A. 什麼是享介質式區域網什麼是交換式區域網各有何特點
共享介質區域網一般是指原來早期的同軸電纜區域網,屬於匯流排型的,使用一根電纜鏈接區域網內所有的計算機,線的兩端安裝終端適配器。這種傳輸方式的帶寬是單績廁啃丿救搽尋敞默共享的,也就是所有計算機評分10M帶寬,非常容易發生數據包碰撞。
交換式區域網就是我們平常使用的雙絞線到交換機的區域網,這種網路任意兩個節點之間通信是獨享帶寬的,不會影響網內的其他機器。
需要說明的是,如果用一根交叉雙絞線直接連接兩台計算機,那樣也屬於共享介質。這個是特殊情況。
B. 在共享介質乙太網中,採用的介質訪問控制方法是
控制方法是CSMA/CD方法。
在傳統的共享乙太網中,所有的節點共享傳輸介質。為了保證傳輸介質有序、高效地為許多節點提供傳輸服務,就需要乙太網的介質訪問控制協議解決問題。
CSMA/CD是一種爭用型的介質訪問控制協議。它起源於美國夏威夷大學開發的ALOHA網所採用的爭用型協議,並進行了改進,使之具有比ALOHA協議更高的介質利用率。主要應用於現場匯流排Ethernet中物銷悶。另一個改進是,對於每一個站而言,一旦它檢測到有沖突,它就放棄它當前的傳送任務。
因為需要使用CSMA/CD協議來控制乙太網的介質訪問,所以答案是(D )CSMA/CD方法。
(2)共享介質型網路使用哪一種技術擴展閱讀:
CSMA/CD控制方式的優點是:
原理比較簡單,技術上易實現,網路中各工作站處於平等罩彎地位 ,不需集中控制,不提供優先順序控制。但在網路負載增大時,發送時間增長,發送效率急劇下降。
它的工作原理是: 發送數據前 先偵聽信道是否空閑 ,若空閑,則立即發送數據。若信道忙碌,則等待一段時間至信道中的信息傳輸結束後再發送數據;若在上一段信息發送結束後,同時有兩個或兩個以上的節點都斗知提出發送請求,則判定為沖突。若偵聽到沖突,則立即停止發送數據,等待一段隨機時間,再重新嘗試。
C. 區域網共享上網的工具 是怎樣實現的 用到了哪些技術
買跟你機子網卡型號相通的雙絞線,連接兩台機子的網卡,即可共享上網,但是記住,只有兩台機子一起上才可以,這是最簡單的區域網連接。
區域網網路中的計算機等設備要實現互聯,就需要以一定的結構方式進行連接,這種連接方式就叫做「拓撲結構」,通俗地講這些網路設備如何連接在一起的。目前常見的網路拓撲結構主要有以下四大類:
[4]1. 星型結構
這種結構是目前在區域網中應用得最為普遍的一種,在企業網路中幾乎都是採用這一方式。星型網路幾乎是Ethernet(乙太網)網路專用,它是因網路中的各工作站節點設備通過一個網路集中設備(如集線器或者交換機)連接在一起,各節點呈星狀分布而得名。這類網路目前用的最多的傳輸介質是雙絞線,如常見的五類線、超五類雙絞線等。
這種拓撲結構網路的基本特點主要有如下幾點:
(1)容易實現:它所採用的傳輸介質一般都是採用通用的雙絞線,這種傳輸介質相對來說比較便宜,如目前正品五類雙絞線每米也僅1.5元左右,而同軸電纜最便宜的也要2.00元左右一米,光纜那更不用說了。這種拓撲結構主要應用於IEEE 802.2、IEEE 802.3標準的以太區域網中;
(2)節點擴展、移動方便:節點擴展時只需要從集線器或交換機等集中蘆衫設備中拉一條線即可,而要移動一個節點只需要把相應節點設備移到新節點即可,而不會像環型網路那樣「牽其一而動全局」;
(3)維護容易;一個節點出現故障不會影響其它節點的連接,可任意拆走故障節點;
(4)採用廣播信息傳送方式:任何一個節點發送信息在整個網中的節點都可以收到,這在網路方面存在一定的隱患,但這在區域網中使用影響不大;
(5)網路傳輸數據快:這一點可以從目前最新的1000Mbps到10G乙太網接入速度可以看出。
其實它的主要特點遠不止這些,但因為後面我們還要具體講一頌缺下各類網路接入設備,而網路的特點主要是受這些設備的特點來制約的,所以其它一些方面的特點等我們在後面講到相應網路設備時再補充。
2. 環型結構
