㈠ 人工智慧CNN卷積神經網路如何共享權值
首先權值共享就是濾波器共享,濾波器的參數是固定的,即是用相同的濾波器去掃一遍圖像,提取一次特徵特徵,得到feature map。在卷積網路中,學好了一個濾波器,就相當於掌握了一種特徵,這個濾波器在圖像中滑動,進行特徵提取,然後所有進行這樣操作的區域都會被採集到這種特徵,就好比上面的水平線。
㈡ 卷積神經網路
一般由卷積層,匯聚層,和全連接層交叉堆疊而成,使用反向傳播演算法進行訓練(反向傳播,再重新看一下)
卷積神經網路有三個結構上的特性:局部連接,權重共享以及子采樣
濾波器filter 卷積核convolution kernel
局部連接,其實就是根據時間,權重遞減 最後為0 參數就傳播不到遠處了
局部連接 乘以 濾波器 得特徵映射
互相關,是一個衡量兩個序列相關性的函數,
互相關和卷積的區別在於 卷積核僅僅是否進行翻轉,因此互相關也可以稱為 不翻轉卷積
使用卷積 是為了進行特徵抽取,卷積核 是否進行翻轉和其特徵抽取的能力無關。
當卷積核是可以學習的參數,卷積和互相關是等價的,因此,其實兩者差不多。
Tips:P是代表特徵映射
㈢ 如何理解人工智慧神經網路中的權值共享問題
權值(權重)共享這個詞是由LeNet5模型提出來的。以CNN為例,在對一張圖偏進行卷積的過程中,使用的是同一個卷積核的參數。比如一個3×3×1的卷積核,這個卷積核內9個的參數被整張圖共享,而不會因為圖像內位置的不同而改變卷積核內的權系數。說的再直白一些,就是用一個卷積核不改變其內權系數的情況下卷積處理整張圖片(當然CNN中每一層不會只有一個卷積核的,這樣說只是為了方便解釋而已)。
㈣ 卷積神經網路的 卷積層、激活層、池化層、全連接層
數據輸入的是一張圖片(輸入層),CONV表示卷積層,RELU表示激勵層,POOL表示池化層,Fc表示全連接層
全連接神經網路需要非常多的計算資源才能支撐它來做反向傳播和前向傳播,所以說全連接神經網路可以存儲非常多的參數,如果你給它的樣本如果沒有達到它的量級的時候,它可以輕輕鬆鬆把你給他的樣本全部都記下來,這會出現過擬合的情況。
所以我們應該把神經元和神經元之間的連接的權重個數降下來,但是降下來我們又不能保證它有較強的學習能力,所以這是一個糾結的地方,所以有一個方法就是 局部連接+權值共享 ,局部連接+權值共享不僅權重參數降下來了,而且學習能力並沒有實質的降低,除此之外還有其它的好處,下來看一下,下面的這幾張圖片:
一個圖像的不同表示方式
這幾張圖片描述的都是一個東西,但是有的大有的小,有的靠左邊,有的靠右邊,有的位置不同,但是我們構建的網路識別這些東西的時候應該是同一結果。為了能夠達到這個目的,我們可以讓圖片的不同位置具有相同的權重(權值共享),也就是上面所有的圖片,我們只需要在訓練集中放一張,我們的神經網路就可以識別出上面所有的,這也是 權值共享 的好處。
而卷積神經網路就是局部連接+權值共享的神經網路。
現在我們對卷積神經網路有一個初步認識了,下面具體來講解一下卷積神經網路,卷積神經網路依舊是層級結構,但層的功能和形式做了改變,卷積神經網路常用來處理圖片數據,比如識別一輛汽車:
在圖片輸出到神經網路之前,常常先進行圖像處理,有 三種 常見的圖像的處理方式:
均值化和歸一化
去相關和白化
