❶ 如何理解卷積神經網路中的權值共享
所謂的權值共享就是說,給一張輸入圖片,用一個filter去掃這張圖,filter裡面的數就叫權重,這張圖每個位置是被同樣的filter掃的,所以權重是一樣的,也就是共享。 這么說可能還不太明白,如果你能理解什麼叫全連接神經網路的話,那麼從一個盡量減少參數個數的角度去理解就可以了。 對於一張輸入圖片,大小為W*H,如果使用全連接網路,生成一張X*Y的feature map,需要W*H*X*Y個參數,如果原圖長寬是10^2級別的,而且XY大小和WH差不多的話,那麼這樣一層網路需要的參數個數是10^8~10^12級別。 這么多參數肯定是不行的,那麼我們就想辦法減少參數的個數對於輸出層feature map上的每一個像素,他與原圖片的每一個像素都有連接,每一個鏈接都需要一個參數。但注意到圖像一般都是局部相關的,那麼如果輸出層的每一個像素只和輸入層圖片的一個局部相連,那麼需要參數的個數就會大大減少。假設輸出層每個像素只與輸入圖片上F*F的一個小方塊有連接,也就是說輸出層的這個像素值,只是通過原圖的這個F*F的小方形中的像素值計算而來,那麼對於輸出層的每個像素,需要的參數個數就從原來的W*H減小到了F*F。如果對於原圖片的每一個F*F的方框都需要計算這樣一個輸出值,那麼需要的參數只是W*H*F*F,如果原圖長寬是10^2級別,而F在10以內的話,那麼需要的參數的個數只有10^5~10^6級別,相比於原來的10^8~10^12小了很多很多。
❷ CNN卷積神經網路結構有哪些特點
局部連接,權值共享,池化操作,多層次結構。
1、局部連接使網路可以提取數據的局部特徵;
2、權值共享大大降低了網路的訓練難度,一個Filter只提取一個特徵,在整個圖片(或者語音/文本) 中進行卷積;
3、池化操作與多層次結構一起,實現了數據的降維,將低層次的局部特徵組合成為較高層次的特徵,從而對整個圖片進行表示。
❸ 卷積神經網路通俗理解
卷積神經網路通俗理解如下:
卷積神經網路(CNN)-結構
① CNN結構一般包含這幾個層:
輸入層:用於數據的輸入
卷積層:使用卷積核進行特徵提取和特徵映射
激勵層:由於卷積也是一種線性運算,因此需要增加非線性映射
池化層:進行下采樣,對特徵圖稀疏處理,減少數據運算量。
全連接層:通常在CNN的尾部進行重新擬合,減少特徵信息的損失
輸出層:用於輸出結果
歸一化層(Batch Normalization):在CNN中對特徵的歸一化
切分層:對某些(圖片)數據的進行分區域的單獨學習
融合層:對獨立進行特徵學習的分支進行融合
感受視野
local receptive fields(感受視野)
shared weights(共享權值)
② 中間還可以使用一些其他的功能層:
卷積神經網路(CNN)-輸入層
① CNN的輸入層的輸入格式保留了圖片本身的結構。
② 對於黑白的 28×28的圖片,CNN 的輸入是一個 28×28 的二維神經元。
③ 對於 RGB 格式的 28×28 圖片,CNN 的輸入則是一個3×28×28 的三維神經元(RGB中的每一個顏色通道都有一個 28×28 的矩陣)
2)卷積神經網路(CNN)-卷積層
① 在卷積層中有幾個重要的概念:
② 假設輸入的是一個 28×28 的的二維神經元,我們定義 5×5 的 一個 local receptive fields(感受視野),即 隱藏層的神經元與輸入層的 5×5 個神經元相連,這個 5*5 的區域就稱之為 Local Receptive Fields,
❹ 如何理解卷積神經網路中的權值共享
權值共享的通俗理解就是整張圖片或者整組feature map共用一個卷積核,卷積核在圖片上慢慢滑動,所以圖片上每個區域都是利用了卷積核內的參數,這就是權值共享。
❺ 卷積神經網路
卷積神經網路 (Convolutional Neural Networks,CNN)是一種前饋神經網路。卷積神經網路是受生物學上感受野(Receptive Field)的機制而提出的。感受野主要是指聽覺系統、本體感覺系統和視覺系統中神經元的一些性質。比如在視覺神經系統中,一個神經元的感受野是指視網膜上的特定區域,只有這個區域內的刺激才能夠激活該神經元。
卷積神經網路又是怎樣解決這個問題的呢?主要有三個思路:
在使用CNN提取特徵時,到底使用哪一層的輸出作為最後的特徵呢?
答:倒數第二個全連接層的輸出才是最後我們要提取的特徵,也就是最後一個全連接層的輸入才是我們需要的特徵。
全連接層會忽視形狀。卷積層可以保持形狀不變。當輸入數據是圖像時,卷積層會以3維數據的形式接收輸入數據,並同樣以3維數據的形式輸出至下一層。因此,在CNN中,可以(有可能)正確理解圖像等具有形狀的數據。
CNN中,有時將 卷積層的輸入輸出數據稱為特徵圖(feature map) 。其中, 卷積層的輸入數據稱為輸入特徵圖(input feature map) , 輸出數據稱為輸出特徵圖(output feature map)。
卷積層進行的處理就是 卷積運算 。卷積運算相當於圖像處理中的「濾波器運算」。
濾波器相當於權重或者參數,濾波器數值都是學習出來的。 卷積層實現的是垂直邊緣檢測 。
邊緣檢測實際就是將圖像由亮到暗進行區分,即邊緣的過渡(edge transitions)。
卷積層對應到全連接層,左上角經過濾波器,得到的3,相當於一個神經元輸出為3.然後相當於,我們把輸入矩陣拉直為36個數據,但是我們只對其中的9個數據賦予了權重。
步幅為1 ,移動一個,得到一個1,相當於另一個神經單元的輸出是1.