這種結構的網路形式主要應用於令牌網中,在這種網路結構中各設備是直接通過電纜來串接的,最後形成一個閉環,整個網路發送的信息就是在這個環中傳遞,通常把這類網路稱之為「令牌環網」。實際上大多數情況下這種拓撲結構的網路不會是所有計算機真的要連接成物理上的環型,一般情況下,環的兩端是通過一個阻抗匹配器來實現環的封閉的,因為在實際組網過程中因地理位置的限制不方便真的做到環的兩端物理連接。
這種拓撲結構的網路主要有如下幾個特點:
(1)這種網路結構一般僅適用於IEEE 802.5的令牌網(Token ring network),在這種網路中,「令牌」是在環型連接中依次傳遞。所用的傳輸介質一般是同軸電纜。
(2)這種網路實現也非常簡單,投資最小。可以從其網路結構示意圖中看出,組成這個網路除了各工作站就是傳輸介質--同軸電纜,以及一些連接器材,沒有價格昂貴的節點集中設備,如集線器和交換機。但也正因為這樣,所以這種網路所能實現的功能最為簡單,僅能當作一般的文件服務模式;
(3)傳輸速度較快:在令牌網中允許有16Mbps的傳輸速度,它比普通的10Mbps乙太網要快許多。當然隨著乙太網的廣泛應用和乙太網技術的發展,乙太網的速度也得到了極大提高,目前普遍都能提供100Mbps的網速,遠比16Mbps要高。
(4)維護困難:從其網路結構可以看到,整個網路各節點間是直接串聯,這樣任何一個節點出了故障都會造成整個網路的中斷、癱瘓,維護起來非常不便。另一方面因為同軸電纜所採用的是插針式的接觸方式,所以非常容易造成接觸不良野嘩辯,網路中斷,而且這樣查找起來非常困難,這一點相信維護過這種網路的人都會深有體會。
(5)擴展性能差:也是因為它的環型結構,決定了它的擴展性能遠不如星型結構的好,如果要新添加或移動節點,就必須中斷整個網路,在環的兩端作好連接器才能連接。
3. 匯流排型結構
這種網路拓撲結構中所有設備都直接與匯流排相連,它所採用的介質一般也是同軸電纜(包括粗纜和細纜),不過現在也有採用光纜作為匯流排型傳輸介質的,如後面我們將要講的ATM網、Cable Modem所採用的網路等都屬於匯流排型網路結構。
總之,區域網就是利用一些串聯設備,將一台電腦上的資源取走一部分給另一台用(在不影響第一台機子使用的前提下)
D. 乙太網技術的共享介質
帶沖突檢測的載波偵聽多路訪問(CSMA/CD)技術規定了多台電腦共享一個信道的方法。這項技術最早出現在1960年代由夏威夷大學開發的ALOHAnet,它使用無線電波為載體。這個方法要比令牌環網或者主控制網要簡單。當某台電腦要發送信息時,必須遵守以下規則:
開始 - 如果線路空閑,則啟動傳輸,否則轉到第4步 發送 - 如果檢測到沖突,繼續發送數據直到達到最小報文時間 (保證所有其他轉發器和終端檢測到沖突),再轉悔態山到第4步. 成功傳輸 - 向更高層的網路協議報告發送成功,退出傳輸模式。 線路忙 - 等待,直到線路空閑 線路進入空閑狀態 - 等待一個隨機的時間,轉到第1步,除非超過最大嘗試次數 超過最大嘗試傳輸次數 - 向更高層的網路協議報告發送失敗,退出傳輸模式 就像在沒有主持人的座談會中,所有的參加者都通過一個共同的媒介(空氣)來相互交談。每個參加者在講話前,都禮貌地等待別人把話講完。如果閉塵兩個客人同時開始講話,那麼他們都停下來,分別隨機等待一段時間再碧中開始講話。這時,如果兩個參加者等待的時間不同,沖突就不會出現。如果傳輸失敗超過一次,將採用退避指數增長時間的方法(退避的時間通過截斷二進制指數退避演算法(truncated binary exponential backoff)來實現)。
最初的乙太網是採用同軸電纜來連接各個設備的。電腦通過一個叫做附加單元介面(Attachment Unit Interface,AUI)的收發器連接到電纜上。一根簡單網線對於一個小型網路來說還是很可靠的,對於大型網路來說,某處線路的故障或某個連接器的故障,都會造成乙太網某個或多個網段的不穩定。