圖片有一個性質叫做局部關聯性質,一個圖片的像素點影響最大的是它周邊的像素點,而距離這個像素點比較遠的像素點二者之間關系不大。這個性質意味著每一個神經元我們不用處理全局的圖片了(和上一層全連接),我們的每一個神經元只需要和上一層局部連接,相當於每一個神經元掃描一小區域,然後許多神經元(這些神經元權值共享)合起來就相當於掃描了全局,這樣就構成一個特徵圖,n個特徵圖就提取了這個圖片的n維特徵,每個特徵圖是由很多神經元來完成的。
在卷積神經網路中,我們先選擇一個局部區域(filter),用這個局部區域(filter)去掃描整張圖片。 局部區域所圈起來的所有節點會被連接到下一層的 一個節點上 。我們拿灰度圖(只有一維)來舉例:
局部區域
圖片是矩陣式的,將這些以矩陣排列的節點展成了向量。就能更好的看出來卷積層和輸入層之間的連接,並不是全連接的,我們將上圖中的紅色方框稱為filter,它是2*2的,這是它的尺寸,這不是固定的,我們可以指定它的尺寸。
我們可以看出來當前filter是2*2的小窗口,這個小窗口會將圖片矩陣從左上角滑到右下角,每滑一次就會一下子圈起來四個,連接到下一層的一個神經元,然後產生四個權重,這四個權重(w1、w2、w3、w4)構成的矩陣就叫做卷積核。
卷積核是演算法自己學習得到的,它會和上一層計算,比如,第二層的0節點的數值就是局部區域的線性組合(w1 0+w2 1+w3 4+w4 5),即被圈中節點的數值乘以對應的權重後相加。
卷積核計算
卷積操作
我們前面說過圖片不用向量表示是為了保留圖片平面結構的信息。 同樣的,卷積後的輸出若用上圖的向量排列方式則丟失了平面結構信息。 所以我們依然用矩陣的方式排列它們,就得到了下圖所展示的連接,每一個藍色結點連接四個黃色的結點。
卷積層的連接方式
圖片是一個矩陣然後卷積神經網路的下一層也是一個矩陣,我們用一個卷積核從圖片矩陣左上角到右下角滑動,每滑動一次,當然被圈起來的神經元們就會連接下一層的一個神經元,形成參數矩陣這個就是卷積核,每次滑動雖然圈起來的神經元不同,連接下一層的神經元也不同,但是產生的參數矩陣確是一樣的,這就是 權值共享 。
卷積核會和掃描的圖片的那個局部矩陣作用產生一個值,比如第一次的時候,(w1 0+w2 1+w3 4+w4 5),所以,filter從左上到右下的這個過程中會得到一個矩陣(這就是下一層也是一個矩陣的原因),具體過程如下所示:
卷積計算過程
上圖中左邊是圖矩陣,我們使用的filter的大小是3 3的,第一次滑動的時候,卷積核和圖片矩陣作用(1 1+1 0+1 1+0 0+1 1+1 0+0 1+0 0+1 1)=4,會產生一個值,這個值就是右邊矩陣的第一個值,filter滑動9次之後,會產生9個值,也就是說下一層有9個神經元,這9個神經元產生的值就構成了一個矩陣,這矩陣叫做特徵圖,表示image的某一維度的特徵,當然具體哪一維度可能並不知道,可能是這個圖像的顏色,也有可能是這個圖像的輪廓等等。
單通道圖片總結 :以上就是單通道的圖片的卷積處理,圖片是一個矩陣,我們用指定大小的卷積核從左上角到右下角來滑動,每次滑動所圈起來的結點會和下一層的一個結點相連,連接之後就會形成局部連接,每一條連接都會產生權重,這些權重就是卷積核,所以每次滑動都會產生一個卷積核,因為權值共享,所以這些卷積核都是一樣的。卷積核會不斷和當時卷積核所圈起來的局部矩陣作用,每次產生的值就是下一層結點的值了,這樣多次產生的值組合起來就是一個特徵圖,表示某一維度的特徵。也就是從左上滑動到右下這一過程中會形成一個特徵圖矩陣(共享一個卷積核),再從左上滑動到右下又會形成另一個特徵圖矩陣(共享另一個卷積核),這些特徵圖都是表示特徵的某一維度。
三個通道的圖片如何進行卷積操作?