並且使用的是同一個濾波器,對應到全連接層,就是權值共享。
在這個例子中,輸入數據是有高長方向的形狀的數據,濾波器也一樣,有高長方向上的維度。假設用(height, width)表示數據和濾波器的形狀,則在本例中,輸入大小是(4, 4),濾波器大小是(3, 3),輸出大小是(2, 2)。另外,有的文獻中也會用「核」這個詞來表示這里所說的「濾波器」。
對於輸入數據,卷積運算以一定間隔滑動濾波器的窗口並應用。這里所說的窗口是指圖7-4中灰色的3 × 3的部分。如圖7-4所示,將各個位置上濾
波器的元素和輸入的對應元素相乘,然後再求和(有時將這個計算稱為乘積累加運算)。然後,將這個結果保存到輸出的對應位置。將這個過程在所有位置都進行一遍,就可以得到卷積運算的輸出。
CNN中,濾波器的參數就對應之前的權重。並且,CNN中也存在偏置。
在進行卷積層的處理之前,有時要向輸入數據的周圍填入固定的數據(比如0等),這稱為填充(padding),是卷積運算中經常會用到的處理。比如,在圖7-6的例子中,對大小為(4, 4)的輸入數據應用了幅度為1的填充。「幅度為1的填充」是指用幅度為1像素的0填充周圍。
應用濾波器的位置間隔稱為 步幅(stride) 。
假設輸入大小為(H, W),濾波器大小為(FH, FW),輸出大小為(OH, OW),填充為P,步幅為S。
但是所設定的值必須使式(7.1)中的 和 分別可以除盡。當輸出大小無法除盡時(結果是小數時),需要採取報錯等對策。順便說一下,根據深度學習的框架的不同,當值無法除盡時,有時會向最接近的整數四捨五入,不進行報錯而繼續運行。
之前的卷積運算的例子都是以有高、長方向的2維形狀為對象的。但是,圖像是3維數據,除了高、長方向之外,還需要處理通道方向。
在3維數據的卷積運算中,輸入數據和濾波器的通道數要設為相同的值。
因此,作為4維數據,濾波器的權重數據要按(output_channel, input_channel, height, width)的順序書寫。比如,通道數為3、大小為5 × 5的濾
波器有20個時,可以寫成(20, 3, 5, 5)。
對於每個通道,均使用自己的權值矩陣進行處理,輸出時將多個通道所輸出的值進行加和即可。
卷積運算的批處理,需要將在各層間傳遞的數據保存為4維數據。具體地講,就是按(batch_num, channel, height, width)的順序保存數據。
這里需要注意的是,網路間傳遞的是4維數據,對這N個數據進行了卷積運算。也就是說,批處理將N次的處理匯總成了1次進行。
池化是縮小高、長方向上的空間的運算。比如,如圖7-14所示,進行將2 × 2的區域集約成1個元素的處理,縮小空間大小。
圖7-14的例子是按步幅2進行2 × 2的Max池化時的處理順序。「Max池化」是獲取最大值的運算,「2 × 2」表示目標區域的大小。如圖所示,從
2 × 2的區域中取出最大的元素。此外,這個例子中將步幅設為了2,所以2 × 2的窗口的移動間隔為2個元素。另外,一般來說,池化的窗口大小會和步幅設定成相同的值。比如,3 × 3的窗口的步幅會設為3,4 × 4的窗口的步幅會設為4等。
除了Max池化之外,還有Average池化等。相對於Max池化是從目標區域中取出最大值,Average池化則是計算目標區域的平均值。 在圖像識別領域,主要使用Max池化。 因此,本書中說到「池化層」時,指的是Max池化。
池化層的特徵
池化層有以下特徵。
沒有要學習的參數
池化層和卷積層不同,沒有要學習的參數。池化只是從目標區域中取最大值(或者平均值),所以不存在要學習的參數。
通道數不發生變化
經過池化運算,輸入數據和輸出數據的通道數不會發生變化。如圖7-15所示,計算是按通道獨立進行的。
對微小的位置變化具有魯棒性(健壯)
輸入數據發生微小偏差時,池化仍會返回相同的結果。因此,池化對輸入數據的微小偏差具有魯棒性。比如,3 × 3的池化的情況下,如圖
7-16所示,池化會吸收輸入數據的偏差(根據數據的不同,結果有可能不一致)。
經過卷積層和池化層之後,進行Flatten,然後丟到全連接前向傳播神經網路。
(找到一張圖片使得某個filter響應最大。相當於filter固定,未知的是輸入的圖片。)未知的是輸入的圖片???
k是第k個filter,x是我們要找的參數。?這里我不是很明白。我得理解應該是去尋找最具有代表性的特徵。
使用im2col來實現卷積層
卷積層的參數是需要學習的,但是池化層沒有參數需要學習。全連接層的參數需要訓練得到。
池化層不需要訓練參數。全連接層的參數最多。卷積核的個數逐漸增多。激活層的size,逐漸減少。
最大池化只是計算神經網路某一層的靜態屬性,沒有什麼需要學習的,它只是一個靜態屬性 。
像這樣展開之後,只需對展開的矩陣求各行的最大值,並轉換為合適的形狀即可(圖7-22)。
參數
• input_dim ― 輸入數據的維度:( 通道,高,長 )
• conv_param ― 卷積層的超參數(字典)。字典的關鍵字如下:
filter_num ― 濾波器的數量
filter_size ― 濾波器的大小
stride ― 步幅
pad ― 填充
• hidden_size ― 隱藏層(全連接)的神經元數量
• output_size ― 輸出層(全連接)的神經元數量
• weitght_int_std ― 初始化時權重的標准差
LeNet
LeNet在1998年被提出,是進行手寫數字識別的網路。如圖7-27所示,它有連續的卷積層和池化層(正確地講,是只「抽選元素」的子采樣層),最後經全連接層輸出結果。
和「現在的CNN」相比,LeNet有幾個不同點。第一個不同點在於激活函數。LeNet中使用sigmoid函數,而現在的CNN中主要使用ReLU函數。