因為所有的通信信號都在共用線路上傳輸,即使信息只是發給其中的一個終端(destination),某台電腦發送的消息都將被所有其他電腦接收。在正常情況下,網路介面卡會濾掉不是發送給自己的信息,接收目標地址是自己的信息時才會向CPU發出中斷請求,除非網卡處於混雜模式(Promiscuous mode)。這種「一個說,大家聽」的特質是共享介質乙太網在安全上的弱點,因為乙太網上的一個節點可以選擇是否監聽線路上傳輸的所有信息。共享電纜也意味著共享帶寬,所以在某些情況下乙太網的速度可能會非常慢,比如電源故障之後,當所有的網路終端都重新啟動時。
E. 圖解TCP/IP
計算機使用模式的演變:
20世紀50年代 批處理時代
20世紀60年代 分時系統時代
20世紀70年代 計算機間通信時代
20世紀80年代 計算機網路時代
20世紀90年代 互聯網普及時代
2000年 以互聯網為中心的時代
2010年 無論何時何地地一切皆TCP/IP的網路時代
在計算機網路與信息通信領域,人們經常提及 「協議」 。簡單來說。 協議 就是計算機與計算機之間通過網路實現通信時事先達成的一種「約定」。這種「約定」使那些由不同廠商的設備、不同的CPU以及不同的操作系統組成的計算機之間,只要遵循相同的協議就能實現通信。換句話說, 協議 就是計算機之氏猜此間的通信語言,只有支持相同的協議,計算機之間才能相互通信。
計算機通信也會在每一個分組中附加上源主機地址和目標主機地址送給通信線路。這些發送端地址、接收端地址以及分組序號寫入的部分稱為 「報文首部」 。
TCP/IP協議並非ISO(國際標准化組織)所制定的某種國際標准,而是由IETF(Internet Engineering Task Force國際互聯網工程任務組)所建議的、致力於推進器標准化作業的一種協議。
OSI參考模型
應用層 :針對特定應用的協議。以電子郵件為例,用戶A在主機A上新建一封電子郵件,指定收件人為B,並輸入郵件內容為「早上好」。應用層協議會在所要傳遞數據的前端附加一個首部(標簽)信息,該首部標明了郵件內容為「早上好」和收件人為B。
表示層 :設備固有數據格式和網路標准數據格式的轉換。用戶A和用戶B使用的郵件客戶端一致,便能夠順利收取和閱讀郵件,不一致時表示層就發揮作用了:將數據從「某個計算機特定的數據格式」轉換為「網路通用的標准數據格式」後再發送出去,接收端也進行相應處理。表示層與表示層之間為了識別編碼格式也會附加首部信息,從而將實際傳輸的數據轉交給下一層處理。
會話層 :通信管理。負責建立和斷開通信連接(數據流動的邏輯通路)。管理傳輸層以下的分層。假定用戶A新建了5封電子郵件准備發送給用戶B,是建立一次連殲迅接一起發送,還是分別建立5次連接各自發送,都是會話層決定的,會話層和表示層一樣,也會在數據前段附加首部或標簽信息再轉發給下一層。而這些首部或標簽中兆和記錄著數據傳送順序的信息。
傳輸層 :管理兩個節點之間的數據傳輸。負責可靠傳輸(確保數據被可靠傳送到目標地址)。用主機A將「早上好」這一數據發送給主機B,期間可能因為某些原因導致數據損壞,主機B只收到「早上」,此時也會將這一事實告訴主機A,主機A得知情況會將後面的「好」重發給主機B。保證數據傳輸的可靠性是傳輸層的一個重要作用。為了確保可靠性,這一層所要傳輸的數據附加首部以識別這一分層的數據。然而,實際上將數據傳輸給對端的處理是由網路層來完成的。
網路層 :地址管理與路由選擇。兩端主機之間雖然有眾多數據鏈路,但能夠將數據從主機A送到主機B也都是網路層的功勞。相當於TCP/IP協議中的IP協議,網路層不能保證數據的可達性,所以需要傳輸層TCP協議確保可達性,所以TCP/IP協議實現了可靠傳輸。
數據鏈路層 :互連設備之間傳送和識別數據幀。網路層負責將整個數據發送給最終目標地址,而數據鏈路層則只負責發送一個分段內的數據。
物理層 :以「0」、「1」代表電壓的高低、燈光的閃滅。界定連接器和網線的規格。將數據的0、1轉換為電壓和脈沖光傳輸給物理的傳輸介質。
