、專家經驗庫以及強大的安全情報源碰撞進行多方位風險分析。

現在,就讓我們具體操作體驗下,一探究竟。

平台概覽

首先,我們通過賬號信息登錄進入這款產品的界面。

我們可以看到,在這款產品的首頁界面上左邊是一個整體安全態勢感知概覽模塊,然後是從南北向東西向三個方向的 威脅和風險訪問的大屏展現,還有脆弱性、違規行為的態勢展現大屏。中間還有一個動態3D的全球威脅態勢感知,動態展現全球 的情況,畫面看上去十分有科技感。

整體環顧下來,產品的界面給我們的感覺就是風格比較簡約明了,內容上基本體現了安全的整體情況,畫面上所羅列的功能也很全面,符合市場上各企業對於態感產品的需求,產品放在企業的安全監控大屏上將會有很好的視覺效果。整體環顧下來,產品的界面給我們的感覺就是風格比較簡約明了,內容上基本體現了安全的整體情況,畫面上所羅列的功能也很全面,符合市場上各企業對於態感產品的需求,產品放在企業的安全監控大屏上將會有很好的視覺效果。

數據採集

首先我們來看下數據採集情況,目前我們的採集數據量大概每秒有近6000條數據,算下來一天就會有5億條的數據量,還是挺恐怖的。從界面操作查詢來看,感覺也非常流暢,沒有感覺到卡頓不適的現象,這個在做溯源查詢的時候就會非常方便了。另外,這個產品採集數據的兼容能力也是比較亮眼,能支持近500種類型第三方設備日誌的接入和處理,這點相當不錯。

現在我們可以看到採集的數據都在這里,看起來的確如同之前對廠家的了解一樣,他們這款態感產品的數據採集能力相對其他平台而言,在採集的廣度和深度上更為全面一些,一般我們接觸的此類產品主要是通過流量維度來進行分析,很少有能有同時內置流量、日誌、漏洞掃描和配置合規檢測能力的,這一點確實是在我們接觸的同類產品中很少見,值得誇贊一番,說明這家廠商至少在態勢感知這一塊考慮的點是相當全面的。

接下來我們就看看,對於採集到的這么多類型的數據,這款態感產品又分析的怎麼樣,能不能實現精準的分析呢?

風險分析

從失陷分析維度的場景來看,通過查看分析的過程和數據情況,對伺服器日誌、安全設備日誌、流量分析等數據綜合分析的結果,展現了設備整個安全生命周期的過程,另外也從漏掃維度佐證了此問題的發現。

我們可以看到,產品呈現的分析的結果還是比較准確全面的,充分利用了現有安全建設的資源,又結合了產品本身的分析能力和威脅情報能力,較全面展現了企業和設備風險情況。從這一點看來,這款由聚銘網路廠商打造的態感產品,是完全可以符合企業態勢感知建設需求的。

今天,我們對於這款態感產品的測試也就先到這里,除了採集和分析能力外,其他的合規審計、基線檢查等功能就不再一一介紹。

總結

總體上來講,這款態勢感知與管控平台是完全可以滿足企業對於態感平台建設的基本需求的。這款態感產品能完成網路安全分析及管控平台框架的搭建,對總部、分支、專業安全系統重要數據進行接入,實現總部-分支范圍內安全風險的集中監控、安全事件的集中處置、安全態勢的統一展示,而且不用再做任何額外的開發。

值得一提的是,根據我們對廠商的側面了解,他們使用的是「騰訊+聚銘」的雙情報庫模式,在各類威脅檢測方面非常全面精準,這一點也在我們本次評測中和其他同類產品對比測試中也得到了驗證。

另外,不足的地方可能就是在產品界面操作上引導性還有改進空間,產品經理請拿小本本記下來。

綜合而言,這款產品無論是在日誌、流量等數據採集方面的廣度和深度,還是分析能力以及和情報庫的結合等方面的核心能力上,在我們以往測評產品中都可以算是相當突出的。

以上就是本次評測的所有內容,僅供業界同仁參考,今天的內容就到這里,更多安全產品體驗我們後期再見。