此外,原始的LeNet中使用子采樣(subsampling)縮小中間數據的大小,而現在的CNN中Max池化是主流。
AlexNet
在LeNet問世20多年後,AlexNet被發布出來。AlexNet是引發深度學習熱潮的導火線,不過它的網路結構和LeNet基本上沒有什麼不同,如圖7-28所示。
AlexNet疊有多個卷積層和池化層,最後經由全連接層輸出結果。雖然結構上AlexNet和LeNet沒有大的不同,但有以下幾點差異。
• 激活函數使用ReLU。
• 使用進行局部正規化的LRN(Local Response Normalization)層。
• 使用Dropout
TF2.0實現卷積神經網路
valid意味著不填充,same是填充
or the SAME padding, the output height and width are computed as:
out_height = ceil(float(in_height) / float(strides[1]))
out_width = ceil(float(in_width) / float(strides[2]))
And
For the VALID padding, the output height and width are computed as:
out_height = ceil(float(in_height - filter_height + 1) / float(strides[1]))
out_width = ceil(float(in_width - filter_width + 1) / float(strides[2]))
因此,我們可以設定 padding 策略。在 tf.keras.layers.Conv2D 中,當我們將 padding 參數設為 same 時,會將周圍缺少的部分使用 0 補齊,使得輸出的矩陣大小和輸入一致。
❻ 卷積神經網路
關於花書中卷積網路的筆記記錄於 https://www.jianshu.com/p/5a3c90ea0807 。
卷積神經網路(Convolutional Neural Network,CNN或ConvNet)是一種具有 局部連接、權重共享 等特性的深層前饋神經網路。卷積神經網路是受生物學上感受野的機制而提出。 感受野(Receptive Field) 主要是指聽覺、視覺等神經系統中一些神經元的特性,即 神經元只接受其所支配的刺激區域內的信號 。
卷積神經網路最早是主要用來處理圖像信息。如果用全連接前饋網路來處理圖像時,會存在以下兩個問題:
目前的卷積神經網路一般是由卷積層、匯聚層和全連接層交叉堆疊而成的前饋神經網路,使用反向傳播演算法進行訓練。 卷積神經網路有三個結構上的特性:局部連接,權重共享以及匯聚 。這些特性使卷積神經網路具有一定程度上的平移、縮放和旋轉不變性。
卷積(Convolution)是分析數學中一種重要的運算。在信號處理或圖像處理中,經常使用一維或二維卷積。
一維卷積經常用在信號處理中,用於計算信號的延遲累積。假設一個信號發生器每個時刻t 產生一個信號 ,其信息的衰減率為 ,即在 個時間步長後,信息為原來的 倍。假設 ,那麼在時刻t收到的信號 為當前時刻產生的信息和以前時刻延遲信息的疊加:
我們把 稱為 濾波器(Filter)或卷積核(Convolution Kernel) 。假設濾波器長度為 ,它和一個信號序列 的卷積為:
信號序列 和濾波器 的卷積定義為:
一般情況下濾波器的長度 遠小於信號序列長度 ,下圖給出一個一維卷積示例,濾波器為 :
二維卷積經常用在圖像處理中。因為圖像為一個兩維結構,所以需要將一維卷積進行擴展。給定一個圖像 和濾波器 ,其卷積為:
下圖給出一個二維卷積示例:
注意這里的卷積運算並不是在圖像中框定卷積核大小的方框並將各像素值與卷積核各個元素相乘並加和,而是先把卷積核旋轉180度,再做上述運算。
在圖像處理中,卷積經常作為特徵提取的有效方法。一幅圖像在經過卷積操作後得到結果稱為 特徵映射(Feature Map) 。
最上面的濾波器是常用的高斯濾波器,可以用來對圖像進行 平滑去噪 ;中間和最下面的過濾器可以用來 提取邊緣特徵 。
在機器學習和圖像處理領域,卷積的主要功能是在一個圖像(或某種特徵)上滑動一個卷積核(即濾波器),通過卷積操作得到一組新的特徵。在計算卷積的過程中,需要進行卷積核翻轉(即上文提到的旋轉180度)。 在具體實現上,一般會以互相關操作來代替卷積,從而會減少一些不必要的操作或開銷。
互相關(Cross-Correlation)是一個衡量兩個序列相關性的函數,通常是用滑動窗口的點積計算來實現 。給定一個圖像 和卷積核 ,它們的互相關為:
互相關和卷積的區別僅在於卷積核是否進行翻轉。因此互相關也可以稱為不翻轉卷積 。當卷積核是可學習的參數時,卷積和互相關是等價的。因此,為了實現上(或描述上)的方便起見,我們用互相關來代替卷積。事實上,很多深度學習工具中卷積操作其實都是互相關操作。
在卷積的標準定義基礎上,還可以引入濾波器的 滑動步長 和 零填充 來增加卷積多樣性,更靈活地進行特徵抽取。
濾波器的步長(Stride)是指濾波器在滑動時的時間間隔。
零填充(Zero Padding)是在輸入向量兩端進行補零。
假設卷積層的輸入神經元個數為 ,卷積大小為 ,步長為 ,神經元兩端各填補 個零,那麼該卷積層的神經元數量為 。
一般常用的卷積有以下三類:
因為卷積網路的訓練也是基於反向傳播演算法,因此我們重點關注卷積的導數性質:
假設 。
, , 。函數 為一個標量函數。