計算機之間的網路連接通過 電纜 相互連接。任何一台計算機連接網路時,必須要使用 網卡 (網路適配器、NIC、LAN卡), 中繼器 的作用是將電纜傳過來的信號調整和放大再傳給另一個電纜,可以完成不同媒介之間的連接工作。 網橋 是數據鏈路層面上連接兩個網路的設備,提供的是傳遞數據幀的作用,並且還具備自學機制。 路由器 是在網路層面上(OSI七層模型網路層)連接兩個網路、並對分組報文進行轉發的設備。 網橋 是根據物理地址(MAC地址)進行處理,而路由器/3層交換機則是根據IP地址進行處理的。由此,TCP/IP中網路層的地址就成為了IP地址。對於並發訪問量非常大的一個企業級Web站點,使用一台伺服器不足以滿足前端的訪問需求,這時通常會架設多台伺服器來分擔。這些伺服器的訪問的入口地址通常只有一個,為了能通過同一個URL將前端訪問分發到後台多個伺服器上,可以將這些伺服器的前端加一個負載均衡器。這種負載均衡器就是4-7層交換機的一種。 網關 是OSI參考模型中負責將從傳輸層到應用層的數據進行轉換和轉發的設備。在兩個不能進行直接通信的協議之間進行翻譯,最終實現兩者的通信。非常典型的例子就是互聯網郵件和手機郵件之間的轉換服務。防火牆也是一款通過網關通信,針對不用應用提高安全性的產品。
美國軍方利用分組交換技術組件的ARPANET網路是互聯網的鼻祖。而BSD UNIX操作系統實現了TCP/IP協議,隨著UNIX系統的普及,TCP/IP協議開始盛行。TCP/IP可以單純的指這兩種協議,然而在很多情況下,它指的是包含HTTP、SMTP、FTP、TCP、UDP、IP、ARP等很多協議的 網際協議族 。
發送數據包的過程,和上節OSI參考模型中介紹的差不多。數據鏈路層是由網路介面(乙太網驅動)來處理的,它會改數據附加上 乙太網首部 , 乙太網首部 中包含接收端的MAC地址、發送端MAC地址以及標志乙太網類型的乙太網數據的協議。
在乙太網普及之初,一般多台終端使用同一根同軸電纜的 共享介質型 連接方式,訪問控制一般以半雙工通信為前提採用CSMA/CD方式。隨著ATM交換技術的進步和CAT5 UTP電纜的普及很快發生了變化,逐漸採用像 非共享介質網路 那樣直接與交換機連接的方式。
網路層與數據鏈路層的關系
某人要去一個很遠的地方旅行,並計劃先後乘坐飛機、火車、公交車到達目的地。旅行社不僅幫他預訂好了飛機票和火車票,甚至還為他指定了一個詳細的行程表,詳細到幾點幾分需要乘坐飛機或火車都一目瞭然。機票和火車票只能夠在某一限定區間內移動,此處的「區間內」就如同通信網路上的數據鏈路。這個區間內的出發地點和目的地點就如同某一個數據鏈路的源地址和目標地址等首部信息。整個行程表的作用就相當於網路層。
DNS :將域名和IP地址相匹配。
ARP :以目標IP地址為線索,用來定位下一個應該接受數據分包的網路設備對應的MAC地址。ARP只適用於IPv4,IPv6可以用ICMPv6替代ARP發送鄰居探索消息。
ICMP :在IP通信中如果某個IP包因為某種原因未能送達目標地址,那麼這個具體的原因將由ICMP負責通知。
DHCP :使用移動設備時,每移動到一個新地方,都要重新設置IP地址,為了實現自動設置IP地址、統一管理IP地址分配,就產生了DHCP協議。
NAT :是用於在本地網路中使用私有地址,在連接互聯網時轉而使用全局IP地址的技術。
IP隧道 :IPv4和IPv6之間進行通信的技術就是IP隧道。
TCP用於低速可靠傳輸
UDP用於高速不可靠傳輸
埠號就是用來識別同一台計算機中進行通信的不同應用程序,也被稱為程序地址。
TCP傳輸利用 窗口控制 提高速度,無需等到每次應答來進行下一次發送,而是有個窗口進行緩沖,來提高吞吐量。
TCP擁塞控制,利用擁塞窗口來調節發送的數據量,擁塞時減小窗口,流暢是增大窗口來控制吞吐量。
我們日常網路訪問的 http 用的是 tcp ,那還是看一下這個過程吧
tcp 可以提供全雙工的數據流傳輸服務,全雙工說白了,就是同一時間 A 可以發信息給 B , B 也可以發消息給 A ,倆人同時都可以給對方發消息;半雙工就是某個時間段 A 可以發給 B ,但 B 不能給 A ,換個時間段,就反過來了。
這個過程理解起來,就像兩人在喊話:
A:喂,有人嗎,我想建立連接
B:有哇,你建立吧,等你吆
A:好噠,我來啦
然後倆人就建立連接了...