至此我們應該已經知道了單通道的灰度圖是如何處理的,實際上我們的圖片都是RGB的圖像,有三個通道,那麼此時圖像是如何卷積的呢?
彩色圖像
filter窗口滑的時候,我們只是從width和height的角度來滑動的,並沒有考慮depth,所以每滑動一次實際上是產生一個卷積核,共享這一個卷積核,而現在depth=3了,所以每滑動一次實際上產生了具有三個通道的卷積核(它們分別作用於輸入圖片的藍色、綠色、紅色通道),卷積核的一個通道核藍色的矩陣作用產生一個值,另一個和綠色的矩陣作用產生一個值,最後一個和紅色的矩陣作用產生一個值,然後這些值加起來就是下一層結點的值,結果也是一個矩陣,也就是一張特徵圖。
三通道的計算過程
要想有多張特徵圖的話,我們可以再用新的卷積核來進行左上到右下的滑動,這樣就會形成 新的特徵圖 。
三通道圖片的卷積過程
也就是說增加一個卷積核,就會產生一個特徵圖,總的來說就是輸入圖片有多少通道,我們的卷積核就需要對應多少通道,而本層中卷積核有多少個,就會產生多少個特徵圖。這樣卷積後輸出可以作為新的輸入送入另一個卷積層中處理,有幾個特徵圖那麼depth就是幾,那麼下一層的每一個特徵圖就得用相應的通道的卷積核來對應處理,這個邏輯要清楚,我們需要先了解一下 基本的概念:
卷積計算的公式
4x4的圖片在邊緣Zero padding一圈後,再用3x3的filter卷積後,得到的Feature Map尺寸依然是4x4不變。
填充
當然也可以使用5x5的filte和2的zero padding可以保持圖片的原始尺寸,3x3的filter考慮到了像素與其距離為1以內的所有其他像素的關系,而5x5則是考慮像素與其距離為2以內的所有其他像素的關系。
規律: Feature Map的尺寸等於
(input_size + 2 * padding_size − filter_size)/stride+1
我們可以把卷積層的作用 總結一點: 卷積層其實就是在提取特徵,卷積層中最重要的是卷積核(訓練出來的),不同的卷積核可以探測特定的形狀、顏色、對比度等,然後特徵圖保持了抓取後的空間結構,所以不同卷積核對應的特徵圖表示某一維度的特徵,具體什麼特徵可能我們並不知道。特徵圖作為輸入再被卷積的話,可以則可以由此探測到"更大"的形狀概念,也就是說隨著卷積神經網路層數的增加,特徵提取的越來越具體化。
激勵層的作用可以理解為把卷積層的結果做 非線性映射 。
激勵層
上圖中的f表示激勵函數,常用的激勵函數幾下幾種:
常用的激勵函數
我們先來看一下激勵函數Sigmoid導數最小為0,最大為1/4,
激勵函數Sigmoid
Tanh激活函數:和sigmoid相似,它會關於x軸上下對應,不至於朝某一方面偏向
Tanh激活函數
ReLU激活函數(修正線性單元):收斂快,求梯度快,但較脆弱,左邊的梯度為0
ReLU激活函數
Leaky ReLU激活函數:不會飽和或者掛掉,計算也很快,但是計算量比較大
Leaky ReLU激活函數
一些激勵函數的使用技巧 :一般不要用sigmoid,首先試RELU,因為快,但要小心點,如果RELU失效,請用Leaky ReLU,某些情況下tanh倒是有不錯的結果。
這就是卷積神經網路的激勵層,它就是將卷積層的線性計算的結果進行了非線性映射。可以從下面的圖中理解。它展示的是將非線性操作應用到一個特徵圖中。這里的輸出特徵圖也可以看作是"修正"過的特徵圖。如下所示:
非線性操作
池化層:降低了各個特徵圖的維度,但可以保持大分重要的信息。池化層夾在連續的卷積層中間,壓縮數據和參數的量,減小過擬合,池化層並沒有參數,它只不過是把上層給它的結果做了一個下采樣(數據壓縮)。下采樣有 兩種 常用的方式:
Max pooling :選取最大的,我們定義一個空間鄰域(比如,2x2 的窗口),並從窗口內的修正特徵圖中取出最大的元素,最大池化被證明效果更好一些。
Average pooling :平均的,我們定義一個空間鄰域(比如,2x2 的窗口),並從窗口內的修正特徵圖算出平均值
Max pooling
我們要注意一點的是:pooling在不同的depth上是分開執行的,也就是depth=5的話,pooling進行5次,產生5個池化後的矩陣,池化不需要參數控制。池化操作是分開應用到各個特徵圖的,我們可以從五個輸入圖中得到五個輸出圖。
池化操作
無論是max pool還是average pool都有分信息被舍棄,那麼部分信息被舍棄後會損壞識別結果嗎?
因為卷積後的Feature Map中有對於識別物體不必要的冗餘信息,我們下采樣就是為了去掉這些冗餘信息,所以並不會損壞識別結果。
我們來看一下卷積之後的冗餘信息是怎麼產生的?
我們知道卷積核就是為了找到特定維度的信息,比如說某個形狀,但是圖像中並不會任何地方都出現這個形狀,但卷積核在卷積過程中沒有出現特定形狀的圖片位置卷積也會產生一個值,但是這個值的意義就不是很大了,所以我們使用池化層的作用,將這個值去掉的話,自然也不會損害識別結果了。
比如下圖中,假如卷積核探測"橫折"這個形狀。 卷積後得到3x3的Feature Map中,真正有用的就是數字為3的那個節點,其餘數值對於這個任務而言都是無關的。 所以用3x3的Max pooling後,並沒有對"橫折"的探測產生影響。 試想在這里例子中如果不使用Max pooling,而讓網路自己去學習。 網路也會去學習與Max pooling近似效果的權重。因為是近似效果,增加了更多的參數的代價,卻還不如直接進行最大池化處理。
最大池化處理
在全連接層中所有神經元都有權重連接,通常全連接層在卷積神經網路尾部。當前面卷積層抓取到足以用來識別圖片的特徵後,接下來的就是如何進行分類。 通常卷積網路的最後會將末端得到的長方體平攤成一個長長的向量,並送入全連接層配合輸出層進行分類。比如,在下面圖中我們進行的圖像分類為四分類問題,所以卷積神經網路的輸出層就會有四個神經元。
四分類問題
我們從卷積神經網路的輸入層、卷積層、激活層、池化層以及全連接層來講解卷積神經網路,我們可以認為全連接層之間的在做特徵提取,而全連接層在做分類,這就是卷積神經網路的核心。
㈤ 第五章 神經網路
神經網路 :神經網路是由具有適應性的簡單單元組成的廣泛並行互連的網路,它的組織能夠模擬生物神經系統對真實世界物體所作出的交互反應。
神經網路中最基本的成分便是 神經元模型 。
M-P神經元模型:
感知機由兩層神經元組成,分別為輸入層、輸出層。
以下是具體過程:
多層神經網路的拓撲結構如圖:
如上圖可知,多層網路由輸入層、隱含層和輸出層組成,頂層是輸出層,底層是輸入層,中間的便是隱含層。隱含層與輸出層都具有功能神經元。
多層前饋神經網路的結構需要滿足:
1、每層神經元必須與下一層完全互連