則由 有:
可以看出, 關於 的偏導數為 和 的卷積 :
同理得到:
當 或 時, ,即相當於對 進行 的零填充。從而 關於 的偏導數為 和 的寬卷積 。
用互相關的「卷積」表示,即為(注意 寬卷積運算具有交換性性質 ):
在全連接前饋神經網路中,如果第 層有 個神經元,第 層有 個神經元,連接邊有 個,也就是權重矩陣有 個參數。當 和 都很大時,權重矩陣的參數非常多,訓練的效率會非常低。
如果採用卷積來代替全連接,第 層的凈輸入 為第 層活性值 和濾波器 的卷積,即:
根據卷積的定義,卷積層有兩個很重要的性質:
由於局部連接和權重共享,卷積層的參數只有一個m維的權重 和1維的偏置 ,共 個參數。參數個數和神經元的數量無關。此外,第 層的神經元個數不是任意選擇的,而是滿足 。
卷積層的作用是提取一個局部區域的特徵,不同的卷積核相當於不同的特徵提取器。
特徵映射(Feature Map)為一幅圖像(或其它特徵映射)在經過卷積提取到的特徵,每個特徵映射可以作為一類抽取的圖像特徵。 為了提高卷積網路的表示能力,可以在每一層使用多個不同的特徵映射,以更好地表示圖像的特徵。
在輸入層,特徵映射就是圖像本身。如果是灰度圖像,就是有一個特徵映射,深度 ;如果是彩色圖像,分別有RGB三個顏色通道的特徵映射,深度 。
不失一般性,假設一個卷積層的結構如下:
為了計算輸出特徵映射 ,用卷積核 分別對輸入特徵映射 進行卷積,然後將卷積結果相加,並加上一個標量偏置 得到卷積層的凈輸入 再經過非線性激活函數後得到輸出特徵映射 。
在輸入為 ,輸出為 的卷積層中,每個輸出特徵映射都需要 個濾波器以及一個偏置。假設每個濾波器的大小為 ,那麼共需要 個參數。
匯聚層(Pooling Layer)也叫子采樣層(Subsampling Layer),其作用是進行特徵選擇,降低特徵數量,並從而減少參數數量。
常用的匯聚函數有兩種:
其中 為區域 內每個神經元的激活值。
可以看出,匯聚層不但可以有效地減少神經元的數量,還可以使得網路對一些小的局部形態改變保持不變性,並擁有更大的感受野。
典型的匯聚層是將每個特徵映射劃分為 大小的不重疊區域,然後使用最大匯聚的方式進行下采樣。匯聚層也可以看做是一個特殊的卷積層,卷積核大小為 ,步長為 ,卷積核為 函數或 函數。過大的采樣區域會急劇減少神經元的數量,會造成過多的信息損失。
一個典型的卷積網路是由卷積層、匯聚層、全連接層交叉堆疊而成。
目前常用卷積網路結構如圖所示,一個卷積塊為連續 個卷積層和 個匯聚層( 通常設置為 , 為 或 )。一個卷積網路中可以堆疊 個連續的卷積塊,然後在後面接著 個全連接層( 的取值區間比較大,比如 或者更大; 一般為 )。
目前,整個網路結構 趨向於使用更小的卷積核(比如 和 )以及更深的結構(比如層數大於50) 。此外,由於卷積的操作性越來越靈活(比如不同的步長),匯聚層的作用變得也越來越小,因此目前比較流行的卷積網路中, 匯聚層的比例也逐漸降低,趨向於全卷積網路 。
在全連接前饋神經網路中,梯度主要通過每一層的誤差項 進行反向傳播,並進一步計算每層參數的梯度。在卷積神經網路中,主要有兩種不同功能的神經層:卷積層和匯聚層。而參數為卷積核以及偏置,因此 只需要計算卷積層中參數的梯度。
不失一般性,第 層為卷積層,第 層的輸入特徵映射為 ,通過卷積計算得到第 層的特徵映射凈輸入 ,第 層的第 個特徵映射凈輸入
由 得:
同理可得,損失函數關於第 層的第 個偏置 的偏導數為:
在卷積網路中,每層參數的梯度依賴其所在層的誤差項 。
卷積層和匯聚層中,誤差項的計算有所不同,因此我們分別計算其誤差項。
第 層的第 個特徵映射的誤差項 的具體推導過程如下:
其中 為第 層使用的激活函數導數, 為上采樣函數(upsampling),與匯聚層中使用的下采樣操作剛好相反。如果下采樣是最大匯聚(max pooling),誤差項 中每個值會直接傳遞到上一層對應區域中的最大值所對應的神經元,該區域中其它神經元的誤差項的都設為0。如果下采樣是平均匯聚(meanpooling),誤差項 中每個值會被平均分配到上一層對應區域中的所有神經元上。
第 層的第 個特徵映射的誤差項 的具體推導過程如下:
其中 為寬卷積。
LeNet-5雖然提出的時間比較早,但是是一個非常成功的神經網路模型。基於LeNet-5 的手寫數字識別系統在90年代被美國很多銀行使用,用來識別支票上面的手寫數字。LeNet-5 的網路結構如圖:
不計輸入層,LeNet-5共有7層,每一層的結構為:
AlexNet是第一個現代深度卷積網路模型,其首次使用了很多現代深度卷積網路的一些技術方法,比如採用了ReLU作為非線性激活函數,使用Dropout防止過擬合,使用數據增強來提高模型准確率等。AlexNet 贏得了2012 年ImageNet 圖像分類競賽的冠軍。
AlexNet的結構如圖,包括5個卷積層、3個全連接層和1個softmax層。因為網路規模超出了當時的單個GPU的內存限制,AlexNet 將網路拆為兩半,分別放在兩個GPU上,GPU間只在某些層(比如第3層)進行通訊。
AlexNet的具體結構如下:
在卷積網路中,如何設置卷積層的卷積核大小是一個十分關鍵的問題。 在Inception網路中,一個卷積層包含多個不同大小的卷積操作,稱為Inception模塊。Inception網路是由有多個inception模塊和少量的匯聚層堆疊而成 。
v1版本的Inception模塊,採用了4組平行的特徵抽取方式,分別為1×1、3× 3、5×5的卷積和3×3的最大匯聚。同時,為了提高計算效率,減少參數數量,Inception模塊在進行3×3、5×5的卷積之前、3×3的最大匯聚之後,進行一次1×1的卷積來減少特徵映射的深度。如果輸入特徵映射之間存在冗餘信息, 1×1的卷積相當於先進行一次特徵抽取 。