一定要三次握手么,兩次行不行?
這么一個場景:
A->B: 洞幺洞幺,我是洞拐,收到請回復。
B->A: 洞拐洞拐,洞幺收到。
請問根據以上對話判斷:
1、B是否能收到A的信息? (答案是肯定的)
2、A是否能收到B的信息? (你猜?)
tcp的核心思想是保證數據可靠傳輸,如果 2 次,顯然不行,但 3 次就一定行么?未必,可能第三次的時候網路中斷了,然後 A 就認為 B 收到了,然後一通發消息,其實 B 沒收到,但這是無法完全保證的。無論握手多少次都不能滿足傳輸的絕對可靠,為了效率跟相對可靠而看, 3 次剛剛好,所以就 3 次了(正好 AB 相互確認了一次)。
舉個栗子:把客戶端比作男孩,伺服器比作女孩。通過他們的分手來說明「四次揮手」過程:
"第一次揮手" :日久見人心,男孩發現女孩變成了自己討厭的樣子,忍無可忍,於是決定分手,隨即寫了一封信告訴女孩。
「第二次揮手」 :女孩收到信之後,知道了男孩要和自己分手,怒火中燒,心中暗罵:你算什麼東西,當初你可不是這個樣子的!於是立馬給男孩寫了一封回信:分手就分手,給我點時間,我要把你的東西整理好,全部還給你!男孩收到女孩的第一封信之後,明白了女孩知道自己要和她分手。隨後等待女孩把自己的東西收拾好。
「第三次揮手」 :過了幾天,女孩把男孩送的東西都整理好了,於是再次寫信給男孩:你的東西我整理好了,快把它們拿走,從此你我恩斷義絕!
「第四次揮手」 :男孩收到女孩第二封信之後,知道了女孩收拾好東西了,可以正式分手了,於是再次寫信告訴女孩:我知道了,這就去拿回來!
為什麼連接的時候是三次握手,關閉的時候卻是四次握手?
答:因為當 Server端 收到 Client端 的 SYN 連接請求報文後,可以直接發送 SYN+ACK報文 。其中 ACK報文 是用來應答的, SYN報文 是用來同步的。但是關閉連接時,當 Server端 收到 FIN報文 時,很可能並不會立即 關閉SOCKET ,所以只能先回復一個 ACK報文 ,告訴 Client端 ,"你發的 FIN報文 我收到了"。只有等到我 Server端 所有的報文都發送完了,我才能發送 FIN報文 ,因此不能一起發送。故需要四步握手。
靜態路由 是指事先設置好路由器和主機中並將路由信息固定的一種方法。缺點是某個路由器發生故障,基本上無法自動繞過發生故障的節點,只有在管理員手工設置以後才能恢復正常。
動態路由 是管理員先設置好路由協議,其設定過程的復雜程度與具體要設置路由協議的類型有直接關系。在路由器個數較多的網路,採用動態路由顯然能夠減輕管理員負擔。網路發生故障,只要有一個可繞的其他路徑,數據包會自動選擇這個路徑,但路由器需要定期相互交換必要的路由控制信息,會增加一定程度的負荷。
根據路由控制范圍分為 IGP (內部網關協議)和 EGP (外部網關協議)
路由演算法分為 距離向量演算法 和 鏈路狀態演算法
距離向量演算法 :通過距離與方向確定通往目標網路的路徑
鏈路狀態演算法 :鏈路狀態中路由器知道網路的連接狀態,並根據鏈路信息確定通往目標網路的路徑。
IGP包含RIP、RIP2、OSPF
EGP包含EGP、BGP
RIP是距離向量型的一種路由協議,廣泛應用於LAN
RIP2是RIP的第二版。新增以下特點:使用多播、支持子網掩碼、路由選擇域、外部路由標志、身份驗證密鑰
OSPF是一種鏈路狀態型路由協議。
在RIP和OSPF中利用IP的網路地址部分進行著路由控制,然而BGP則需要放眼整個互聯網進行路由控制。BGP的最終路由控製表有網路地址和下一站的路由器組來表示,不過它會根據所要經過的AS個數進行路由控制。有了AS編號的域,就相當於有了自己一個獨立的「國家」。AS的代表可以決定AS內部的網路運營和相關政策。與其他AS相連的時候,可以像一位「外交官」一樣簽署合約再進行連接。正是有了這些不同地區的AS通過簽約的相互連接,才有了今天全球范圍內的互聯網。