2、神經元之間不存在同層連接
3、神經元不可跨層連接
只需包含一個足夠多神經元的隱層,就能以任意精度逼近任意復雜度的連續函數
BP神經網路由於學習能力太強大比較榮譽造成過擬合問題,故有兩種策略來減緩過擬合的問題:
1、早停:將數據分成訓練集和驗證集,訓練集學習,驗證集評估性能,在訓練過程中,若訓練集的累積誤差降低,而驗證集的累積誤差提高,則終止訓練;
2、引入正則化:其基本思想是在誤差目標函數中增加一個用於描述網路復雜程度的部分,有如連接權和閾值的平方和:
其中λ∈(0,1)用於對累積經驗誤差與網路復雜度這兩項進行折中,常通過交叉驗證法來估計。
神經網路的訓練過程可看作一個參數尋優的過程,即尋找到適當的參數使得E最小。於是我們時常會談及「全局最小」和「局部最小」。
1、全局最小:即全局最小解,在參數空間中,所有其他點的誤差函數值均大於該點;
2、局部最小:即局部最小解,在參數空間中,其鄰近的點的誤差函數值均大於該點。
我們要達到局部極小點,很容易,只要滿足梯度為零的點便是了,局部極小點可以有多個,但全局最小點只有一個。顯然,我們追求的是全局最小,而非局部極小,於是人們通常採用以下策略來試圖「跳出」局部極小,使其接近全局最小:
1、以多組不同參數值初始化多個神經網路,按標准方法訓練,在迭代停止後,取其中誤差最小的解作為最終參數;
2、使用隨機梯度下降(在計算梯度時加入了隨機因素),使得在局部最小時,計算的梯度仍可能不為0,從而可能跳出局部極小,繼續進行迭代;
3、「模擬退火」技術,在每一步都以一定的概率接受比當前解更差的結果,但接受「次優解」的概率要隨著迭代進行,時間推移而逐漸減低以確保演算法的穩定。
1、RBF網路
單隱層前饋神經網路 ,使用徑向基函數作為隱層神經元激活函數,輸出層是對隱層神經元輸出的線性組合。RBF網路可表示為:
2、ART網路
競爭型學習 (神經網路中一種常用的 無監督學習 策略),由 比較層、識別層、識別閾值和重置模塊 組成。接收到比較層的輸入信號後,識別層神經元相互競爭以產生獲勝神經元,最簡單的方式就是計算輸入向量與每個識別層神經元所對應的模式類代表向量間的距離,距離小者獲勝。若獲勝神經元對應的代表向量與輸入向量間 相似度大於識別閾值 ,則將輸入樣本歸為該代表向量所屬類別,網路 連接權 也會進行 更新 以保證後面接收到相似的輸入樣本時該模式類會計算出更大的相似度,使得這樣的樣本能夠歸於一類;如果 相似度不大於識別閾值 ,則 重置模塊 會在 識別層 加一個神經元,其 代表向量 就 設置 為當前 輸入向量 。
3、SOM網路
競爭型學習的無監督神經網路 ,將高維輸入數據映射到低維空間(通常是二維),且保持輸入數據在高維空間的拓撲結構。
4、級聯相關網路
結構自適應網路 。
5、Elman網路
遞歸神經網路 。
6、Boltzmann機
基於能量的模型,其神經元分為顯層與隱層,顯層用於數據輸入輸出,隱層被理解為數據的內在表達。其神經元皆為布爾型,1為激活,0為抑制。
理論上,參數越多的模型其復雜程度越高,能完成更加復雜的學習任務。但是復雜模型的訓練效率低下,容易過擬合。但由於大數據時代、雲計算,計算能力大幅提升緩解了訓練效率低下,而訓練數據的增加則可以降低過擬合風險。
於是如何增加模型的復雜程度呢?
1、增加隱層數;
2、增加隱層神經元數.
如何有效訓練多隱層神經網路?