❼ 卷積神經網路的 卷積層、激活層、池化層、全連接層
數據輸入的是一張圖片(輸入層),CONV表示卷積層,RELU表示激勵層,POOL表示池化層,Fc表示全連接層
全連接神經網路需要非常多的計算資源才能支撐它來做反向傳播和前向傳播,所以說全連接神經網路可以存儲非常多的參數,如果你給它的樣本如果沒有達到它的量級的時候,它可以輕輕鬆鬆把你給他的樣本全部都記下來,這會出現過擬合的情況。
所以我們應該把神經元和神經元之間的連接的權重個數降下來,但是降下來我們又不能保證它有較強的學習能力,所以這是一個糾結的地方,所以有一個方法就是 局部連接+權值共享 ,局部連接+權值共享不僅權重參數降下來了,而且學習能力並沒有實質的降低,除此之外還有其它的好處,下來看一下,下面的這幾張圖片:
一個圖像的不同表示方式
這幾張圖片描述的都是一個東西,但是有的大有的小,有的靠左邊,有的靠右邊,有的位置不同,但是我們構建的網路識別這些東西的時候應該是同一結果。為了能夠達到這個目的,我們可以讓圖片的不同位置具有相同的權重(權值共享),也就是上面所有的圖片,我們只需要在訓練集中放一張,我們的神經網路就可以識別出上面所有的,這也是 權值共享 的好處。
而卷積神經網路就是局部連接+權值共享的神經網路。
現在我們對卷積神經網路有一個初步認識了,下面具體來講解一下卷積神經網路,卷積神經網路依舊是層級結構,但層的功能和形式做了改變,卷積神經網路常用來處理圖片數據,比如識別一輛汽車:
在圖片輸出到神經網路之前,常常先進行圖像處理,有 三種 常見的圖像的處理方式:
均值化和歸一化
去相關和白化
圖片有一個性質叫做局部關聯性質,一個圖片的像素點影響最大的是它周邊的像素點,而距離這個像素點比較遠的像素點二者之間關系不大。這個性質意味著每一個神經元我們不用處理全局的圖片了(和上一層全連接),我們的每一個神經元只需要和上一層局部連接,相當於每一個神經元掃描一小區域,然後許多神經元(這些神經元權值共享)合起來就相當於掃描了全局,這樣就構成一個特徵圖,n個特徵圖就提取了這個圖片的n維特徵,每個特徵圖是由很多神經元來完成的。
在卷積神經網路中,我們先選擇一個局部區域(filter),用這個局部區域(filter)去掃描整張圖片。 局部區域所圈起來的所有節點會被連接到下一層的 一個節點上 。我們拿灰度圖(只有一維)來舉例:
局部區域
圖片是矩陣式的,將這些以矩陣排列的節點展成了向量。就能更好的看出來卷積層和輸入層之間的連接,並不是全連接的,我們將上圖中的紅色方框稱為filter,它是2*2的,這是它的尺寸,這不是固定的,我們可以指定它的尺寸。
我們可以看出來當前filter是2*2的小窗口,這個小窗口會將圖片矩陣從左上角滑到右下角,每滑一次就會一下子圈起來四個,連接到下一層的一個神經元,然後產生四個權重,這四個權重(w1、w2、w3、w4)構成的矩陣就叫做卷積核。
卷積核是演算法自己學習得到的,它會和上一層計算,比如,第二層的0節點的數值就是局部區域的線性組合(w1 0+w2 1+w3 4+w4 5),即被圈中節點的數值乘以對應的權重後相加。
卷積核計算
卷積操作
我們前面說過圖片不用向量表示是為了保留圖片平面結構的信息。 同樣的,卷積後的輸出若用上圖的向量排列方式則丟失了平面結構信息。 所以我們依然用矩陣的方式排列它們,就得到了下圖所展示的連接,每一個藍色結點連接四個黃色的結點。
卷積層的連接方式
圖片是一個矩陣然後卷積神經網路的下一層也是一個矩陣,我們用一個卷積核從圖片矩陣左上角到右下角滑動,每滑動一次,當然被圈起來的神經元們就會連接下一層的一個神經元,形成參數矩陣這個就是卷積核,每次滑動雖然圈起來的神經元不同,連接下一層的神經元也不同,但是產生的參數矩陣確是一樣的,這就是 權值共享 。
卷積核會和掃描的圖片的那個局部矩陣作用產生一個值,比如第一次的時候,(w1 0+w2 1+w3 4+w4 5),所以,filter從左上到右下的這個過程中會得到一個矩陣(這就是下一層也是一個矩陣的原因),具體過程如下所示:
卷積計算過程
上圖中左邊是圖矩陣,我們使用的filter的大小是3 3的,第一次滑動的時候,卷積核和圖片矩陣作用(1 1+1 0+1 1+0 0+1 1+1 0+0 1+0 0+1 1)=4,會產生一個值,這個值就是右邊矩陣的第一個值,filter滑動9次之後,會產生9個值,也就是說下一層有9個神經元,這9個神經元產生的值就構成了一個矩陣,這矩陣叫做特徵圖,表示image的某一維度的特徵,當然具體哪一維度可能並不知道,可能是這個圖像的顏色,也有可能是這個圖像的輪廓等等。
單通道圖片總結 :以上就是單通道的圖片的卷積處理,圖片是一個矩陣,我們用指定大小的卷積核從左上角到右下角來滑動,每次滑動所圈起來的結點會和下一層的一個結點相連,連接之後就會形成局部連接,每一條連接都會產生權重,這些權重就是卷積核,所以每次滑動都會產生一個卷積核,因為權值共享,所以這些卷積核都是一樣的。卷積核會不斷和當時卷積核所圈起來的局部矩陣作用,每次產生的值就是下一層結點的值了,這樣多次產生的值組合起來就是一個特徵圖,表示某一維度的特徵。也就是從左上滑動到右下這一過程中會形成一個特徵圖矩陣(共享一個卷積核),再從左上滑動到右下又會形成另一個特徵圖矩陣(共享另一個卷積核),這些特徵圖都是表示特徵的某一維度。
三個通道的圖片如何進行卷積操作?
至此我們應該已經知道了單通道的灰度圖是如何處理的,實際上我們的圖片都是RGB的圖像,有三個通道,那麼此時圖像是如何卷積的呢?