轉發IP數據包的過程中除了使用路由技術外,還在使用標記交換技術。最有代表性的就是多協議標記交換技術(MPLS)。
MPLS的標記不像MAC地址直接對應到硬體設備。因此,MPLS不需要具備以外網或ATM等數據鏈路層協議的作用,而只需要關注它與下面一層IP層之間的功能和協議即可。
MPLS優點:
1.轉發速度快
2.利用標記生成虛擬路徑,並在它的上面實現IP等數據包的通信。
F. 計算機區域網採用什麼技術共享傳輸介質
雙絞線電纜 雙絞線電纜(簡稱為雙絞線)是綜合布線系統中最常用的一種傳輸介質,尤其在星型網路拓樸中,雙絞線是必不可少的布線材料。雙絞線電纜中封裝著一對或一對以上的雙絞線,為了降低信號的干擾程度,每一對雙絞線一般由兩根絕緣銅導線相互纏繞而成。雙絞線可分為非屏蔽雙絞線(UTP)和屏蔽雙絞線(STP)兩大類。其中,STP又分為3類和5類兩種,而UTP分為3類、4類、5類、超5類四種,同時,6類和7類雙絞線也禪亮會在不遠的將來運用於賀轎寬計算機網路的布線系帆羨統。
G. 共享區域網和交換區域網
發一個 ppt給你 我特意把它傳到我的網站目錄下了.請盡快下載.幾天後將刪除.
http://www.togl.cn/共享區域網和交換區域網.ppt
第3章 區域網
3.4 共享介質區域網和交換區域網
3.4.1共享介質區域網的工作原理
及存在的問題
3.4.2 交換區域網的特點
3.4.3 交換區域網的工作原理
3.4.4 區域網交換機技術
3.4.1 共享介質區域網的工作原理及存在的問題
傳統的區域網技術是建立在"共享介質"的基礎上,網中所有結點共享一條公共通信傳輸介質,典型的介質訪問控制方式是CSMA/CD,Token Ring,Token Bus.介質訪問控制方式用來保證每個結點都能夠"公平"的使用公共傳輸介質.IEEE 802.2標準定義的共享介質區域網有以下三種:
採用CSMA/CD介質訪問控制方式的匯流排型區域網.
採用Token Bus介質訪問控制方式的匯流排型區域網.
採用Token Ring介質訪問控制方式的環型區域網.
3.4.1 共享介質區域網的工作原理及存在的問題
目前應用最廣的一類區域網是第一種,即乙太網(Ethernet).10Base-T乙太網的中心連接設備是集線器(Hub),它是對"共享介質" 匯流排型區域網結構的一種改進.用集線器作為乙太網的中心連接設備時,所有結點通過非屏蔽雙絞線與集線器連接.這樣的乙太網在物理結構上是星型結構,但它在邏輯上仍然是匯流排型結構,並且在MAC層仍然採用CSMA/CD介質訪問控制方式.當集線器接收到某個結點發送的幀時,它立即將數據幀通過廣播方式轉發到其它埠.
3.4.1 共享介質區域網的工作原理及存在的問題
在10Base-T的乙太網中,如果網中有N個結點,那麼每個結點平均能分到的帶寬為10Mbps/N.顯然,當區域網的規模不斷的擴大,結點數N不斷增加時,每個結點平均能分到的帶寬將越來越少.因為Ethernet的N個結點共享一條10Mbps的公共通信信道,所以當網路結點數N增大,網路通信負荷加重時,沖突和重發現象將大量發生,網路效率急劇下降,網路傳輸延遲增長,網路服務質量下降.為了克服網路規模和網路性能之間的矛盾,人們提出了將"共享介質方式"改為"交換方式"的方案,這就推動了"交換區域網"技術的發展.交換區域網的核心設備是區域網交換機,它可以在它的多個埠之間建立多個並發連接.圖3.6簡單說明了交換區域網的工作原理,圖中交換機為站點A 和站點E,站點B 和F,站點C和站點D分別建立了並行,獨立的三條鏈路,使之能同時實現A和E,B和F,C和D之間的通信.