1、無監督逐層訓練:每次訓練一層隱節點,把上一層隱節點的輸出當作輸入來訓練,本層隱結點訓練好後,輸出再作為下一層的輸入來訓練,這稱為預訓練,全部預訓練完成後,再對整個網路進行微調。「預訓練+微調」即把大量的參數進行分組,先找出每組較好的設置,再基於這些局部最優的結果來訓練全局最優;
2、權共享:令同一層神經元使用完全相同的連接權,典型的例子是卷積神經網路。這樣做可以大大減少需要訓練的參數數目。
深度學習 可理解為一種特徵學習或者表示學習,是通過 多層處理 ,逐漸將初始的 低層特徵表示 轉化為 高層特徵表示 後,用 簡單模型 即可完成復雜的分類等 學習任務 。
㈥ 卷積神經網路
關於花書中卷積網路的筆記記錄於 https://www.jianshu.com/p/5a3c90ea0807 。
卷積神經網路(Convolutional Neural Network,CNN或ConvNet)是一種具有 局部連接、權重共享 等特性的深層前饋神經網路。卷積神經網路是受生物學上感受野的機制而提出。 感受野(Receptive Field) 主要是指聽覺、視覺等神經系統中一些神經元的特性,即 神經元只接受其所支配的刺激區域內的信號 。
卷積神經網路最早是主要用來處理圖像信息。如果用全連接前饋網路來處理圖像時,會存在以下兩個問題:
目前的卷積神經網路一般是由卷積層、匯聚層和全連接層交叉堆疊而成的前饋神經網路,使用反向傳播演算法進行訓練。 卷積神經網路有三個結構上的特性:局部連接,權重共享以及匯聚 。這些特性使卷積神經網路具有一定程度上的平移、縮放和旋轉不變性。
卷積(Convolution)是分析數學中一種重要的運算。在信號處理或圖像處理中,經常使用一維或二維卷積。
一維卷積經常用在信號處理中,用於計算信號的延遲累積。假設一個信號發生器每個時刻t 產生一個信號 ,其信息的衰減率為 ,即在 個時間步長後,信息為原來的 倍。假設 ,那麼在時刻t收到的信號 為當前時刻產生的信息和以前時刻延遲信息的疊加:
我們把 稱為 濾波器(Filter)或卷積核(Convolution Kernel) 。假設濾波器長度為 ,它和一個信號序列 的卷積為:
信號序列 和濾波器 的卷積定義為:
一般情況下濾波器的長度 遠小於信號序列長度 ,下圖給出一個一維卷積示例,濾波器為 :
二維卷積經常用在圖像處理中。因為圖像為一個兩維結構,所以需要將一維卷積進行擴展。給定一個圖像 和濾波器 ,其卷積為:
下圖給出一個二維卷積示例:
注意這里的卷積運算並不是在圖像中框定卷積核大小的方框並將各像素值與卷積核各個元素相乘並加和,而是先把卷積核旋轉180度,再做上述運算。
在圖像處理中,卷積經常作為特徵提取的有效方法。一幅圖像在經過卷積操作後得到結果稱為 特徵映射(Feature Map) 。
最上面的濾波器是常用的高斯濾波器,可以用來對圖像進行 平滑去噪 ;中間和最下面的過濾器可以用來 提取邊緣特徵 。
在機器學習和圖像處理領域,卷積的主要功能是在一個圖像(或某種特徵)上滑動一個卷積核(即濾波器),通過卷積操作得到一組新的特徵。在計算卷積的過程中,需要進行卷積核翻轉(即上文提到的旋轉180度)。 在具體實現上,一般會以互相關操作來代替卷積,從而會減少一些不必要的操作或開銷。
互相關(Cross-Correlation)是一個衡量兩個序列相關性的函數,通常是用滑動窗口的點積計算來實現 。給定一個圖像 和卷積核 ,它們的互相關為:
互相關和卷積的區別僅在於卷積核是否進行翻轉。因此互相關也可以稱為不翻轉卷積 。當卷積核是可學習的參數時,卷積和互相關是等價的。因此,為了實現上(或描述上)的方便起見,我們用互相關來代替卷積。事實上,很多深度學習工具中卷積操作其實都是互相關操作。
在卷積的標準定義基礎上,還可以引入濾波器的 滑動步長 和 零填充 來增加卷積多樣性,更靈活地進行特徵抽取。
濾波器的步長(Stride)是指濾波器在滑動時的時間間隔。
零填充(Zero Padding)是在輸入向量兩端進行補零。
假設卷積層的輸入神經元個數為 ,卷積大小為 ,步長為 ,神經元兩端各填補 個零,那麼該卷積層的神經元數量為 。
一般常用的卷積有以下三類:
因為卷積網路的訓練也是基於反向傳播演算法,因此我們重點關注卷積的導數性質:
假設 。
, , 。函數 為一個標量函數。
則由 有:
可以看出, 關於 的偏導數為 和 的卷積 :
同理得到:
當 或 時, ,即相當於對 進行 的零填充。從而 關於 的偏導數為 和 的寬卷積 。
用互相關的「卷積」表示,即為(注意 寬卷積運算具有交換性性質 ):
在全連接前饋神經網路中,如果第 層有 個神經元,第 層有 個神經元,連接邊有 個,也就是權重矩陣有 個參數。當 和 都很大時,權重矩陣的參數非常多,訓練的效率會非常低。
如果採用卷積來代替全連接,第 層的凈輸入 為第 層活性值 和濾波器 的卷積,即:
根據卷積的定義,卷積層有兩個很重要的性質:
由於局部連接和權重共享,卷積層的參數只有一個m維的權重 和1維的偏置 ,共 個參數。參數個數和神經元的數量無關。此外,第 層的神經元個數不是任意選擇的,而是滿足 。
卷積層的作用是提取一個局部區域的特徵,不同的卷積核相當於不同的特徵提取器。
特徵映射(Feature Map)為一幅圖像(或其它特徵映射)在經過卷積提取到的特徵,每個特徵映射可以作為一類抽取的圖像特徵。 為了提高卷積網路的表示能力,可以在每一層使用多個不同的特徵映射,以更好地表示圖像的特徵。
在輸入層,特徵映射就是圖像本身。如果是灰度圖像,就是有一個特徵映射,深度 ;如果是彩色圖像,分別有RGB三個顏色通道的特徵映射,深度 。
不失一般性,假設一個卷積層的結構如下:
為了計算輸出特徵映射 ,用卷積核 分別對輸入特徵映射 進行卷積,然後將卷積結果相加,並加上一個標量偏置 得到卷積層的凈輸入 再經過非線性激活函數後得到輸出特徵映射 。
在輸入為 ,輸出為 的卷積層中,每個輸出特徵映射都需要 個濾波器以及一個偏置。假設每個濾波器的大小為 ,那麼共需要 個參數。
匯聚層(Pooling Layer)也叫子采樣層(Subsampling Layer),其作用是進行特徵選擇,降低特徵數量,並從而減少參數數量。
常用的匯聚函數有兩種:
其中 為區域 內每個神經元的激活值。
可以看出,匯聚層不但可以有效地減少神經元的數量,還可以使得網路對一些小的局部形態改變保持不變性,並擁有更大的感受野。
典型的匯聚層是將每個特徵映射劃分為 大小的不重疊區域,然後使用最大匯聚的方式進行下采樣。匯聚層也可以看做是一個特殊的卷積層,卷積核大小為 ,步長為 ,卷積核為 函數或 函數。過大的采樣區域會急劇減少神經元的數量,會造成過多的信息損失。
一個典型的卷積網路是由卷積層、匯聚層、全連接層交叉堆疊而成。
目前常用卷積網路結構如圖所示,一個卷積塊為連續 個卷積層和 個匯聚層( 通常設置為 , 為 或 )。一個卷積網路中可以堆疊 個連續的卷積塊,然後在後面接著 個全連接層( 的取值區間比較大,比如 或者更大; 一般為 )。