彩色圖像
filter窗口滑的時候,我們只是從width和height的角度來滑動的,並沒有考慮depth,所以每滑動一次實際上是產生一個卷積核,共享這一個卷積核,而現在depth=3了,所以每滑動一次實際上產生了具有三個通道的卷積核(它們分別作用於輸入圖片的藍色、綠色、紅色通道),卷積核的一個通道核藍色的矩陣作用產生一個值,另一個和綠色的矩陣作用產生一個值,最後一個和紅色的矩陣作用產生一個值,然後這些值加起來就是下一層結點的值,結果也是一個矩陣,也就是一張特徵圖。
三通道的計算過程
要想有多張特徵圖的話,我們可以再用新的卷積核來進行左上到右下的滑動,這樣就會形成 新的特徵圖 。
三通道圖片的卷積過程
也就是說增加一個卷積核,就會產生一個特徵圖,總的來說就是輸入圖片有多少通道,我們的卷積核就需要對應多少通道,而本層中卷積核有多少個,就會產生多少個特徵圖。這樣卷積後輸出可以作為新的輸入送入另一個卷積層中處理,有幾個特徵圖那麼depth就是幾,那麼下一層的每一個特徵圖就得用相應的通道的卷積核來對應處理,這個邏輯要清楚,我們需要先了解一下 基本的概念:
卷積計算的公式
4x4的圖片在邊緣Zero padding一圈後,再用3x3的filter卷積後,得到的Feature Map尺寸依然是4x4不變。
填充
當然也可以使用5x5的filte和2的zero padding可以保持圖片的原始尺寸,3x3的filter考慮到了像素與其距離為1以內的所有其他像素的關系,而5x5則是考慮像素與其距離為2以內的所有其他像素的關系。
規律: Feature Map的尺寸等於
(input_size + 2 * padding_size − filter_size)/stride+1
我們可以把卷積層的作用 總結一點: 卷積層其實就是在提取特徵,卷積層中最重要的是卷積核(訓練出來的),不同的卷積核可以探測特定的形狀、顏色、對比度等,然後特徵圖保持了抓取後的空間結構,所以不同卷積核對應的特徵圖表示某一維度的特徵,具體什麼特徵可能我們並不知道。特徵圖作為輸入再被卷積的話,可以則可以由此探測到"更大"的形狀概念,也就是說隨著卷積神經網路層數的增加,特徵提取的越來越具體化。
激勵層的作用可以理解為把卷積層的結果做 非線性映射 。
激勵層
上圖中的f表示激勵函數,常用的激勵函數幾下幾種:
常用的激勵函數
我們先來看一下激勵函數Sigmoid導數最小為0,最大為1/4,
激勵函數Sigmoid
Tanh激活函數:和sigmoid相似,它會關於x軸上下對應,不至於朝某一方面偏向
Tanh激活函數
ReLU激活函數(修正線性單元):收斂快,求梯度快,但較脆弱,左邊的梯度為0
ReLU激活函數
Leaky ReLU激活函數:不會飽和或者掛掉,計算也很快,但是計算量比較大
Leaky ReLU激活函數
一些激勵函數的使用技巧 :一般不要用sigmoid,首先試RELU,因為快,但要小心點,如果RELU失效,請用Leaky ReLU,某些情況下tanh倒是有不錯的結果。
這就是卷積神經網路的激勵層,它就是將卷積層的線性計算的結果進行了非線性映射。可以從下面的圖中理解。它展示的是將非線性操作應用到一個特徵圖中。這里的輸出特徵圖也可以看作是"修正"過的特徵圖。如下所示:
非線性操作
池化層:降低了各個特徵圖的維度,但可以保持大分重要的信息。池化層夾在連續的卷積層中間,壓縮數據和參數的量,減小過擬合,池化層並沒有參數,它只不過是把上層給它的結果做了一個下采樣(數據壓縮)。下采樣有 兩種 常用的方式:
Max pooling :選取最大的,我們定義一個空間鄰域(比如,2x2 的窗口),並從窗口內的修正特徵圖中取出最大的元素,最大池化被證明效果更好一些。
Average pooling :平均的,我們定義一個空間鄰域(比如,2x2 的窗口),並從窗口內的修正特徵圖算出平均值
Max pooling
我們要注意一點的是:pooling在不同的depth上是分開執行的,也就是depth=5的話,pooling進行5次,產生5個池化後的矩陣,池化不需要參數控制。池化操作是分開應用到各個特徵圖的,我們可以從五個輸入圖中得到五個輸出圖。
池化操作
無論是max pool還是average pool都有分信息被舍棄,那麼部分信息被舍棄後會損壞識別結果嗎?
因為卷積後的Feature Map中有對於識別物體不必要的冗餘信息,我們下采樣就是為了去掉這些冗餘信息,所以並不會損壞識別結果。
我們來看一下卷積之後的冗餘信息是怎麼產生的?
我們知道卷積核就是為了找到特定維度的信息,比如說某個形狀,但是圖像中並不會任何地方都出現這個形狀,但卷積核在卷積過程中沒有出現特定形狀的圖片位置卷積也會產生一個值,但是這個值的意義就不是很大了,所以我們使用池化層的作用,將這個值去掉的話,自然也不會損害識別結果了。
比如下圖中,假如卷積核探測"橫折"這個形狀。 卷積後得到3x3的Feature Map中,真正有用的就是數字為3的那個節點,其餘數值對於這個任務而言都是無關的。 所以用3x3的Max pooling後,並沒有對"橫折"的探測產生影響。 試想在這里例子中如果不使用Max pooling,而讓網路自己去學習。 網路也會去學習與Max pooling近似效果的權重。因為是近似效果,增加了更多的參數的代價,卻還不如直接進行最大池化處理。
最大池化處理
在全連接層中所有神經元都有權重連接,通常全連接層在卷積神經網路尾部。當前面卷積層抓取到足以用來識別圖片的特徵後,接下來的就是如何進行分類。 通常卷積網路的最後會將末端得到的長方體平攤成一個長長的向量,並送入全連接層配合輸出層進行分類。比如,在下面圖中我們進行的圖像分類為四分類問題,所以卷積神經網路的輸出層就會有四個神經元。
四分類問題
我們從卷積神經網路的輸入層、卷積層、激活層、池化層以及全連接層來講解卷積神經網路,我們可以認為全連接層之間的在做特徵提取,而全連接層在做分類,這就是卷積神經網路的核心。