3.4.1 共享介質區域網的工作原理及存在的問題
圖3.6 交換區域網的工作原理
3.4.2 交換區域網的特點
我們以交換乙太網(Switch Ethernet)為例說明交換區域網的共同特點.交換乙太網是指以數據鏈路層的幀為數據交換單位,以乙太網交換機為基礎構成的網路.它根本上解決了共享乙太網所帶來的問題.其特點如下:
允許多對站點同時通信,每個站點可以獨占傳輸通道和帶寬.
靈活的介面速率
具有高度的網路可擴充性和延展性
易於管理,便於調整網路負載的分布,有效地利用網路帶寬
交換乙太網與乙太網,快速乙太網完全兼容,它們能夠實現無縫連接
可互連不同標準的區域網.
3.4.3 交換區域網的工作原理
1. 交換區域網的基本結構
交換區域網的核心設備是區域網交換機,它可以在它的多個埠之間建立多個並發連接.為了保護用戶已有的投資,區域網交換機一般是針對某類區域網(例如802.3標準的Ethernet或802..5標準的Token Ring)設計的.
典型的交換區域網是交換乙太網(Switched Ethernet),它的核心部件是乙太網交換機.乙太網交換機可以有多個埠,每個埠可以單獨與一個結點連接,也可以與一個共享介質式的乙太網集線器(Hub)連接.
3.4.3 交換區域網的工作原理
如果一個埠只連接一個結點,那麼這個結點就可以獨占整個帶寬,這類埠通常被稱作"專用埠";如果一個埠連接一個與埠帶寬相同的乙太網,那麼這個埠將被乙太網中的所有結點所共享,這類埠被稱為"共享埠".典型的交換乙太網的結構如圖3.7所示.
3.4.3 交換區域網的工作原理
圖3.7 交換乙太網的結構示意圖
3.4.3 交換區域網的工作原理
2. 區域網交換機的工作原理
典型的區域網交換機結構與工作過程如圖3.8所示.圖中的交換機有6個埠,其中埠1,4,5,6分別連接了結點A,結點B,結點C與結點D.那麼交換機的"埠號/MAC地址映射表"就可以根據以上埠號與結點MAC地址的對應關系建立起來.如果結點A與結點D同時要發送數據,那麼它們可以分別在Ethernet幀的目的地址欄位(DA)中添上該幀的目的地址.
3.4.3 交換區域網的工作原理
圖3.8 交換機的結構與工作過程
3.4.3 交換區域網的工作原理
例如,結點A要向結點C發送幀,那麼該幀的目的地址DA=結點C;結點D要向結點B發送幀,那麼該幀的目的地址DA=結點B.當結點A,結點D同時通過交換機傳送Ethernet幀時,交換機的交換控制中心根據"埠號/MAC地址映射表"的對應關系找出幀的目的地址的輸出埠號,那麼它就可以為結點A到結點C建立埠1到埠5的連接,同時為結點D到結點B建立埠6到埠4的連接.這種埠之間的連接可以根據需要同時建立多條,也就是說可以在多個埠之間建立多個並發連接.
3.4.3 交換區域網的工作原理
乙太網交換機的幀轉發方式可以分為以下三類:
直接交換方式
存儲轉發方式
改進直接交換方式
3.4.4 區域網交換機技術
1. 交換機與集線器的區別
交換機的作用是對封裝的數據包進行轉發,並減少沖突域,隔離廣播風暴.從組網的形式看,交換機與集線器非常類似,但實際工作原理有很大的不同.
從OSI體系結構看,集線器工作在 OSI/RM的第一層,是一種物理層的連接設備,因而它只對數據的傳輸進行同步,放大和整形處理,不能對數據傳輸的短幀,碎片等進行有效的處理,不進行差錯處理,不能保證數據的完整性和正確性.交換機工作在OSI的第二層,屬於數據鏈路層的連接設備,不但可以對數據的傳輸進行同步,放大和整形處理,還提供數據的完整性和正確性的保證.