目前,整個網路結構 趨向於使用更小的卷積核(比如 和 )以及更深的結構(比如層數大於50) 。此外,由於卷積的操作性越來越靈活(比如不同的步長),匯聚層的作用變得也越來越小,因此目前比較流行的卷積網路中, 匯聚層的比例也逐漸降低,趨向於全卷積網路 。
在全連接前饋神經網路中,梯度主要通過每一層的誤差項 進行反向傳播,並進一步計算每層參數的梯度。在卷積神經網路中,主要有兩種不同功能的神經層:卷積層和匯聚層。而參數為卷積核以及偏置,因此 只需要計算卷積層中參數的梯度。
不失一般性,第 層為卷積層,第 層的輸入特徵映射為 ,通過卷積計算得到第 層的特徵映射凈輸入 ,第 層的第 個特徵映射凈輸入
由 得:
同理可得,損失函數關於第 層的第 個偏置 的偏導數為:
在卷積網路中,每層參數的梯度依賴其所在層的誤差項 。
卷積層和匯聚層中,誤差項的計算有所不同,因此我們分別計算其誤差項。
第 層的第 個特徵映射的誤差項 的具體推導過程如下:
其中 為第 層使用的激活函數導數, 為上采樣函數(upsampling),與匯聚層中使用的下采樣操作剛好相反。如果下采樣是最大匯聚(max pooling),誤差項 中每個值會直接傳遞到上一層對應區域中的最大值所對應的神經元,該區域中其它神經元的誤差項的都設為0。如果下采樣是平均匯聚(meanpooling),誤差項 中每個值會被平均分配到上一層對應區域中的所有神經元上。
第 層的第 個特徵映射的誤差項 的具體推導過程如下:
其中 為寬卷積。
LeNet-5雖然提出的時間比較早,但是是一個非常成功的神經網路模型。基於LeNet-5 的手寫數字識別系統在90年代被美國很多銀行使用,用來識別支票上面的手寫數字。LeNet-5 的網路結構如圖:
不計輸入層,LeNet-5共有7層,每一層的結構為:
AlexNet是第一個現代深度卷積網路模型,其首次使用了很多現代深度卷積網路的一些技術方法,比如採用了ReLU作為非線性激活函數,使用Dropout防止過擬合,使用數據增強來提高模型准確率等。AlexNet 贏得了2012 年ImageNet 圖像分類競賽的冠軍。
AlexNet的結構如圖,包括5個卷積層、3個全連接層和1個softmax層。因為網路規模超出了當時的單個GPU的內存限制,AlexNet 將網路拆為兩半,分別放在兩個GPU上,GPU間只在某些層(比如第3層)進行通訊。
AlexNet的具體結構如下:
在卷積網路中,如何設置卷積層的卷積核大小是一個十分關鍵的問題。 在Inception網路中,一個卷積層包含多個不同大小的卷積操作,稱為Inception模塊。Inception網路是由有多個inception模塊和少量的匯聚層堆疊而成 。
v1版本的Inception模塊,採用了4組平行的特徵抽取方式,分別為1×1、3× 3、5×5的卷積和3×3的最大匯聚。同時,為了提高計算效率,減少參數數量,Inception模塊在進行3×3、5×5的卷積之前、3×3的最大匯聚之後,進行一次1×1的卷積來減少特徵映射的深度。如果輸入特徵映射之間存在冗餘信息, 1×1的卷積相當於先進行一次特徵抽取 。
㈦ 哪些神經網路結構會發生權重共享
說的確定應該就是訓練方法吧,神經網路的權值不是人工給定的。而是用訓練集(包括輸入和輸出)訓練,用訓練集訓練一遍稱為一個epoch,一般要許多epoch才行,目的是使得目標與訓練結果的誤差(一般採用均方誤差)小到一個給定的閾值。以上所說是有監督的學習方法,還有無監督的學習方法。