❽ 如何理解人工智慧神經網路中的權值共享問題
權值(權重)共享這個詞是由LeNet5模型提出來的。以CNN為例,在對一張圖偏進行卷積的過程中,使用的是同一個卷積核的參數。比如一個3×3×1的卷積核,這個卷積核內9個的參數被整張圖共享,而不會因為圖像內位置的不同而改變卷積核內的權系數。說的再直白一些,就是用一個卷積核不改變其內權系數的情況下卷積處理整張圖片(當然CNN中每一層不會只有一個卷積核的,這樣說只是為了方便解釋而已)。
❾ CNN網路簡介
卷積神經網路簡介(Convolutional Neural Networks,簡稱CNN)
卷積神經網路是近年發展起來,並引起廣泛重視的一種高效識別方法。20世紀60年代,Hubel和Wiesel在研究貓腦皮層中用於局部敏感和方向選擇的神經元時發現其獨特的網路結構可以有效地降低反饋神經網路的復雜性,繼而提出了卷積神經網路(Convolutional
Neural
Networks-簡稱CNN)。現在,CNN已經成為眾多科學領域的研究熱點之一,特別是在模式分類領域,由於該網路避免了對圖像的復雜前期預處理,可以直接輸入原始圖像,因而得到了更為廣泛的應用。
K.Fukushima在1980年提出的新識別機是卷積神經網路的第一個實現網路。隨後,更多的科研工作者對該網路進行了改進。其中,具有代表性的研究成果是Alexander和Taylor提出的「改進認知機」,該方法綜合了各種改進方法的優點並避免了耗時的誤差反向傳播。
一般地,CNN的基本結構包括兩層,其一為特徵提取層,每個神經元的輸入與前一層的局部接受域相連,並提取該局部的特徵。一旦該局部特徵被提取後,它與其它特徵間的位置關系也隨之確定下來;其二是特徵映射層,網路的每個計算層由多個特徵映射組成,每個特徵映射是一個平面,平面上所有神經元的權值相等。特徵映射結構採用影響函數核小的sigmoid函數作為卷積網路的激活函數,使得特徵映射具有位移不變性。此外,由於一個映射面上的神經元共享權值,因而減少了網路自由參數的個數。卷積神經網路中的每一個卷積層都緊跟著一個用來求局部平均與二次提取的計算層,這種特有的兩次特徵提取結構減小了特徵解析度。
CNN主要用來識別位移、縮放及其他形式扭曲不變性的二維圖形。由於CNN的特徵檢測層通過訓練數據進行學習,所以在使用CNN時,避免了顯示的特徵抽取,而隱式地從訓練數據中進行學習;再者由於同一特徵映射面上的神經元權值相同,所以網路可以並行學習,這也是卷積網路相對於神經元彼此相連網路的一大優勢。卷積神經網路以其局部權值共享的特殊結構在語音識別和圖像處理方面有著獨特的優越性,其布局更接近於實際的生物神經網路,權值共享降低了網路的復雜性,特別是多維輸入向量的圖像可以直接輸入網路這一特點避免了特徵提取和分類過程中數據重建的復雜度。
1. 神經網路
首先介紹神經網路,這一步的詳細可以參考資源1。簡要介紹下。神經網路的每個單元如下:
其對應的公式如下:
其中,該單元也可以被稱作是Logistic回歸模型。當將多個單元組合起來並具有分層結構時,就形成了神經網路模型。下圖展示了一個具有一個隱含層的神經網路。
其對應的公式如下:
比較類似的,可以拓展到有2,3,4,5,…個隱含層。
神經網路的訓練方法也同Logistic類似,不過由於其多層性,還需要利用鏈式求導法則對隱含層的節點進行求導,即梯度下降+鏈式求導法則,專業名稱為反向傳播。關於訓練演算法,本文暫不涉及。
2 卷積神經網路
在圖像處理中,往往把圖像表示為像素的向量,比如一個1000×1000的圖像,可以表示為一個1000000的向量。在上一節中提到的神經網路中,如果隱含層數目與輸入層一樣,即也是1000000時,那麼輸入層到隱含層的參數數據為1000000×1000000=10^12,這樣就太多了,基本沒法訓練。所以圖像處理要想練成神經網路大法,必先減少參數加快速度。就跟辟邪劍譜似的,普通人練得很挫,一旦自宮後內力變強劍法變快,就變的很牛了。
2.1 局部感知
卷積神經網路有兩種神器可以降低參數數目,第一種神器叫做局部感知野。一般認為人對外界的認知是從局部到全局的,而圖像的空間聯系也是局部的像素聯系較為緊密,而距離較遠的像素相關性則較弱。因而,每個神經元其實沒有必要對全局圖像進行感知,只需要對局部進行感知,然後在更高層將局部的信息綜合起來就得到了全局的信息。網路部分連通的思想,也是受啟發於生物學裡面的視覺系統結構。視覺皮層的神經元就是局部接受信息的(即這些神經元只響應某些特定區域的刺激)。如下圖所示:左圖為全連接,右圖為局部連接。
在上右圖中,假如每個神經元只和10×10個像素值相連,那麼權值數據為1000000×100個參數,減少為原來的千分之一。而那10×10個像素值對應的10×10個參數,其實就相當於卷積操作。
2.2 參數共享
但其實這樣的話參數仍然過多,那麼就啟動第二級神器,即權值共享。在上面的局部連接中,每個神經元都對應100個參數,一共1000000個神經元,如果這1000000個神經元的100個參數都是相等的,那麼參數數目就變為100了。
怎麼理解權值共享呢?我們可以這100個參數(也就是卷積操作)看成是提取特徵的方式,該方式與位置無關。這其中隱含的原理則是:圖像的一部分的統計特性與其他部分是一樣的。這也意味著我們在這一部分學習的特徵也能用在另一部分上,所以對於這個圖像上的所有位置,我們都能使用同樣的學習特徵。
更直觀一些,當從一個大尺寸圖像中隨機選取一小塊,比如說 8×8 作為樣本,並且從這個小塊樣本中學習到了一些特徵,這時我們可以把從這個
8×8 樣本中學習到的特徵作為探測器,應用到這個圖像的任意地方中去。特別是,我們可以用從 8×8
樣本中所學習到的特徵跟原本的大尺寸圖像作卷積,從而對這個大尺寸圖像上的任一位置獲得一個不同特徵的激活值。