3.4.4 區域網交換機技術
從工作方式和帶寬來看,集線器是一種廣播模式,一個埠發送信息,所有的埠都可以接收到,容易發生廣播風暴;同時集線器共享帶寬,當兩個埠間通信時,其它埠只能等待.交換機是一種交換方式,一個埠發送信息,只有目的埠可以接收到,能夠有效的隔離沖突域,抑制廣播風暴;同時每個埠都有自己的獨立帶寬,兩個埠間的通信不影響其它埠間的通信.
3.4.4 區域網交換機技術
2. 交換機的技術特點
目前,區域網交換機主要是針對乙太網設計的.一般來說,區域網交換機主要有以下幾個技術特點.
低交換傳輸延遲
高傳輸帶寬
允許10Mbps/100Mbps共存
支持虛擬區域網服務
3.4.4 區域網交換機技術
3. 第三層交換技術
簡單的說,第三層交換技術就是"第二層交換技術+第三層轉發".第三層交換技術的出現,解決了區域網中網段劃分之後網段中的子網必須依賴路由器進行管理的局面,解決了傳統路由器低速,復雜所造成的網路瓶頸問題.
一個具有第三層交換功能的設備,是一個帶有第三層路由功能的第二層交換機,但它是兩者的有機結合,而不是簡單地把路由器設備的硬體及軟體疊加在區域網交換機上.
3.4.4 區域網交換機技術
其工作原理如下:假設兩個使用IP協議的站點A,B通過第三層交換機進行通信,發送站點A在開始發送時,把自己的IP地址與B站的IP地址比較,判斷B站是否與自己在同一子網內.若目的站B與發送站A在同一子網內,則進行第二層的轉發.若兩個站點不在同一子網內,如發送站A要與目的站B通信,發送站A要向"預設網關"發出ARP(地址解析)封包,而"預設網關"的IP地址其實是第三層交換機的第三層交換模塊.當發送站A對"預設網關"的IP地址廣播出一個ARP請求時,如果第三層交換模塊在以前的通信過程中已經知道B站的MAC地址,則向發送站A回復B的MAC地址.否則第三層交換模塊根據路由信息向B站廣播一個ARP請求, B站得到此ARP請求後向第三層交換模塊
3.4.4 區域網交換機技術
回復其MAC地址,B站得到此ARP請求後向第三層交換模塊回復其MAC地址,第三層交換模塊保存此地址並回復給發送站A,同時將B站的MAC地址發送到第二層交換引擎的MAC地址表中.從這以後,當A向B發送的數據包便全部交給第二層交換處理,信息得以高速交換.由於僅僅在路由過程中才需要第三層處理,絕大部分數據都通過第二層交換轉發,因此第三層交換機的速度很快,接近第二層交換機的速度,同時比相同路由器的價格低很多.可以相信,隨著網路技術的不斷發展,第三層交換機有望在大規模網路中取代現有路由器的位置.
H. 共享介質和介質訪問控制
這個概念已經過時了。 共享介質一般指同軸電纜的區域網使用方式,大家都連在同一條同軸電纜上,同時只有一對計算機可以進行通信。對介質資源的分配就必須有一定得規則,這種規則叫介質訪問控制 追問: 怎麼說這概念過時了?我是在08年的書上看到的 回答: 這種技術在網路上已經淘汰了,2003年以後很少有人見過同軸電纜連接的區域網了。 也許是為了從基礎的學起,也許是它的技術衍生的一些訪問控制的機制
I. 區域網採用了什麼技術
用以傳輸數據的介質,用以連接各種設備的拓撲結構,用以共享資源的介質控制方法。
區域網一般為一個部門或單位所有,建網、維護以及擴展等較容易,系統靈活性高,覆蓋的地理范圍較小,只在一個相對獨立的局部范圍內聯,如一座或集中的建築群內,使用專門鋪設的傳輸介質進行聯網,數據傳輸速率高10Mb/s~10Gb/s。
(9)共享介質型網路使用哪一種技術擴展閱讀:
注意事項:
一般家庭無線網路都習慣使用DHCP服務來為網路中的客戶端動態分配IP,因為這樣配置方便簡單。這其實同樣存在安全隱患,在成員很固定的家庭網路中,建議為網路成員設備分配固定的IP地址,然後再在無線路由器上設定允許接入設備的IP地址列表。
通常每個無線網路都有一個服務區標識符(SSID),無線客戶端需要加入該網路的時候都需要有一個相同的SSID才行。一般情況下無線設備在出廠時都會設置一個默認的值,例如TP-LINK公司的設備SSID值就是TP-LINK。設置SSID值就是注意兩點:修改默認值和保持修改後的一致性即可。