如下圖所示,展示了一個33的卷積核在55的圖像上做卷積的過程。每個卷積都是一種特徵提取方式,就像一個篩子,將圖像中符合條件(激活值越大越符合條件)的部分篩選出來。
2.3 多卷積核
上面所述只有100個參數時,表明只有1個100*100的卷積核,顯然,特徵提取是不充分的,我們可以添加多個卷積核,比如32個卷積核,可以學習32種特徵。在有多個卷積核時,如下圖所示:
上圖右,不同顏色表明不同的卷積核。每個卷積核都會將圖像生成為另一幅圖像。比如兩個卷積核就可以將生成兩幅圖像,這兩幅圖像可以看做是一張圖像的不同的通道。如下圖所示,下圖有個小錯誤,即將w1改為w0,w2改為w1即可。下文中仍以w1和w2稱呼它們。
下圖展示了在四個通道上的卷積操作,有兩個卷積核,生成兩個通道。其中需要注意的是,四個通道上每個通道對應一個卷積核,先將w2忽略,只看w1,那麼在w1的某位置(i,j)處的值,是由四個通道上(i,j)處的卷積結果相加然後再取激活函數值得到的。
所以,在上圖由4個通道卷積得到2個通道的過程中,參數的數目為4×2×2×2個,其中4表示4個通道,第一個2表示生成2個通道,最後的2×2表示卷積核大小。
2.4 Down-pooling
在通過卷積獲得了特徵 (features)
之後,下一步我們希望利用這些特徵去做分類。理論上講,人們可以用所有提取得到的特徵去訓練分類器,例如 softmax
分類器,但這樣做面臨計算量的挑戰。例如:對於一個 96X96
像素的圖像,假設我們已經學習得到了400個定義在8X8輸入上的特徵,每一個特徵和圖像卷積都會得到一個 (96 − 8 + 1) × (96 − 8+ 1) = 7921 維的卷積特徵,由於有 400 個特徵,所以每個樣例 (example) 都會得到一個 892 × 400 =3,168,400 維的卷積特徵向量。學習一個擁有超過 3 百萬特徵輸入的分類器十分不便,並且容易出現過擬合 (over-fitting)。
為了解決這個問題,首先回憶一下,我們之所以決定使用卷積後的特徵是因為圖像具有一種「靜態性」的屬性,這也就意味著在一個圖像區域有用的特徵極有可能在另一個區域同樣適用。因此,為了描述大的圖像,一個很自然的想法就是對不同位置的特徵進行聚合統計,例如,人們可以計算圖像一個區域上的某個特定特徵的平均值(或最大值)。這些概要統計特徵不僅具有低得多的維度 (相比使用所有提取得到的特徵),同時還會改善結果(不容易過擬合)。這種聚合的操作就叫做池(pooling),有時也稱為平均池化或者最大池化 (取決於計算池化的方法)。
至此,卷積神經網路的基本結構和原理已經闡述完畢。
2.5 多層卷積
在實際應用中,往往使用多層卷積,然後再使用全連接層進行訓練,多層卷積的目的是一層卷積學到的特徵往往是局部的,層數越高,學到的特徵就越全局化。
3 ImageNet-2010網路結構
ImageNetLSVRC是一個圖片分類的比賽,其訓練集包括127W+張圖片,驗證集有5W張圖片,測試集有15W張圖片。本文截取2010年AlexKrizhevsky的CNN結構進行說明,該結構在2010年取得冠軍,top-5錯誤率為15.3%。值得一提的是,在今年的ImageNetLSVRC比賽中,取得冠軍的GoogNet已經達到了top-5錯誤率6.67%。可見,深度學習的提升空間還很巨大。
下圖即為Alex的CNN結構圖。需要注意的是,該模型採用了2-GPU並行結構,即第1、2、4、5卷積層都是將模型參數分為2部分進行訓練的。在這里,更進一步,並行結構分為數據並行與模型並行。數據並行是指在不同的GPU上,模型結構相同,但將訓練數據進行切分,分別訓練得到不同的模型,然後再將模型進行融合。而模型並行則是,將若干層的模型參數進行切分,不同的GPU上使用相同的數據進行訓練,得到的結果直接連接作為下一層的輸入。
上圖模型的基本參數為:
輸入:224×224大小的圖片,3通道
第一層卷積:5×5大小的卷積核96個,每個GPU上48個。
第一層max-pooling:2×2的核。
第二層卷積:3×3卷積核256個,每個GPU上128個。
第二層max-pooling:2×2的核。
第三層卷積:與上一層是全連接,3*3的卷積核384個。分到兩個GPU上個192個。
第四層卷積:3×3的卷積核384個,兩個GPU各192個。該層與上一層連接沒有經過pooling層。
第五層卷積:3×3的卷積核256個,兩個GPU上個128個。
第五層max-pooling:2×2的核。
第一層全連接:4096維,將第五層max-pooling的輸出連接成為一個一維向量,作為該層的輸入。
第二層全連接:4096維
Softmax層:輸出為1000,輸出的每一維都是圖片屬於該類別的概率。
4 DeepID網路結構
DeepID網路結構是香港中文大學的Sun
Yi開發出來用來學習人臉特徵的卷積神經網路。每張輸入的人臉被表示為160維的向量,學習到的向量經過其他模型進行分類,在人臉驗證試驗上得到了97.45%的正確率,更進一步的,原作者改進了CNN,又得到了99.15%的正確率。
如下圖所示,該結構與ImageNet的具體參數類似,所以只解釋一下不同的部分吧。
上圖中的結構,在最後只有一層全連接層,然後就是softmax層了。論文中就是以該全連接層作為圖像的表示。在全連接層,以第四層卷積和第三層max-pooling的輸出作為全連接層的輸入,這樣可以學習到局部的和全局的特徵。
❿ 人工智慧CNN卷積神經網路如何共享權值
首先權值共享就是濾波器共享,濾波器的參數是固定的,即是用相同的濾波器去掃一遍圖像,提取一次特徵特徵,得到feature map。在卷積網路中,學好了一個濾波器,就相當於掌握了一種特徵,這個濾波器在圖像中滑動,進行特徵提取,然後所有進行這樣操作的區域都會被採集到這種特徵,就好比上面的水平線。